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Dynamic Matrix-Variate Graphical Models

Carlos M. Carvalho∗ and Mike West†

Abstract. This paper introduces a novel class of Bayesian models for multivariate
time series analysis based on a synthesis of dynamic linear models and graphical
models. The synthesis uses sparse graphical modelling ideas to introduce struc-
tured, conditional independence relationships in the time-varying, cross-sectional
covariance matrices of multiple time series. We define this new class of models and
their theoretical structure involving novel matrix-normal/hyper-inverse Wishart
distributions. We then describe the resulting Bayesian methodology and compu-
tational strategies for model fitting and prediction. This includes novel stochastic
evolution theory for time-varying, structured variance matrices, and the full se-
quential and conjugate updating, filtering and forecasting analysis. The models are
then applied in the context of financial time series for predictive portfolio analysis.
The improvements defined in optimal Bayesian decision analysis in this example
context vividly illustrate the practical benefits of the parsimony induced via appro-
priate graphical model structuring in multivariate dynamic modelling. We discuss
theoretical and empirical aspects of the conditional independence structures in
such models, issues of model uncertainty and search, and the relevance of this new
framework as a key step towards scaling multivariate dynamic Bayesian modelling
methodology to time series of increasing dimension and complexity.

Keywords: Bayesian Forecasting, Dynamic Linear Models, Gaussian Graphical
Models, Graphical Model Uncertainty, Hyper-Inverse Wishart Distribution, Port-
folio Analysis.

1 Introduction

Bayesian dynamic linear models (DLMs) (West and Harrison 1997) are used extensively
for analysis and prediction of time series of increasing dimension and complexity in
finance (Aguilar and West 2000; Quintana et al. 2003), engineering (Godsill and Rayner
1998; Fong et al. 2002; Godsill et al. 2004), ecology (Calder et al. 2003), medicine
(West et al. 1999) and other areas. The time-varying regression structure, or state-space
structure, and the sequential nature of DLM analysis flexibly allows for the creation
and routine use of interpretable forecasting models of realistic complexity. The inherent
Bayesian framework naturally allows and encourages the integration of data, expert
information and systematic interventions in model fitting and assessment, and thus in
forecasting and decision making.

The current work responds to the increasingly pressing need to scale multivariate
time series analysis methodology to higher-dimensional problems. Many application
areas are generating data of increasing dimension and complexity, and modellers must
respond with increasing attention to structure and parameter parsimony in statistical
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models. Increasing sparsity of parameters in higher-dimensions is a pre-requisite for
scalability of methods in time series as in other areas. We address this by introducing a
synthesis of multi- and matrix-variate DLMs with graphical modelling to induce sparsity
and structure in the covariance matrices of such models, including time-varying matrices
in multivariate time series.

Section 2 outlines the framework of matrix-variate DLMs, a natural framework for
evaluation of inter-connections among several or many series and of the changes in
dependency structures over time. These models are routinely used in financial applica-
tions, in particular. Section 3 outlines the structure of Gaussian graphical models, and
Bayesian models for structured, parameter constrained covariance matrices based on
the use of the family of hyper-inverse Wishart distributions. Section 4 then defines the
new modelling framework, including the formal model specification and details of the
resulting methodology for both constant and, of more practical relevance, time-varying
covariance matrices in matrix-DLMs. This includes extensions of the standard DLM
sequential updating, forecasting and retrospective analysis theory. Section 5 then de-
scribes the use of formal models inducing variance matrix discounting into the new mod-
els for structured, time-varying covariance matrices. Section 6 develops a study in a key
motivating application context, that of financial portfolio prediction and decision anal-
ysis (Quintana and West 1987; Quintana 1992; Quintana et al. 2003; Aguilar and West
2000). We discuss theoretical and empirical findings in the context of an initial example
using 11 exchange rate time series, and then a more extensive and practical study of 346
securities from the S&P Index. This latter application also develops and applies graph-
ical model search and selection ideas, based on existing MCMC and stochastic search
methods now translated to the DLM context. Section 7 provides a brief overview and
summary comments, and pointers to near-term research including broader questions of
model uncertainty.

2 Matrix-Variate Dynamic Linear Models

The class of Matrix Normal DLMs
(Quintana 1987; Quintana and West 1987; West and Harrison 1997) represents a gen-
eral, fully-conjugate framework for multivariate time series analysis and dynamic regres-
sion with estimation of cross-sectional covariance structures. The framework involves
common structure for each of the univariate series, thus making these models particu-
larly well-suited for the analysis of time series of similar, related items, such as stock
prices, bond prices, temporal gene expression data, and so forth.

We begin with development of models with constant but unknown observational
variances and cross-series covariances. This is developed in this and the following sec-
tion, and then we extend to the key practical case of time-varying variance matrices in
Section 4.

Consider p univariate time series Yti following individual DLMs

{

Ft,Gt, Vtσ
2
i ,Wtσ

2
i

}
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Here t is the time index and i indexes the individual series (i = 1, . . . , p). The notation
above represents the set of p DLMs

Observation: Yti = F′
tθti + νti, νti ∼ N(0, Vtσ

2
i ), (1)

Evolution: θti = Gtθt−1,i + ωti, ωti ∼ N(0,Wtσ
2
i ), (2)

where: Ft is a known n × 1 regression vector, Gt is a known n × n state evolution
matrix, Wt is a known n× n evolution innovation variance matrix, Vt are known scale
factors, θti is the series-i specific n × 1 state vector, and the σi are unknown scale
factors. Standard conditional independence assumptions are that the observation error
terms νti and state evolution innovations ωti are independent across time and mutually
independent at each time. The multivariate model is completed with a cross-sectional
covariance structure that impacts on both observation and evolution terms. Let Σ be a
p× p covariance matrix with diagonal elements σii = σ2

i and off-diagonals σij , (i 6= j).

Combine the model components as follows:

• Yt = (Yt1, . . . , Ytp)
′, the p× 1 observation vector;

• Θt = (θt1, . . . ,θtp), the n× p matrix of states;

• Ωt = (ωt1, . . . ,ωtp), the n× p matrix of evolution innovations; and

• νt = (νt1, . . . , νtp)
′, the p× 1 vector of observational innovations.

Then the model is

Y′
t = F′

tΘt + ν
′
t, νt ∼ N(0, VtΣ), (3)

Θt = GtΘt−1 + Ωt Ωt ∼ N(0,Wt,Σ), (4)

where the evolution innovation matrix Ωt follows a matrix-variate normal with mean 0
(a n× p matrix), left covariance matrix Wt and right covariance matrix Σ; see Dawid
(1981) and Appendix A below.

The cross-sectional structure comes in via the elements σij (i, j = 1, . . . , p) of the
(p×p) covariance matrix Σ. The model of (3) and (4) implies that, for all i, j = 1, . . . , p,

Cov(νti, νtj) = Vtσij ,

Cov(ωti,ωtj) = Wtσij .

The correlation structure induced by Σ affects both the observational and evolution
errors; thus, if σij is large and positive, series i and j will show a similar behavior
in both their underlying state evolution and in the observational variation about their
level.
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3 Gaussian Graphical Models

3.1 Basic Structure

Graphical model structuring for multivariate models characterizes conditional indepen-
dencies via graphs (Whittaker 1990; Lauritzen 1996; Jones et al. 2005), and provides
methodologically useful decompositions of the sample space into subsets of variables
(graph vertices) so that complex problems can be handled through the combination
of simpler elements. In high-dimensional problems, graphical model structuring is a
key approach to parameter dimension reduction and, hence, to scientific parsimony and
statistical efficiency when appropriate graphical structures are identified.

In the context of a multivariate normal distribution, conditional independence re-
strictions are simply expressed through zeros in the off-diagonal elements of the precision
(or concentration) matrix. A p−vector x with elements xi has a zero-mean multivariate
normal distribution with p×p variance matrix Σ and precision Ω = Σ−1 with elements
ωij . Write G = (V,E) for the undirected graph whose vertex set V corresponds to the
set of p random variables in x, and whose edge set E contains elements (i, j) for only
those pairs of vertices i, j ∈ V for which ωij 6= 0. The canonical parameter Ω belongs
to M(G), the set of all positive-definite symmetric matrices with elements equal to zero
for all (i, j) /∈ E.

The density of x factorizes as

p(x|Σ, G) =

∏

P∈P p(xP |ΣP )
∏

S∈S p(xS |ΣS)
, (5)

a ratio of products of densities where xP and xS indicate subsets of variables in the
prime components (P ) and separators (S) of G, respectively. Given G, this distribution
is defined completely by the component-marginal covariance matrices ΣP , subject to
the consistency condition that sub-matrices in the separating components are identical
(Dawid and Lauritzen 1993). That is, if S = P1 ∩ P2 the elements of ΣS are common
in ΣP1

and ΣP2
.

A graph is said to be decomposable when all of its prime components are complete
subgraphs of G, implying no conditional independence constraints within a prime com-
ponent; we also then refer to all prime components (as well as their separators) as cliques
of the graph. We develop our theory for decomposable graphical models, now briefly
reviewing and then extending the use of hyper-inverse Wishart distributions.

3.2 Hyper-Inverse Wishart Distributions

The fully conjugate Bayesian analysis of decomposable Gaussian graphical models
(Dawid and Lauritzen 1993) is based on the family of hyper-inverse Wishart (HIW)
distributions for structured variance matrices. If Ω = Σ−1 ∈ M(G), the hyper-inverse
Wishart

Σ ∼ HIWG(b,D) (6)
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has a degree-of-freedom parameter b and location matrix D ∈M(G). This distribution
is the unique hyper-Markov distribution for Σ with consistent clique-marginals that are
inverse Wishart. Specifically, for each clique P ∈ P , ΣP ∼ IW (b,DP ) with density

p(ΣP |b,DP ) ∝ |ΣP |−(b+2|P |)/2 exp

(

−1

2
tr(Σ−1

P DP )

)

(7)

where DP is the positive-definite symmetric diagonal block of D corresponding to ΣP .
The full HIW is conjugate to the likelihood from a Gaussian sample with variance Σ
on G, and the full HIW joint density factorizes over cliques and separators in the same
way as (5); that is,

p(Σ|b,D) =

∏

P∈P p(ΣP |b,DP )
∏

S∈S p(ΣS |b,DS)
, (8)

where each component in the products of both numerator and denominator is IW as in
equation (7).

Definition: Matrix-Normal/HIW Distributions

Our new models utilise HIW distributions together with matrix and multivariate normal
distributions, in a direct and simple extension of the usual normal, inverse Wishart dis-
tribution theory to the general framework of graphical models. The setup and notation
is as follows: The n × p random matrix X and p × p random variance matrix Σ have
a joint matrix-normal, hyper-inverse Wishart (NHIW) distribution if Σ ∼ HIWG(b,D)
on G and (X|Σ) ∼ N(m,W,Σ) for some b,D,m,W. We denote this by (X,Σ) ∼
NHIWG(m,W, b,D) with X marginally following a matrix hyper-T (as defined in
Dawid and Lauritzen 1993) denoted by HTG(m,W,D, b).

4 Sparsity in DLMs: Generalization to HIW

4.1 Framework

As discussed above, Gaussian graphical models are a representation of conditional in-
dependence structure in multivariate distributions where decompositions of the joint
distribution provide computational efficiencies and a reduction in the space of param-
eters. Taking advantage of the latter, we now show how graphical structuring can be
incorporated in matrix normal DLMs providing a parsimonious model for Σ. For a
given decomposable graph, the hyper-inverse Wishart is used as a conjugate prior for Σ
and the analytical, closed-form, sequential updating procedure can be generalized. The
methodological developments in this section assume the choice of a particular decom-
posable graph G for all time points. In practical settings we face two situations: either
G is specified based on a combination of substantive reasoning and prior data, or G is
drawn from a set of (possible many) candidate graphs to allow for uncertainty about
the graphical structure. In the latter case we may then apply the following analysis on
each of the graphs in parallel and structure assessment follows by embedding within a
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model mixture context (West and Harrison, 1997, chapter 12). The two examples of
section 6 below speak to each of these two situations.

Consider the matrix normal DLM described in Equations (3) and (4), and suppose
Ω = Σ−1 is constrained by a graph G. With the usual notation that Dt is the data and
information set conditioned upon at any time t, assume the NHIW initial prior of the
form

(Θ0,Σ|D0) ∼ NHIWG(m0,C0, b0,S0). (9)

In components,

(Θ0|Σ, D0) ∼ N(m0,C0,Σ) and (Σ|D0) ∼ HIWG(b0,S0), (10)

which incorporates the conditional independence relationships from G into the prior.
This is in fact the form of the conjugate prior for sequential updating at all times t, as
is now detailed.

4.2 Sequential Updating and Forecasting

Theorem 1. Under the initial prior of equation (9) and with data observed sequentially
to update information sets as Dt = {Dt−1,Yt}, the sequential updating for the matrix
normal DLM on G is given as follows:

(i) Posterior at t− 1:

(Θt−1,Σ|Dt−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1)

(ii) Prior at t:
(Θt,Σ|Dt−1) ∼ NHIWG(at,Rt, bt−1,St−1)

where
at = Gtmt−1 and Rt = GtCt−1G

′
t + Wt

(iii) One-step forecast:
(Yt|Dt−1) ∼ HTG(ft, QtSt−1, bt−1)

where
f ′t = F′

tat and Qt = F′
tRtFt + Vt

(iv) Posterior at t:
(Θt,Σ|Dt) ∼ NHIWG(mt,Ct, bt,St)

with

mt = at + Ate
′
t

Ct = Rt − AtA
′Qt

bt = bt−1 + 1

St = St−1 + ete
′
t/Qt

where
At = RtFt/Qt and et = Yt − ft
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Proof. This theorem is a direct extension of the theory for matrix DLMs using inverse
Wishart distributions for constant variance matrices, as described in Quintana (1987),
Quintana and West (1987) and West and Harrison (1997), to the more general frame-
work of graphical models and HIW distributions. The components of the theorem that
are novel and require discussion here are (iii) and the updating related to Σ in (iv).

• Proof of (iii): It is clear that

(Yt|Σ, Dt−1) ∼ N(ft, QtΣ),

with (Σ|Dt−1) ∼ HIWG(bt−1, St−1) so, for each clique C, the marginal dis-
tribution of YC

t is simply a T (ft, QtS
C
t−1, bt−1). The overall marginal distri-

bution of Yt is then a hyper-T distribution given by the Markov combination
(consistent with G) of T-distributions over cliques and separators, as defined in
Dawid and Lauritzen (1993), and denoted here by HTG.

• Proof of (iv): The updating for Σ follows directly the conjugacy of the HIW
described in Dawid and Lauritzen (1993). Here we are simply exploiting this
conjugacy for repeated sequential updates based on the likelihood contributions
from the realized forecast errors et that factorize on the graph in the conjugate
form.

4.3 Retrospection

Interest often also lies in retrospective estimation. At any time T with data DT , the
so-called k-step filtered distribution for the state matrix p(ΘT−k|DT ), (1 ≤ k ≤ T ),
is then available as a direct byproduct of conditional independencies of DLMs. This
result generalizes the retrospective cascade of filtering distributions to the graphical
context. Given that Σ is a fixed parameter (not a state), the results developed in
West and Harrison (1997) extend to the matrix DLMs with graphical structure. In
summary, the filtered distribution of the state matrix ΘT−k and Σ is most easily ob-
tained recursively as follows (details in West and Harrison 1997):

(Θt−k,Σ|Dt) ∼ NHIWG(a(−k)t,R(−k)t, bt,St) (11)

where the parameters are calculated through the following recurrences:

Bt−k = Ct−kG
′
t−k+1R

−1
t−k+1

at(−k) = mt−k + Bt−k[at(−k + 1) − at−k+1]

Rt(−k) = Ct−k + Bt−k[Rt(−k + 1) − Rt−k+1]B
′
t−k,

with starting values at(0) = mt and Rt(0) = Ct.
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5 Time-Varying Σt

The above development is now extended to the practically critical context of time-
varying variances and covariances across series, modifying Σ to Σt and developing an ini-
tial class of stochastic evolution models for these dynamic multivariate matrices. Models
of Σt varying stochastically over time are key in areas such as finance, where univariate
and multivariate volatility models have been center-stage in both research and front-line
financial applications for over two decades (Quintana and West 1987; Bollerslev et al.
1992; Quintana 1992; Jacquier et al. 1994; Kim et al. 1998; Aguilar and West 2000;
Quintana et al. 2003). It is important to point out that, once again, we assume that G
is given and constant across time points.

Our stochastic model for time variation is a “locally smooth”, discount factor-based
model that extends models for full, unconstrained Σt matrices introduced in Liu (2000)
and Quintana et al. (2003). These references developed a general and flexible framework
and a multivariate volatility model that provided a more general foundation for earlier
methods of Uhlig (1994), Quintana et al. (1995) and West and Harrison (1997).

The model involves constructing a Markov process in which transition distributions
p(Σt|Σt−1) are defined based on matrix-Beta random innovations applied to elements
of the Bartlett decomposition of Σt−1. The details extend this Beta-Bartlett evolution
from its original application in models for full, unconstrained variance matrices to the
context here of models constrained on graphs. Full details of the construction and theory
are given in Appendix B below; here we note the basic ideas and operational results.

Based on a specified discount factor δ, (0 << δ ≤ 1), the matrix Beta-Bartlett
stochastic evolution model has the following key implications and features:

• Beginning at time t− 1 with the current posterior

(Σt−1|Dt−1) ∼ HIWG(bt−1,St−1),

the stochastic evolution of Σt−1 to Σt implies the time t prior

(Σt|Dt−1) ∼ HIWG(δbt−1, δSt−1). (12)

• Notice how the time-evolution maintains the inverse-Wishart form for the prior of
Σt. The key additional two features are that the evolution increases the spread of
the HIW distribution by reducing the degrees-of-freedom via multiplication with
the chosen discount factor, while maintaining the location of the distribution at
St−1/bt−1.

Otherwise, the theory and updating analysis as earlier presented are essentially un-
changed. Observing Yt generates the realized forecast error et and the time t prior is
updated as before, with the discount factor modification implied by the modified time
t prior; that is,

(Σt|Dt) ∼ HIWG(bt,St)
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with

bt = δbt−1 + 1 and St = δSt−1 + ete
′
t. (13)

Some additional comments and details are relevant to both interpretation and prac-
tical application:

• Notice how the past information is now discounted prior to updating the summary
parameters of the HIW distributions. To exemplify this, consider the posterior
harmonic mean of Σt, namely Σ̂t = E(Σ−1

t |Dt)
−1 = St/bt. For large t, this has the

form of an exponentially weighted moving average estimate of the error variances.
In detail, bt −→ (1 − δ)−1 and

Σ̂t ≈ (1 − δ)

t−1
∑

l=0

δlet−le
′
t−l.

This provides a framework where forward estimates of Σt keep adapting to new
data while further discounting past observations. The rate of information decay
implied by δ is a modelling choice with standard analysis using relatively high
value of δ, typically between 0.9 and 1. Extensive discussion of choice of discount
factors, and the broader role of discount concepts in dynamic modelling, appears
in West and Harrison (1997) (with discussion specific to dynamic variance models
in chapter 16). Modifications in the discount factor may also be used to allow
for more abrupt changes in volatility to be incorporated into the model. Stan-
dard approaches in applied work will evaluate models across a crude grid of values
and assess sensitivity of resulting inferences and predictions across those mod-
els, perhaps even embedding that approach within a model mixture framework
West and Harrison (1997) (especially examples in chapters 3,10,12).

• As in scalar and multivariate IW models (West and Harrison 1997), the mean of
the retrospective or filtered distributions of the Σ−1

t sequence can be recursively
calculated by

E(Σ−1
t−k|Dt) = S−1

t (−k)(bt(−k) + p− 1) (14)

where,

S−1
t (−k) = (1 − δ)S−1

t−k + δSt(−k + 1)−1 (15)

bt(−k) = (1 − δ)bt−k + δbt(−k + 1) (16)

with starting values St(0) = St and bt(0) = bt. So, for every clique of the graph
G, retrospective estimates of ΩC

t−k can be computed using equation (14) and
combined to form a retrospective estimate of Ωt−k, while direct inversion will
yield the harmonic posterior mean of (Σt|DT ).
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6 Large-Scale Dynamic Portfolio Allocation

6.1 Predictive Portfolio Decisions

The use of dynamic Bayesian forecasting models and Bayesian decision analysis in asset
allocation problems has been routine for a number of years. The one-step ahead fore-
cast distributions of future returns are the key components of mean-variance portfolio
optimization methods that allow for parameter change and uncertainty to be taken into
account in sequential investment decisions. Quintana (1992), Putnam and Quintana
(1994), Quintana and Putnam (1996), Aguilar and West (2000) and Quintana et al.
(2003) are examples of carefully developed DLMs that implement portfolio rules in fixed
income and currency markets; aspects of Bayesian portfolio selection are also discussed
in detail in Polson and Tew (2000).

The static (non-time series) portfolio example of Carvalho et al. (2005) is a first illus-
tration of how structuring the covariance matrices of assets can reduce the uncertainty
about optimal portfolio weights and so induce less volatile investment opportunities.
DLMs with structured covariance matrices, as developed in Theorem 1, are now devel-
oped to properly explore such matters in a realistic dynamic portfolio decision/allocation
context.

In the examples here we base derivation of optimal portfolios on the quadratic pro-
gramming procedures developed by Markowitz (1959). At any time t, given the first
two moments (ft,Qt) of the predictive distribution of a vector of next-period returns
and a fixed scalar return target m, the investor decision problem reduces to choosing
the vector of portfolio weights wt to minimize the one-step ahead portfolio variance
w′

tQtwt subject to constraints w′
tft = m and w′

t1 = 1. The general solution for the
above optimization through Lagrange multipliers creates the so called efficient frontier
where the mean-variance efficient portfolio is given by

w
(m)
t = Q−1

t (aft + b1) (17)

where a = 1′Q−1
t e and b = −f ′tQ

−1
t e, and where e = (1m − ft)/d with

d = (1′Q−1
t 1)(f ′tQ

−1
t ft) − (1′Q−1

t ft)
2. An interesting alternative portfolio that involves

only estimates of Qt is the minimum-variance portfolio that arises from equation (17)
when a = 0 and b−1 = 1′Q−1

t 1. This latter strategy isolates the effects of Qt on invest-
ment decisions and is of interest when competing models for covariance estimation are
considered.

Perold (1988), Polson and Tew (2000) and Ledoit and Wolf (2004) point out that
building high-dimensional portfolios tend to result in extreme and very unstable weights
assigned to each asset. This is due to the large amount of uncertainty in the estimation
of covariance matrices, especially when the number of historical observations is relatively
small if compared to the number of assets considered. From (17) it is clear that the
solution for optimal portfolios is a direct function of the precision matrix Kt = Q−1

t . A
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nice representation appears in Stevens (1998), namely

w
(m)
ti = λ

fti −
∑

j 6=i (ktij/ktii)ftj

k−1
tii

(18)

with λ being the Lagrange multiplier. If it is assumed that the returns are normally
distributed, expression (18) shows that the weight assigned to asset i depends on the
ratio of the intercept of its regression on all other assets relative to the conditional
variance of the regression. In other words, the amount of money invested in asset i
depends on the ratio of the expected return that cannot be explained by the linear
combination of assets to the unhedgeable (or nondiversifiable) risk.

Note that the numerator is a function of the off-diagonal elements of Kt hence it
is not surprising that conditional independence assumptions have a direct influence
over the uncertainty about wt. If, in fact, the unhedgeable risk can be obtained by a
regression involving a smaller number of regressors (i.e. having some of the ktij ’s equal
to zero) this has to be taken into account; failing to do so implies that unnecessary
parameters are being estimated and nothing but uncertainty is added to the problem.
In the following two applications, we show how imposing conditional independence
constraints help create portfolios that not only are less risky but also turn out to be
more profitable. First we revisit the exchange rate example of Carvalho et al. (2005)
followed by an example involving a large set of securities in the S&P 500 stock index.
The goal is to simply compare the performance of dynamic portfolios built from both a
“full” (unconstrained) and a “sparse” (with graphical modelling constraints) DLM. In
all examples a simple DLM with time-varying covariance structure (as in Section 5) is
used; the form is a local trend model, namely

Yt = θt + νt, νt ∼ N(0,Σt), (19)

θt = θt−1 + ωt, ωt ∼ N(0,WtΣt). (20)

This is special case of the general DLMs presented in previous sections and includes
time-varying structured variance matrices.

6.2 Example: International Exchange Rates

This first example is a dynamic version of the example in Carvalho et al. (2005) where
portfolios for p = 11 international currency exchange rates relative to the US dollar were
compared; the data appear in Figure 1. This example serves to illustrate the method-
ology and to demonstrate that graphical model structure in a dynamic model can lead
to substantial improvements in model fit and, importantly, resulting Bayesian decision
analysis in a practical context. In this study, the graph G specified is the same graph
used in Carvalho et al. (2005) (Figure 2) which was identified as the posterior mode by
the Metropolis stochastic search described in Jones et al. (2005), assuming the returns
were zero mean, independent normal with a constant variance matrix. That prior anal-
ysis thus provides statistical support for the relevance of this specific graph, while the
structure is evidently interpretable in the financial econometric setting: it groups as
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a clique the core European Union currencies, and defines other links and cliques that
structurally reflect international trading relationships with the other countries repre-
sented.

We use this graphical model structure in a DLM with a time-varying variance ma-
trix, exploring comparisons with the traditional DLM with an unconstrained variance
matrix that include evaluations of the impact on portfolio predictions and decisions. In
all models here, we use fairly diffuse initial priors (small b0 and with identity D0). We
discuss results from four analyses that differ only in the chosen value of the variance
matrix discount factor: δ takes the values 0.90, 0.95, 0.97 and 0.99. Apart from com-
parisons, much of the discussion that illuminates the practical relevance of graphical
model structuring is focused on the model with δ = 0.97.

For each model at each time point, mean-variance and minimum-variance portfolios
were computed based on the one-step ahead forecasts. This leads to the evaluation of
a number of key quantities of interest in the model comparison:

• the empirical accuracy of portfolio predictions and resulting decisions, in terms of
realized returns;

• the projected risk measures in terms of the one-step ahead variances of the optimal
portfolios;

• uncertainties about the cumulative returns over any specified period of time, and

• the time-trajectories of the optimal portfolio weights themselves as they are se-
quentially updated.

Cumulative returns for mean-target portfolios in the analysis using the usual un-
constrained DLM and those from the described graphical model structured DLM are
displayed in Figure 3 (for different values of the discount factor δ). The target mean
return chosen is m = 0.01%, corresponding to a (20 day) monthly target return of ap-
proximately 2%. Portfolio weights were computed from the moments of the one-step
ahead forecast distributions and sequentially revised over the full time period. The opti-
mal portfolio weights then computed are used to reallocate investments across currencies
(assuming no transaction or other costs). This leads to evaluation of the cumulative
returns. Evidently, the graphical DLM dominates in terms of risk/return, fact that is
reinforced in Figure 4 where the same comparison using the baseline minimum-variance
portfolio is presented.

Figure 5 displays the ratio of optimal portfolio risk (using the baseline minimum
variance portfolio) under the full model relative to the graphical model. This example
comes from the DLMs with δ = 0.97, and the results are similar across values of δ and
also under the mean-target portfolios. The risk is simply the ex ante standard devia-
tion of the one-step ahead optimal portfolio, derived from the corresponding variance
w′

tQtwt at the optimizing weight vector wt. This shows that the estimated portfolio
variance is likely to be smaller under the model with graphical structure, indicating that
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the parsimonious model is able to help reduce predicted investment risk. This is also
highlighted in Figure 7.

As discussed before one of the reasons behind the good performance of the structured
models is possibly the smaller variation of portfolio weights. We explore this notion in
Figure 6 where the estimated variance of the weight of each asset in the mean-variance
portfolio is presented. These plots are given for, as before, the analysis using the usual
unconstrained variance matrix DLM and for the graphical model structured DLM. Again
we use the model with δ = 0.97 and the results are typical of those of all models. Notice
that throughout the entire period of time, the variances are substantially higher under
the unconstrained model than under the graphical model, implying that the optimal
portfolio in the former moves money between currencies at higher volumes on a daily
basis. Thus the full model has both more uncertainty about the optimal decisions and
increased costs due to portfolio rebalancing fees were this to be implemented live.

The overall conclusions of this example, as evidenced in the figures, are that the DLM
graphical model uniformly outperforms the unconstrained, full variance matrix DLM
across the full time period of portfolio decisions. The uniform dominance is reflected in
several practically critical elements:

• higher realized cumulative returns,

• lower risk portfolios in terms of both one-step ahead predictive variances of optimal
portfolios and variances of cumulative returns, and

• lower volatility of the optimal portfolio weights as they are sequentially revised,
consistent with more stable portfolios.

This example demonstrates the relevance of appropriate model structuring and the fact
that the resulting parameter parsimony can indeed help in portfolio allocation processes.
The graphical model DLM generates more accurate predictions and optimal portfolio
decisions, with lower risk in terms of both the nominal predicted portfolio risk and in
terms of realized outcomes. In addition, the more stable portfolios add to the practical
benefits since they would imply, in a live context, reduced costs in terms of transaction
fees for moving money between currencies period-to-period.

6.3 Example: Portfolio Allocation in the S&P 500

A higher-dimensional application involves p = 346 securities forming part of the S&P500
stock index. These series are all the companies that remained in the index from Jan-
uary 1999 until December 2004, a period of t = 1, 508 daily observations. Again, the
goal of the application is to compare the performance of dynamic portfolios built from
models with graphical structure relative to the full/unconstrained model. This problem
illustrates one focal point of research in portfolio allocation theory where there is great
interest in the development of models to efficiently deal with increasingly large sets of
assets within a common analysis framework. Here the utility of graphical models to
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induce sparsity in the inverse variance matrix - sparsity that increases in its impact on
parameter estimation uncertainty as dimension grows - is particularly key.

This application also addresses the question of graphical model structure selection,
evaluating models using the graphical model Metropolis stochastic search method in-
troduced in Jones et al. (2005). This method was applied to explore the full space of
graphical DLMs using only the first 1,200 observations times in the data set. Across the
remaining time period we then evaluate the sequentially updated portfolios using a few
graphical DLMs selected based on the posterior at t = 1, 200. This serves to illustrate
both statistical and practical relevance of graphical model structuring.

For any set of observations Y1:T over times t = 1 : T the sequential updating of a
DLM on any graphG leads to direct and efficient computation of the marginal likelihood
as

p(Y1:T |G) = p(YT |DT−1, G)p(YT−1|DT−2, G) . . . p(Y1|D0, G), (21)

where for each element in the product, (Yt|Dt−1, G) ∼ HTG(ft,St−1, bt−1) as defined
in Theorem 1. Hence, taking T = 1, 200 we can compute this marginal likelihood value
trivially on G, and then embed this in the local model search method of Jones et al.
(2005) to generate candidate graphs G′ in neighborhoods of G to evaluate as Metropolis-
Hastings candidates. The only difference between our use of this stochastic search
and that of Jones et al. (2005) is the differing model context that leads to a different
computation of this marginal likelihood. A fully specified model over graphs includes the
assumption of independent edge inclusion indicators for all pairs of nodes (variables)
and a common prior probability of edge inclusion, taken here as β = 0.5 for richer
graphs and also as a benchmark for the example. This prior structure is also precisely
as described and used in Jones et al. (2005).

This analysis explored hundreds of millions of graphs and we saved the 100,000 with
highest posterior probability; across this set of graphs, both the log marginal likelihood
function over G and the log posterior probabilities over G vary by over 1000 units, so
that a relatively small number of “top graphs” – those with higher posterior probability
– really dominate the posterior based on the data up to T = 1, 200. On any one of these
graphs G, the posterior at t = 1, 200 then provides the initial prior representing D0 in
a new sequential DLM analysis for the remaining 308 observations. In each model a
discount factor of 0.98 was used, in line with values used by Quintana et al. (1995) and
Quintana et al. (2003).

Figure 8 displays the cumulative returns for baseline minimum-variance portfolios
built on the final 308 time periods. For comparison purposes we show results from the
“top” graphical DLM (the posterior mode from the stochastic search, labelled “graph”),
the “full graph” representing the usual unconstrained variance matrix DLM as in the
exchange rate example, and also now the “empty graph” in which the series are unre-
lated. Cumulative returns of the S&P500 provide a benchmark for the portfolios created
in the example and are also plotted. The top graphical DLM G has exactly 29,181 edges
(of the total possible of 59,685). Evidently, selection of this model based on statistical
considerations alone leads to practical dominance over the usual full model as well as the
other two (albeit straw men) indices. The relative improvements in realized portfolio
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performance are practically very substantial.

To emphasize the increased (desired) stability of time trajectories of optimal portfolio
weights in structured models, Figure 9 displays the weights of 4 selected companies based
on the DLM analysis using the full, unconstrained model and the top graphical model.

Finally, Figure 10 shows cumulative returns from 5 different graphical DLMs selected
from the 100,000 models (details in figure’s caption). The fact that the cumulative
returns are quite similar for all 5 graphs indicates that, for the purpose of investment
opportunities, a small number of edges is really relevant. This suggests that exploring
subgroups of graphs that generate “equivalent” cumulative returns may generate insights
about portfolio allocation theory in connection with covariance selection models.

Some of the key conclusions are as follows:

• Selection of graphs G according to high posterior probability on the training data
of 1,200 observations leads to graphical model DLMs that generate substantial
improvements in realized portfolio applications of the subsequent data relative to
the usual full model and other competing methods. Again it is clear that the
imposition of constraints in the covariance matrix - constraints that are defined
by the training data as consistent with the time-varying structure of associations
across series - generate more profitable investment opportunities.

• Higher realized returns are coupled with lower risk and lower volatility of time
trajectories of portfolio weights.

• Graphical models with higher posterior probabilities on the training data analysis
are seen to yield higher realized portfolio returns (and more stable portfolios, of
course); that is, both statistical and practical significance support the view of
parsimony and structure in problems of increasing dimension.

• The example shows the ease with which the general methodology can be imple-
mented with series of modest dimension (p = 346) and build on the existing
methods for exploring uncertainty about graphical model structures as well as ef-
ficient estimation of time-varying states and cross-series variance matrices within
graphical models.

7 Summary Comments

By combining dynamic linear models with decomposable graphical models, we have de-
fined a new, rich class of matrix DLMs that allow for the incorporation of conditional
independence structure in the cross-sectional precision matrix of a set of time series.
The use of the hyper-inverse Wishart distributions on Gaussian graphical models pro-
vides a conjugate framework that allows for sequential updating, on-line predictions
and decisions, and retrospective filtering analyses that extend the existing theory and
methods of Bayesian forecasting with dynamic models. The new framework includes
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the use of time-varying covariance structures generated with extensions of the Beta-
Bartlett construction of Markovian evolutions of variance matrices from the case of full,
unconstrained matrices (inverse Wishart models) to the full class of graphical models
(hyper-inverse Wishart models).

Our examples focus on questions of practical utility in financial time series and
Bayesian decision analysis for sequential portfolio allocation and investment. The real
practical value of data-consistent structuring and constraints on variance matrices across
series is evident in these examples, where the analyses lead to parsimony in parametriza-
tion, statistical efficiency in estimation and reduced uncertainty as a result, and this
translates into more accurate and more stable portfolio decisions: the resulting portfo-
lios achieve higher realized returns than in models with no graphical structuring, and
have lower levels of predicted and realized risk in terms of both variances of returns
and volatility of portfolio weights. High-dimensional portfolios are regarded as one of
the most challenging problems in financial theory (Polson and Tew 2000) and theoret-
ical developments for a precise understanding of the connections between conditional
independence assumptions and optimal investment strategies is of key importance for
further advances in that area, including comparisons based on other performance mea-
sures such as Value-at-Risk and that take into account transaction costs and other
economic relevant variables.

Our second example also discusses and explores aspects of graphical model uncer-
tainty and model selection, evaluating posterior distributions over graphical structures
G as well as time-varying state and variance parameters within any given graphical
structure. This analysis used the ideas and methods of Jones et al. (2005), which is
recommended reading for readers interested in the broader questions of graphical model
choice, and of the computational and prior specification issues in graphical modelling.
Looking ahead, some next steps will involve the development of model mixing and av-
eraging, where we will naturally begin to explore combinations of DLMs in a variety of
possible multi-process modelling contexts (West and Harrison 1997). This development
of sequential model selection procedures that address uncertainty about graphs while
allowing for efficient on-line updates is an open research area and one of key importance
in further applications of DLMs in real forecasting problems.

For readers interested in developing analyses of this kind, we will make available
custom software implementing the analyses reported and exemplified here.
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Appendix A: Matrix-Normal Distributions

For an n × p random matrix X, the notation X ∼ N(m,W,Σ) denotes the matrix-
normal (or matrix-variate normal) distribution of X. Here the n × p matrix m is the
mean with E(Xij) = mij ; the n × n variance matrix W is the left covariance matrix,
and the p× p variance matrix Σ is the right covariance matrix.

Denote the elements of Σ by σij with diagonals σii = σ2
i , and those of W by wij with

diagonals wii = w2
i . Then any column xi of X has a multivariate normal distribution

N(mi,Wσ2
i ) where mi is the corresponding column of the mean matrix m. Any pair

of columns xi and xj has covariance matrix Wσij .

Correspondingly, the ith row of X has a multivariate normal distribution with mean
vector the corresponding row of m, and variance matrix Σw2

i . Any two rows i and j
have covariance matrix Σwij .

See Dawid (1981) for primary reference and development of theory, and Quintana
(1987), Quintana (1992) and Quintana and West (1987) for early applications.

Appendix D: Matrix Beta-Bartlett HIW Evolutions

Begin with the time t− 1 posterior

(Σt−1|Dt−1) ∼ HIWG(bt−1,St−1).

The stochastic map from Σt−1 to Σt is established through multiplicative beta shocks
applied to the diagonal of the Bartlett decomposition of Σ−1

t−1. Using the HIW exten-

sion of the Bartlett decomposition (Roverato 2000), we have Σt−1 = Φ−1′

Φ−1 where:
S−1

t−1 = T′T and Φ = ΨT where Ψ ∈ M t(G) has elements (ψii)
2 ∼ χ2

bt−1+νi
and

ψij ∼ N(0, 1) for (i, j) ∈ V. Here, M t(G) is the set of all upper triangular matrices with
positive diagonal elements such that the entries (i, j) /∈ E are zero, and νi is the number
of non-zero elements in row i of Ψ.

Evolving to time t follows a transformation of the diagonal elements of Ψ to Ψ∗ ∈
M t(G) defined by elements:

ψ∗
ii = ψii

√
ri and ψ∗

ij = ψij for (i, j) ∈ V,

where the ri are independent random “shocks” distributed as

ri ∼ Beta [δi(bt−1 + νi)/2, (1 − δi)(bt−1 + νi)/2]

with δi = (δbt−1 + νi)/(bt−1 + νi).

It then follows that (ψ∗
ii)

2 ∼ χ2
δbt−1+νi

and ψ∗
ij ∼ N(0, 1) for all pairs (i, j) ∈ V ;

hence, by setting T∗ =
√
δT, Φ∗ = Ψ∗T∗ and then generating Σt = Φ∗−1′Φ∗−1, it

follows that Σt has the marginal “evolved” HIW distribution

(Σt|Dt−1) ∼ HIWG(δbt−1, δSt−1). (22)
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Figure 1: Daily exchange rate returns data. The data set consists of 2,566 daily returns
for each of these 11 national currencies, over the period of about 10 years: 10/9/86 to
8/9/96. Daily returns are computed as Yti = 100(Pti/Pt−1,i − 1) for currency i on day
t, where Pti is the daily closing spot exchange rate on day t.
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Figure 2: Graph determining the conditional independence structure in the exchange
rate/portfolio investment example.
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Figure 3: Cumulative returns for mean-target portfolios in the analysis using the usual
unconstrained DLM and those from the described graphical model structured DLM.
The panels differ only in terms of the choice of δ.
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Figure 4: Cumulative returns as in Figure 3, but now using the baseline minimum-
variance portfolio construction. Color coding and display format is precisely as in Figure
3.
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Figure 5: Ex ante (at time t givenDt−1) ratio of optimal portfolio risk using the baseline
minimum variance portfolio under the full model relative to the graphical model. Here,
δ = 0.97.
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Figure 6: Each panel displays the estimated variance of the weight of each asset in
the mean-variance portfolio. Repeat simulation of the prior p(Σt|Dt−1) at each time t
allows for computation of the one-step ahead predictive distributions of the full vector
of portfolio weights p(wt|Dt−1), and these simulated portfolios can then be summarised.
This figure simply computes the corresponding Monte Carlo estimates of variances of
each of the weights.
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Graphical Model Unconstrained
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Figure 7: To highlight the issues illustrated in Figure 6, 2-S.D. limit using the optimal
portfolio variances are plotted about the realized cumulative returns over time. The
resulting intervals are much wider for the full model than for the graphical model.
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Figure 8: S&P 500 portfolios: Cumulative returns for baseline minimum-variance port-
folios. Here, δ = 0.98.
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Figure 9: Optimal portfolio weights for 4 selected companies, based on DLM analysis
using the full, unconstrained model and the top graphical model. Here, δ = 0.98.
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Figure 10: S&P 500 portfolios: Cumulative returns from 5 different graphical DLMs
selected from the 100,000 models: these are top graph (posterior mode) that has 29,181
edges; the 75% percentile model that has 30,840 edges; the median model with 25,020
edges; the 25% model with 20,072 edges; and the sparsest model of the 100,000, one
that has just 5,458 edges. Here, δ = 0.98.
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