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Dynamic Mean-Variance Asset Allocation

Abstract

Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known
about their dynamically optimal policies. We provide a fully analytical characterization of the op-
timal dynamic mean-variance portfolios within a general incomplete-market economy, and recover
a simple structure that also inherits several conventional properties of static models. We also
identify a probability measure that incorporates intertemporal hedging demands and facilitates
much tractability in the explicit computation of portfolios. We solve the problem by explicitly
recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive rep-
resentation for it, which makes dynamic programming applicable. We further show that our
time-consistent solution is generically different from the pre-commitment solutions in the extant
literature, which maximize the mean-variance criterion at an initial date and which the investor
commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by
explicitly computing dynamic mean-variance portfolios under various stochastic investment op-
portunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman
differential equation. A calibration exercise shows that the mean-variance hedging demands may
comprise a significant fraction of the investor’s total risky asset demand.

Journal of Economic Literature Classification Numbers: G11, D81, C61.
Keywords: Mean-Variance Analysis, Multi-Period Portfolio Choice, Stochastic Investment Op-
portunities, Time-Consistency, Dynamic Programming, Incomplete Markets.



1. Introduction

The mean-variance analysis of Markowitz (1952) has long been recognized as the cornerstone of
modern portfolio theory. Its simplicity and intuitive appeal have led to its widespread use in
both academia and industry. Originally cast in a single-period framework, the mean-variance
paradigm has no doubt also inspired the development of the multi-period portfolio choice liter-
ature. To this day, the mean-variance criteria are employed in many multi-period problems by
financial economists, but typically for a myopic investor, who in each period maximizes her next-
period objective (e.g., among others, Ait-Sahalia and Brandt, 2001; Campbell and Viceira, 2002;
Jagannathan and Ma, 2003; Bansal, Dahlquist and Harvey, 2004; Brandt, 2004; Acharya and
Pedersen, 2005; Hong, Scheinkman and Xiong, 2006; Campbell, Serfaty-de Medeiros and Viceira,
2007).1 While the myopic assumption allows analytical tractability and abstracts away from dy-
namic hedging considerations, there is growing evidence that intertemporal hedging demands
may comprise a significant part of the total risky asset demand (e.g., Campbell and Viceira,
1999; Brandt, 1999). However, solving the dynamic asset-allocation problem with mean-variance
criteria has had mixed success to date. A major obstacle has been the inability to directly apply
the traditional dynamic programming approach due to the failure of the iterated-expectations
property for mean-variance objectives. A growing recent literature tackles this by just charac-
terizing the optimal policy chosen at an initial date, by either employing martingale methods
or tractable auxiliary problems in complete market settings (as discussed below). However, due
to the time-inconsistency of the mean-variance criteria, the investor may find it optimal to de-
viate from this policy unless she is able to pre-commit, and henceforth we refer to it as the
pre-commitment policy. Many decades have passed since the original Markowitz analysis, and
yet we still lack a comprehensive treatment of dynamically optimal policies consistent with the
mean-variance criteria.

In this paper, we solve the dynamic asset allocation problem of a mean-variance optimizer
in an incomplete-market setting, and provide a simple, tractable solution for the risky stock
holdings. To our knowledge, ours is the first to obtain within a general environment a fully
analytical characterization of the dynamically optimal mean-variance policies, from which the
investor has no incentive to deviate, namely, the time-consistent policies. Towards this, we
consider the familiar multi-period asset allocation problem of an investor, who has preferences
over terminal wealth and dynamically allocates wealth between a risky stock and a riskless
bond. The investor is guided by the mean-variance criterion, linearly trading-off mean and
variance of terminal wealth. Our setting is a continuous-time Markovian economy with stochastic

1We acknowledge the well-known theoretical objections to the mean-variance criteria if interpreted as investors’
preferences, namely admitting potentially negative terminal wealth, increasing absolute risk aversion, and po-
tentially non-monotonicity of preferences. Despite the theoretical limitations, the mean-variance criteria remain
relatively popular in practice and academia due to their simplicity and tractability, which we will also demonstrate
in our analysis. Interestingly, recent evidence in neuroscience, as provided and discussed by Bossaerts, Preuschoff,
and Quartz (2006, 2008), suggests that the human brain appears to analyze risky gambles by considering variance
and expectation separately, consistent with the mean-variance criteria.
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investment opportunities, allowing for a potentially incomplete market. Our solution method for
the determination of optimal dynamic mean-variance policies is based on the derivation of a
recursive formulation so that dynamic programming can be employed. This recursive derivation
is complicated by the fact that mean-variance criteria in a multi-period setting result in time-
inconsistency of investment policies, in that the investor has an incentive to deviate from an initial
policy at a later date. The intuition for this is that sitting at a point in time, the mean-variance
investor perceives the variability of terminal wealth to be higher than the anticipated variability
at a future date. To address this problem, we decompose the investor’s conditional objective
function as her expected future objective plus a term accounting for the incentives to deviate,
which then leads to the desired recursive formulation. This in turn allows us to employ dynamic
programming, derive the Hamilton-Jacobi-Bellman (HJB) equation, and obtain an analytical
solution to the problem. We also note that the same solution can alternatively be obtained as
the Nash equilibrium outcome of an intra-personal game by the dynamic mean-variance investor,
similarly to the literature on consumer choice under hyperbolic discounting (e.g., Harris and
Laibson, 2001).

The optimal stock investment policy of a dynamic mean-variance optimizer has a simple
structure, being comprised of familiar myopic and intertemporal hedging terms. The novel feature
of our case is that we identify the hedging demand to be driven by the expected total gains or
losses from the stock investments over the investment horizon, in contrast to being driven by
the value function in the extant literature. This is because the mean-variance value function is
linear in wealth. Since the conditional variance of terminal wealth equals that of future portfolio
gains, the mean-variance hedging demands are determined by the anticipated portfolio gains.
The economic role of the hedging demands in our setting is then straightforward: when the stock
return is negatively related to the anticipated portfolio gains, the gains in one offset the losses
in the other. This leads to a lower variability of wealth, making the stock more attractive, and
hence inducing a positive hedging demand; and vise versa for a negative hedging demand. We
then identify a unique probability measure, labeled a “hedge-neutral” measure, which absorbs
the hedging demands so that the anticipated investment gains under this measure look as if
the investor were myopic. This representation under the new measure facilitates considerable
tractability, allowing one to easily determine the mean-variance portfolios explicitly or otherwise
perform Monte-Carlo simulation straightforwardly.2

We also find the dynamic mean-variance policies to inherit a number of conventional proper-
ties of single-period models, such as, the higher the stock volatility, bond interest rate or investor
risk aversion, the lower the stock investment (in absolute terms). However, these dynamic poli-
cies also generate rich implications related to the effects of investment horizon, market price of
risk, and market incompleteness. For example, the variance of terminal wealth in incomplete
markets is higher than that in complete markets, and consequently the mean-variance investor

2We also remark that given our dynamically optimal mean-variance policy, it is possible to recover time-
consistent objective functions that would lead to the same policy. One such function is an increasing, concave,
state-dependent criterion of CARA form.
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with positive hedging demand is worse off in incomplete markets. We also compare our time-
consistent solution to the mean-variance pre-commitment solution in a simple complete market
settings. The mean-variance investor under pre-commitment maximizes her initial objective and
pre-commits to that initial investment policy, not deviating at subsequent times. We demonstrate
that the time-consistent investment policy, obtained via dynamic programming, is generically
different from the pre-commitment policy, obtained via martingale methods. Although for very
short investment horizons the pre-commitment solution approximates the time-consistent one
up to second order terms, for plausible horizons, the two solutions can differ considerably. Of
course, with standard utility functions, the two solutions are well-known to coincide (Karatzas
and Shreve, 1998).

We illustrate the practical usefulness of our analysis by considering the dynamic mean-
variance problem under several stochastic investment opportunities that have been studied in the
literature for other preference specifications. In particular, we specialize our economic setting to
the constant elasticity of variance model in a complete market (Cox and Ross, 1976; Schroder,
1989), a mean-reverting stochastic-volatility model in an incomplete market (Liu, 2001; Chacko
and Viceira, 2005; Heston, 1993), and a time-varying Gaussian mean-returns model in an in-
complete market (Kim and Omberg, 1998; Campbell and Viceira, 1999; Wachter, 2002). In
all these applications, we explicitly derive the dynamic mean-variance portfolios as a straight-
forward exercise, by computing the anticipated gains process under the hedge-neutral measure,
which amounts to evaluating the expectation of the squared market price of risk. We emphasize
that our computations do not resort to solving an HJB PDE for the investor’s value function,
as would be the case for other popular objective specifications. In addition to providing further
insights, our explicit solutions allow us to assess the economic significance of the intertemporal
hedging demands of a mean-variance optimizer. Specifically, we compute the percentage hedging
demand over total demand in our richer incomplete market settings for a range of plausible pa-
rameter values. We find our results to be in line with those in the literature and show that the
percentage hedging demand can be considerable in some economic settings, ranging from 18% to
84%, supporting the findings of Brandt (1999) and Campbell and Viceira (1999).

Finally, we consider extensions of our baseline analysis to economic settings in discrete-time
and settings with stochastic interest rates, multiple stocks and multiple sources of uncertainty. We
demonstrate our main results to be valid also under these alternative environments. Moreover,
we here provide fully-explicit closed-form solutions for optimal investment policies in several
discrete-time settings with stochastic investment opportunities that, to our knowledge, are new
in the literature. In contrast, the extant literature characterizes optimal policies in such settings
by employing either numerical methods or various approximations (e.g., Ait-Sahalia and Brandt,
2001; Bansal and Kiku, 2007; Brandt, Goyal, Santa-Clara and Stroud, 2005; Brandt and Santa-
Clara, 2006; Campbell and Viceira, 1999, 2002, among others).

There is a growing literature investigating the multi-period portfolio problem of a mean-
variance investor. Bajeux-Besnainou and Portait (1998), Bielecki, Jin, Pliska and Zhou (2005),
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Cvitanic, Lazrak and Wang (2007), Cvitanic and Zapatero (2004), Zhao and Ziemba (2002)
consider continuous-time complete market settings and employ martingale methods to solve for
the variance minimizing policy subject to the constraint that expected terminal wealth equals
some given level, sitting at an initial date. Cochrane (2005) in an incomplete-market setting
solves for the optimal investment policy that minimizes the “long-run” variance of portfolio
returns subject to the constraint that the long-run mean of portfolio returns equals a pre-specified
target level. However, the ensuing solution in these works is a pre-commitment investment policy
chosen at an initial date since the investor may subsequently find it optimal to deviate from if the
constraint is violated in the future. Duffie and Richardson (1991) study the futures hedging policy
in a continuous-time incomplete market. They solve the hedging problem with a mean-variance
objective sitting at an initial date, obtaining the pre-commitment solution, by observing that the
optimal policy here also solves the hedging problem with a quadratic objective for some specific
parameters. Recognizing the difficulty of applying dynamic programming, Li and Ng (2000),
Leippold, Trojani and Vanini (2004) in discrete-time, Zhou and Li (2000), Lim and Zhou (2002) in
continuous-time, use a similar approach to solve for mean-variance portfolios in complete market
settings. Specifically, these authors show that the investment policy that solves the mean-variance
problem sitting at an initial date also solves the one with a quadratic objective for some specific
parameters. The solution to the quadratic auxiliary optimization is then derived, which gives
the pre-commitment strategy for the mean-variance problem. Brandt (2004) considers portfolio
choice with mean-variance criterion over portfolio returns. The solution is provided when the
investor chooses portfolio weights for several periods ahead, implicitly assuming pre-commitment.

Our work also contributes to the multi-period portfolio choice literature that provides ex-
plicit closed-form solutions for optimal investment policies under various stochastic investment
opportunities, all obtained in continuous-time settings. Kim and Omberg (1996) explicitly solve
for the optimal portfolio of an investor with constant relative risk aversion (CRRA) preferences
over terminal wealth when the market price of risk follows a mean-reverting Ornstein-Uhlenbeck
process in an incomplete market setting. Merton (1971) and Wachter (2002) provide solutions
to similar problems for constant absolute risk aversion (CARA) and CRRA investors, respec-
tively, with intermediate consumption under complete markets. Maenhout (2006) extends the
Kim-Omberg results by providing explicit solutions for an investor who worries about model
specification, while Huang and Liu (2007) provide a generalization with incomplete information.
Liu (2001, 2007) obtains explicit solutions for an investor with CRRA preferences over termi-
nal wealth facing an incomplete market with stochastic volatility. In similar models, Chacko
and Viceira (2005) provide the explicit solution for an investor having recursive preferences over
intertemporal consumption with unit elasticity of intertemporal substitution, while Liu (2007)
for a CRRA investor with intertemporal consumption in a complete market. In related prob-
lems, nearly-explicit closed-form solutions have additionally been obtained by Brennan and Xia
(2002) and Sangvinatsos and Wachter (2005). In general, however, obtaining fully-explicit closed-
form solutions to dynamic portfolio choice problems with stochastic investment opportunities is
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a daunting task, and one would need to resort to numerical methods, such as those proposed
by Detemple, Garcia and Rindisbacher (2003), Cvitanic, Goukasian and Zapatero (2003), and
Brandt, Goyal, Santa-Clara and Stroud (2005).

The remainder of the paper is organized as follows. In Section 2, we present our methodology
for the determination of optimal dynamic mean-variance policies. We then provide the time-
consistent solution, discuss its properties, and compare it with the pre-commitment policy. In
Section 3, we provide applications of our analysis to various stochastic investment opportunities,
while in Section 4, we discuss the extensions to discrete-time, multiple-stock and stochastic
interest rate settings. Section 5 concludes and the Appendix provides all proofs.

2. Asset Allocation with Mean-Variance Criteria

2.1. Economic Setup

We consider a continuous-time Markovian economy with a finite horizon [0, T ]. Uncertainty is
represented by a filtered probability space (Ω,F , {Ft}, P ), on which are defined two correlated
Brownian motions, w and wX , with correlation ρ. All stochastic processes are assumed to be
adapted to {Ft, t ∈ [0, T ]}, the augmented filtration generated by w and wX . In what follows,
given our focus, we assume all processes and moments introduced are well-defined, without
explicitly stating the regularity conditions.

Trading may take place continuously in two securities, a riskless bond and a risky stock. The
bond provides a constant interest rate r. The stock price, S, follows the dynamics

dSt

St
= µ(St, Xt, t)dt+ σ(St, Xt, t)dwt, (1)

where the stock mean return, µ, and volatility, σ, are deterministic functions of S and the state
variable X, which satisfies

dXt = m(Xt, t)dt+ ν(Xt, t)dwXt. (2)

Under appropriate conditions, the stochastic differential equations (1)–(2) have a unique solution
(S,X), which is a joint Markov process. We will denote µt, σt, mt and νt as shorthand for the
coefficients in equations (1)–(2). We note that under this setup, the market is incomplete as
trading in the stock and bond cannot perfectly hedge the changes in the stochastic investment
opportunity set. However, in the special cases of perfect correlation between the stock return and
state variable, ρ = ±1, dynamic market completeness obtains. For the case of zero correlation,
there is no hedging demand for the state variable since trading in the stock cannot hedge the
fluctuations in the state variable.

An investor in this economy is endowed at time zero with an initial wealth of W0. The investor
chooses an investment policy, θ, where θt denotes the dollar amount invested in the stock at time
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t. The investor’s wealth process W then follows

dWt = [rWt + θt(µt − r)] dt+ θtσtdwt. (3)

We assume that the investor is guided by mean-variance objectives over horizon wealth WT . In
particular, the dynamic optimization problem of the investor is given by

max
θ

E[WT ]− γ

2
var[WT ], (4)

subject to the dynamic budget constraint (3). In Section 2.2, we provide the time-consistent
solution to this problem via a recursive formulation that employs dynamic programming, while
in Section 2.4, we provide the pre-commitment solution via a static formulation that employs
martingale methods. We demonstrate that the two solutions are generically different.

In order to keep our problem analytically tractable, we follow the related literature and make
the simplifying assumptions of constant interest rate and lack of intermediate consumption. It
is unlikely that our model, with stochastic investment opportunities and potentially incomplete
markets, could be solved analytically if these assumptions were relaxed, as in the related works
of Kim and Omberg (1996), Liu (2001), Maenhout (2006). However, with an appropriate choice
of a numeraire, we provide an extension of our results for the case with stochastic interest rates
in Section 4.3. We further note that even though the mean-variance criterion (4) is in many ways
similar to the time-consistent quadratic utility function, to our best knowledge the latter does not
admit tractable optimal policies in our economic setting. For example, Brandt and Santa-Clara
(2006) investigate dynamic portfolio selection with a quadratic criterion in an incomplete market
setting and develop an approach that leads to approximate solutions.

2.2. Determination of Optimal Dynamic Investment Policy

In this Section, we first present our solution method, based on dynamic programming, for the
determination of optimal dynamic mean-variance policies. The dynamic programming approach,
however, is complicated by the presence of the variance term in the mean-variance objective
function: it cannot be represented as the expected utility over terminal wealth, such as E[u(WT )],
for which dynamic programming is readily applicable due to the iterated-expectation property
Et [Et+τ [u(WT )]] = Et[u(WT )]. The violation of this property for mean-variance preferences
makes the application of dynamic programming problematic (see e.g., Zhou and Li, 2000). To our
best knowledge, there are no works that apply dynamic programming to derive explicit solutions
to the multi-period mean-variance portfolio choice. We tackle this problem by first obtaining a
tractable recursive formulation for the mean-variance objective, expressed as its expected future
value plus an adjustment term, given by the time-t variance of expected terminal wealth. This
explicit identification allows us to employ dynamic programming, derive the HJB equation and
obtain an analytical solution to the problem. The intuition for the adjustment term is based
on the observation that for a mean-variance optimizer sitting at time t + τ , the variability of
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terminal wealth may be lower than that of sitting at time t. This induces her to revise her time-
t optimal policy at subsequent dates, and hence the need for the adjustment in her objective
function sitting at any point in time.

Formally, the variability of terminal wealth, by the law of total variance (e.g., Weiss, 2005),
is given by

vart[WT ] = Et [vart+τ (WT )] + vart [Et+τ (WT )] , τ > 0. (5)

Clearly, the time-t variance exceeds the expected variance at time t+τ . As a result, the investment
policy θτ , for τ ≥ t, chosen at time t, accounts not only for the expected time-(t+ τ) variance of
the terminal wealth, but also for the variance of time-(t+ τ) expected terminal wealth. However,
since the latter vanishes as time interval τ elapses, the investor may deviate from the time-t
optimal policy at time t + τ . We now account for these incentives to deviate in the time-t
objective function of the investor, who for each t ∈ [0, T ] maximizes

Ut ≡ Et[WT ]− γ

2
vart[WT ], (6)

subject to the dynamic budget constraint (3). Substituting (5) into (6) and using the law of
iterated expectations, we obtain the following recursive representation for the time-t objective
function of the mean-variance optimizer:

Ut = Et [Ut+τ ]−
γ

2
vart [Et+τ (WT )] . (7)

This representation reveals that decision-making at time t involves maximizing the expected
future objective function, plus an adjustment that quantifies the investor’s incentives to deviate
from the time-t optimal policy. This adjustment enables us to determine the investment policy
by backward induction, namely the time-consistent policy in that the investor optimally chooses
the policy taking into account that she will act optimally in the future, if she is not restricted
from revising her policy at all times. We elaborate more on the issue of time-consistency in
Section 2.4.

Our next step towards the derivation of the HJB equation is to determine a recursive rela-
tionship for the value function. Given the optimal time-consistent policy θ∗s , s ∈ [t, T ], derived
by backward induction, the value function, J , is defined as

J(Wt, St, Xt, t) ≡ Et[W ∗
T ]− γ

2
vart[W ∗

T ],

where terminal wealth W ∗
T is computed under the optimal policy θ∗s , s ≥ t. Now let τ > 0 denote

the decision-making interval such that the investor can reconsider her investment policy chosen
at time t only after the time interval τ elapses. Suppose further that at time t, the investor
anticipates to follow the optimal policy θ∗s from time t + τ onwards. Then, from the recursive
representation of the objective function (7) and the definition of Jt+τ , shorthand for the value
function at t + τ , the investor’s time-t problem would be to find an investment policy θs, for
s ∈ [t, t+ τ ] that maximizes

Et[Jt+τ ]−
γ

2
vart [Et+τ (WT )] . (8)
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Sitting at time t, the investor accounts for the fact that starting from t + τ , she will follow the
policy that is optimal sitting at time t+ τ . Note, however, that because of the time-consistency
adjustment term in (8), the investment policy θ∗s , s ≥ t+ τ , under which Jt+τ is computed, will
not necessarily be optimal, when sitting at time t. Moreover, Jt is not equal to the maximum
of its expected future value, Jt+τ , as it would be in the case of standard utility functions over
terminal wealth that have the form Et[u(WT )].

Problem (8) presented above, and the definition of the value function after some algebra lead
to the following recursive equation for J :

Jt = max
θs,s∈[t,t+τ ]

Et[Jt+τ ]−
γ

2
vart[ft+τ − ft +Wt+τe

r(T−t−τ) −Wte
r(T−t)], (9)

subject to the budget constraint (3) and the terminal condition JT = WT , where ft is shorthand
for f(Wt, St, Xt, t) defined as

f(Wt, St, Xt, t) ≡ Et[W ∗
T ]−Wte

r(T−t), (10)

representing expected total gains or losses from the optimal stock investment over the horizon
T − t, while W ∗

T is terminal wealth under the optimal policy θ∗s , s ≥ t.3 The dynamic budget
constraint (3) allows us to obtain the following representation for ft in terms of the optimal stock
investment policy θ∗s :

f(Wt, St, Xt, t) = Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
. (11)

Going back to (9), it is clear that ft+τ is defined using the optimal policy. This observation
enables us to formulate the following Lemma, which gives the HJB equation in differential form
and establishes some properties of θ∗t , ft and Jt.

Lemma 1. The value function J(Wt, St, Xt, t) of a mean-variance optimizing investor satisfies
the following recursive equation:

0 = max
θt

Et[dJt]−
γ

2
vart[dft + d(Wte

r(T−t))], (12)

subject to JT = WT and the budget constraint (3), where ft is as in (11). Moreover, J(Wt, St, Xt, t)
is separable in wealth and admits the representation

J(Wt, St, Xt, t) = Wte
r(T−t) + J̃(St, Xt, t), (13)

while ft and the optimal investment policy θ∗t do not depend on time-t wealth Wt and are functions
of St, Xt and t only.

3In deriving (9) we use the fact that vart[ft+τ +Wt+τer(T−t−τ)] = vart[ft+τ −ft +Wt+τer(T−t−τ)−Wte
r(T−t)].
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We note that dft term in (12) is unaffected by the control θt since according to Lemma 1, ft

does not depend on Wt and by definition is evaluated at the optimal policy. So, θt affects the
adjustment term vart[dft + d(Wte

r(T−t))] via d(Wte
r(T−t)) only. Using the separability property

of J in (13) and applying Itô’s Lemma to J̃t, ft and Wte
r(T−t), from the HJB equation (12) we

obtain

0 = max
θt

{
DJ̃tdt+θt(µt−r)er(T−t)dt− γ

2
vart

[
σtSt

∂ft

∂St
dwt+νt

∂ft

∂Xt
dwXt+θtσte

r(T−t)dwt

]}
, (14)

where D denotes the Dynkin operator.4 Computation of the variance term in (14) yields the
following PDE for the function J̃t:

0 = max
θt

{
DJ̃t + θt(µt − r)er(T−t) − γ

2

[
σ2

t S
2
t

( ∂ft

∂St

)2
+ ν2

t

( ∂ft

∂Xt

)2
+ 2ρνtσtSt

∂ft

∂St

∂ft

∂Xt

+θ2
t σ

2
t e

2r(T−t) + 2θtσt

(
σtSt

∂ft

∂St
+ ρνt

∂ft

∂St

)
er(T−t)

]}
, (15)

subject to J̃T = 0. The HJB equation (15) is nonstandard in that in addition to the conventional
term, DJ̃t + θt(µt − r)er(T−t), there is an adjustment component that is explicitly characterized
in terms of anticipated investment gains, ft, and the investment policy, θt. An attractive feature
of the HJB equation (15) is that the maximized expression is a quadratic function of θt. We use
this property to derive the following Proposition that provides a recursive representation for the
optimal investment policy θ∗t .

Proposition 1. The optimal stock investment policy of a dynamic mean-variance optimizer is
given by

θ∗t =
µt − r

γσ2
t

e−r(T−t) −
(
St
∂ft

∂St
+
ρνt

σt

∂ft

∂Xt

)
e−r(T−t), (16)

where the process ft represents the expected total gains or losses from the stock investment and
is given by

f(St, Xt, t) = Et

[∫ T

t
θ∗s(µs − r)er(T−s)ds

]
. (17)

The optimal investment policy has a simple, familiar structure, and is given by myopic and
intertemporal hedging terms. The myopic demand, (µt− r)/γσ2

t , would be the investment policy
for an investor who optimized over the next instant not accounting for her future investments, or
the optimal policy if the investment opportunity set were constant. The intertemporal hedging
demands, then, arise due to the need to hedge against the fluctuations in the investment oppor-
tunities, as in the related portfolio choice literature, following Merton (1971). What is different
in our case is that we explicitly identify the hedging demands to be given by the sensitivities

4The Dynkin operator transforms an arbitrary twice continuously differentiable function F (St, Xt, t) as follows:

DF (St, Xt, t) =
∂Ft

∂t
+ µtSt

∂Ft

∂St
+ mt

∂Ft

∂Xt
+

1

2

(
σ2

t S2
t
∂2Ft

∂S2
t

+ ν2
t
∂2Ft

∂X2
t

+ 2ρνtσtSt
∂2Ft

∂Xt∂St

)
.
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of anticipated portfolio gains (f) to the stock price and state variable fluctuations, whereas in
other works these sensitivities are in terms of the investor’s value function. The reason is that
the mean-variance conditional expected terminal wealth, and hence the value function, are linear
in time-t wealth, and as a result, no hedging demand arises due to marginal utility fluctuations.
Consequently, since the conditional variance of terminal wealth equals the conditional variance
of future portfolio gains or losses, the anticipated portfolio gains or losses drive the hedging
demands. This, in turn, enables us to provide more direct intuition on the implications of the
hedging terms.

To see the role of the hedging demand, θH , we observe that

θHt ≡ −
(
St
∂ft

∂St
+
ρνt

σt

∂ft

∂Xt

)
e−r(T−t) = −covt(dSt/St, dft)

σ2
t dt

e−r(T−t). (18)

The hedging demand is positive when the instantaneous stock return is negatively correlated with
instantaneous portfolio gains. The reason for this is that when the stock return and anticipated
portfolio gains move in opposite directions, losses in one are offset by the gains in the other.
This leads to a lower variability of wealth, making the stock more attractive, and hence induces
a positive hedging demand.

Even though the optimal stock investment expression is fairly intuitive, it is not characterized
in terms of the exogenous parameters of the model since it relies on knowing the future optimal
policy. To address this, we next recover an explicit representation for the anticipated portfolio
gains, f . Substituting (16) into (17), we obtain the following representation for f under the
original measure P :

f(St, Xt, t) = Et

[∫ T

t

1
γ

(
µs − r

σs

)2

ds

]
− Et

[∫ T

t

(
Ss
∂fs

∂Ss
+
ρνs

σs

∂fs

∂Xs

)
(µs − r)ds

]
. (19)

The first component in (19) comes from the myopic demand, while the second comes from
the hedging demand. To facilitate tractability, we next look for a new probability measure
under which the representation of f does not have the hedging related component. Since ft is
represented as a conditional expectation, by the Feynman-Kac theorem (Karatzas and Shreve,
1991), we obtain the following PDE after some manipulation:

∂ft

∂t
+ rSt

∂ft

∂St
+
(
mt − ρνt

µt − r

σt

) ∂ft

∂Xt
+

1
2

(
σ2

t S
2
t

∂2ft

∂S2
t

+ ν2
t

∂2ft

∂X2
t

+ 2ρνtσtSt
∂2ft

∂Xt∂St

)
+

1
γ

(µt − r

σt

)2
= 0, (20)

with fT = 0. Again, by the Feynman-Kac theorem, (20) admits a unique solution with the
following representation:

f(St, Xt, t) = E∗
t

[∫ T

t

1
γ

(
µs − r

σs

)2

ds

]
, (21)
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where E∗
t [·] denotes the expectation under a new probability measure P ∗ such that the stock and

state variable now follow dynamics with modified drifts5

dSt

St
= rdt+ σtdw

∗
t , dXt =

(
mt − ρνt

µt − r

σt

)
dt+ νtdw

∗
Xt, (22)

and where w∗t and w∗Xt are Brownian motions under P ∗ with correlation ρ. Comparing (21) with
(19), we see that measure P ∗ absorbs the hedging demand so that f represents the anticipated
gains from the myopic portfolio only. We henceforth label P ∗ as the hedge-neutral measure. Note
that this measure is also a risk-neutral measure since it modifies the drift of S to equal to rS.
However, in our setting the risk-neutral measure is not unique due to market incompleteness;6

in the special case of a complete market, the hedge-neutral and risk-neutral measures coincide.
Proposition 2 summarizes the results above.

Proposition 2. The anticipated portfolio gains, f , can be expressed as

f(St, Xt, t) = E∗
t

[∫ T

t

1
γ

(
µs − r

σs

)2

ds

]
, (23)

where E∗
t [·] denotes the expectation under the unique hedge-neutral measure P ∗ on which are

defined two Brownian motions w∗ and w∗X with correlation ρ, given by

dw∗t = dwt +
µt − r

σt
dt, dw∗Xt = dwXt + ρ

µt − r

σt
dt, (24)

and measure P ∗ is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T

0
(µs−r

σs
)2ds−

∫ T

0

µs−r
σs

dws . (25)

Consequently, the optimal investment policy is given by

θ∗t =
µt − r

γσ2
t

e−r(T−t) − 1
γ

(
St

∂E∗
t

[∫ T
t

(
µs−r

σs

)2
ds
]

∂St
+
ρνt

σt

∂E∗
t

[∫ T
t

(
µs−r

σs

)2
ds
]

∂Xt

)
e−r(T−t). (26)

5Since the coefficients assigned to partial derivatives ∂ft/∂St and ∂ft/∂Xt in the PDE (20) represent the drifts
of stochastic processes for S and X, it follows that measure P ∗ modifies the drifts so that S and X satisfy (22).

6To see this, observe that dwXt can be decomposed as dwXt = ρdwt +
√

1− ρ2dw̃t, where wt and w̃t are
uncorrelated Brownian motions under P . Hence, any measure under which dw∗t = dwt + (µt − r)/σtdt and
dw̃∗t = dw̃t+gtdt will be a risk-neutral measure irrespective of the process gt. We further note that in an incomplete
market, there is generally not a unique no-arbitrage price for a given payoff as it is impossible to hedge perfectly.
Towards this, a common approach for pricing and hedging with market incompleteness is to choose a specific risk-
neutral measure according to some criterion. Related to minimizing a quadratic loss function, a large literature in
mathematical finance has developed which employs: the “minimal martingale measure” (Follmer and Sondermann,
1986; Schweizer, 1999) solving min

Q
E[− ln(dQ/dP )], the “variance optimal measure” (Schweizer, 1992) solving

min
Q

E[(dQ/dP )2], and the “minimal entropy measure” (Miyahara, 1996) solving min
Q

E[dQ/dP ln(dQ/dP )], where

dQ/dP denotes the Radon-Nikodym derivative of a risk-neutral measure Q with respect to the original measure P .
Interestingly, our measure P ∗, employed in a somewhat different context, turns out to coincide with the minimal
martingale measure.
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Proposition 2 provides a fully analytical characterization of the optimal investment policy
in terms of the model parameters.7 The characterization identifies a unique measure P ∗ that
incorporates intertemporal hedging demands so that only the expected gains or losses from the
myopic portfolio need to be considered explicitly. This in turn allows us to explicitly compute the
optimal dynamic mean-variance portfolios in a straightforward manner, as will be demonstrated
in Section 3. For economic environments in which explicit computations are not possible, the
optimal investment expression (26) can easily be computed numerically by standard Monte Carlo
simulation methods, where the simulation would be performed under measure P ∗. Additionally,
the partial derivatives can be written in terms of Malliavin derivatives, leading to a more refined
representation, which can then be computed by Monte Carlo simulation following the method of
Detemple, Garcia and Rindisbacher (2003).

The optimal investment expression (26) also allows some simple comparative statics to be
carried out. First, the optimal dynamic investment displays a number of appealing, conventional
properties that are present in simple single-period or myopic models. Looking at the risk aversion
parameter γ, we see that the more risk averse the investor, the lower her optimal investment in
the risky stock (in absolute terms |θ∗|), with the investment tending to zero for an extremely
risk averse investor. Similar conclusions can be drawn on the effects of the stock volatility σ and
bond interest rate r on investment behavior. As is commonly assumed in the literature (and
also in the applications of Sections 3.2–3.3), suppose that the market price of risk, (µt − r)/σt,
is driven by the state variable Xt only, and not by σt or r. Under this scenario, higher the stock
volatility or bond interest rate, lower the stock investment (in absolute terms), since the stock
now becomes less attractive, with the investment monotonically tending to zero for higher levels
of volatility or interest rate.

The correlation parameter ρ captures the extent of market incompleteness in the economy.
When the market is incomplete, hedging against fluctuations in the investment opportunities is
complex since it may affect the variability of terminal wealth. The implications of this effect are
addressed in Section 2.3. The correlation parameter also affects the joint probability distribution
of the stock and state variable under which the expressions in (26) are evaluated. This indirect
correlation effect will be assessed in the applications studied in Section 3. Finally, note that
the quantitative effect of the hedging demand due to the state variable is directly driven by the
correlation parameter. Clearly, this effect is higher for the case of complete markets, ρ = ±1, and
disappears for zero correlation, ρ = 0. However, with zero correlation, an intertemporal hedging
term still arises (second term in (26)) due to the market price of risk possibly being dependent

7In particular, the Proposition proves the existence of the optimal policy θ∗t satisfying the recursive equations
(21)–(22) (assuming the expectations and integrals in (32) are well-defined). Moreover, from the Feynman-Kac
theorem, the policy is unique in the class of policies such that θt(µt − r) has polynomial growth in the stock price
St and state variable Xt. This polynomial growth can directly be checked in specific applications that provide
explicit closed-form expressions for θ∗t . Verifying sufficient conditions for optimality are, in general, technically
involved (e.g., Korn and Kraft, 2004) and are beyond the scope of this paper. Specifically, for the mean-variance
framework, verification does not amount to comparing the value functions of the time-consistent and arbitrary
policies, as would be for the standard framework. The reason is that by construction, the value function under the
time-consistent mean-variance policy is lower than that under the pre-commitment policy.
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on the stock price, consistent with such a term arising when perfectly replicating a payoff by
no-arbitrage in complete markets.

Turning to the time-horizon parameter T−t, we see that longer time-horizons unambiguously
decreases the myopic demand in (26) (in absolute terms). This is because longer horizons imply
higher variability of terminal wealth, and hence the investor decreases the risky stock investment.
The impact of the time-horizon on the hedging demand is, however, ambiguous. To illustrate
this, suppose that both the myopic and hedging demands are positive. When the time-horizon
decreases, while the investor’s myopic demand increases, her expected portfolio gains are lower,
which may decrease the hedging demand. For short time-horizons, the latter effect dominates,
and the hedging demand vanishes as the horizon T is reached.

Finally, the optimal investment expression highlights the importance of the market price of
risk process, (µt − r)/σt. The myopic demand is increasing in the price of risk, while the effect
on the hedging demand is ambiguous. However, its impact on the hedging component becomes
less pronounced with shorter time-horizons since the integrals in (26) shrink as the horizon T is
approached. The effect on the hedging demand also depends on whether anticipated portfolio
gains become more or less sensitive to the stock and state variable as the market price of risk
increases. However, this effect can be disentangled in some applications for which the expectation
under measure P ∗ can be explicitly computed. For constant market price of risk, the optimal
mean-variance policy reduces to the myopic demand expression, which is identical to the policy
that would be obtained under CARA preferences.

Remark 1 (Recovering time-consistent objective functions). It is of interest to see
whether there are time-consistent objective functions leading to our dynamically optimal invest-
ment policy (26). In our Markovian economy, it turns out to be possible to recover a time-
consistent, increasing, concave, state-dependent objective function that implies the same optimal
portfolio policy as our dynamically optimal one. In particular, we consider the following dynamic
optimization problem involving a state-dependent objective function of CARA form:

max
θt

Et

[
−εTe

−γWT

]
(27)

with ε following the process

dεt = −γ
2

2

((µt − r

γσt

)2
+ (1− ρ2)νt

( ∂ft

∂Xt

)2)
εtdt

and ft given by (23), subject to the budget constraint (3). Applying dynamic programming
to this problem one can derive an HJB equation and verify that the value function is given by
Jt = exp(−γ(Wte

r(T−t) + ft)), and that the optimal investment policy coincides with (26). To
understand the intuition behind the process εt we observe (from the optimal wealth (28)) that
dεt = −(γ2/2)εt vart[dW ∗

t e
r(T−t)], and hence, an investor with the state-dependent utility (27)

puts higher weight on those states of the economy in which the optimal wealth process is less
volatile along its path. We finally note that there are other time-consistent, state-dependent
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objective functions leading to the optimal policy (26).8

Remark 2 (Game-theoretic interpretation of optimal policies). Our methodology until
now has employed the traditional dynamic programming approach to portfolio choice. However,
the problem of finding the time-consistent mean-variance investment policy has an intra-personal
game-theoretic interpretation, similar to that in the literature on consumer behavior under hy-
perbolic discounting (e.g., Harris and Laibson, 2001). In particular, the investor, unable to
precommit, takes the investment policy of her future selves as given and reacts to them in an
optimal way. Thus, her investment policy emerges as the outcome of a pure-strategy Nash
equilibrium in this game.

In particular, consider a game with a continuum of players (selves) [0, T ]. Each player t ∈
[0, T ] at time t is guided by the mean-variance criterion (6) over terminal wealth, and chooses a
time-t Markovian investment strategy θ(Wt, St, Xt, t) subject to the budget constraint (3). Thus,
the players impose an externality on each other by affecting the terminal wealth. Denote by
J(Wt, St, Xt, t) player t’s value function when all players s ≥ t follow the equilibrium strategies
θ∗(Wt, St, Xt, t). Then, a pure-strategy Nash equilibrium of the game is defined as follows.

Definition: The set of strategies {θ∗t , t ∈ [0, T ]} constitutes a pure-strategy Nash equilibrium
in the intra-personal game with the mean-variance objective if θ∗t is an optimal response of
player t to the strategies θ∗s of players s > t – that is, taking θ∗s as given, θ∗t solves the dynamic
optimization problem (12).

It is straightforward to see that the set of strategies {θ∗t , t ∈ [0, T ]} remains an equilibrium in
any subgame of this game, thus comprising a subgame-perfect pure-strategy Nash equilibrium.
Moreover, the equilibrium strategy θ∗t is characterized by the recursive equation for the optimal
policy (16), which is now interpreted as the optimal response function of player t to the actions
θ∗s of other players. The equilibrium strategy then coincides with the closed-form expression for
the optimal investment policy (26).

2.3. Further Properties of Optimal Policy

In this Section, we discuss further properties of the mean-variance optimizer’s optimal behavior
by providing explicit expressions for her terminal wealth, its moments, and her value function. We
particularly focus on the implications of market incompleteness. Towards this, it is convenient to
employ the decomposition wXt = ρwt +

√
1− ρ2w̃t, where w̃t is a Brownian motion independent

of wt, and so w̃t represents the unhedgeable source of risk in the economy. In the sequel, the
8In particular, using the results of Lemma 1 and Proposition 1, it is straightforward to see that the dynamically

optimal policy (26) can be obtained by solving a time-consistent instantaneous problem of the form

max
θt

Et[d(Wte
r(T−t))]− γ

2
vart[d(Wte

r(T−t)) + dft]

with ft given by (23), subject to budget constraint (3). Interestingly, this objective becomes myopic in the
restrictive special case of deterministic anticipated portfolio gains ft.
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effect of market incompleteness on terminal wealth is identified via the w̃ terms.

Proposition 3. The optimal terminal wealth, its mean, variance and the value function of a
dynamic mean-variance optimizer are given by

W ∗
T = Wte

r(T−t) + ft +
1
γ

∫ T

t

µs − r

σs
dws +

√
1− ρ2

∫ T

t
νs
∂fs

∂Xs
dw̃s, (28)

vart[W ∗
T ] =

1
γ2
Et

[∫ T

t

(
µs − r

σs

)2

ds

]
+ (1− ρ2)Et

[∫ T

t
ν2

s

(
∂fs

∂Xs

)2
]
ds, (29)

Et[W ∗
T ] = Wte

r(T−t) + ft, (30)

Jt = Wte
r(T−t) + ft −

1
2γ
Et

[∫ T

t

(
µs − r

σs

)2

ds

]
− γ

2
(1− ρ2)Et

[∫ T

t
ν2

s

(
∂fs

∂Xs

)2

ds

]
,

(31)

where ft = E∗
t [
∫ T
t (µs − r)2/γσ2

sds] and dw̃t = (dwXt − ρdwt)/
√

1− ρ2. Consequently, under the
assumption that the market price of risk (µt − r)/σt depends only on Xt,

(i) The variance of terminal wealth in incomplete markets is higher than that in complete
markets;

(ii) The mean of terminal wealth is increasing (decreasing) in the level of market incomplete-
ness, ρ2, when the hedging demand is positive (negative) for all s ∈ [t, T ];

(iii) The value function in incomplete markets is lower than that in complete markets when the
hedging demand is positive for all s ∈ [t, T ]. The effect is ambiguous when the hedging
demand is negative.

Optimal terminal wealth is given by conditionally riskless terms (first and second in (28)),
capturing anticipated bond and stock gains, and risky terms driven by the hedgeable stock
uncertainty (third term in (28)) and unhedgeable uncertainty (fourth term in (28)). The effect
of market incompleteness on terminal wealth enters through the unhedgeable risk and the joint
probability distribution of stock return and state variable, both under the original and new
measures. The unhedgeable risk component vanishes in complete markets with ρ2 = 1.

The variance of optimal terminal wealth is determined by the variances of hedgeable (first
term in (29)) and unhedgeable uncertainties (second term in (29)). When the market price of risk
depends only on the state variable, market incompleteness does not affect the hedgeable uncer-
tainty variance. In that case, the terminal wealth variance is always higher in incomplete markets
than in complete markets by the presence of unhedgeable risk (Proposition 3(i)). Naturally, this
effect is more pronounced for higher state variable volatility or sensitivity of anticipated gains to
the state variable. However, the anticipated gains process, f , itself depends on the correlation
ρ, which convolutes the exact dependence of wealth variance on correlation, and hence market

15



completeness.9 This indirect effect can be disentangled in the applications, where the expectation
under measure P ∗ can explicitly be computed.

The effect of market incompleteness on the mean of terminal wealth enters via the anticipated
gains, f . Proposition 3(ii) states that the direction of this effect is determined by the sign of
the hedging demand. In particular, the expected terminal wealth is lower for higher levels of
market incompleteness (i.e., lower ρ2) when the hedging demand is positive till the horizon and
the market price of risk depends only on the state variable. The reason is that lower correlation ρ
decreases the hedging demand, which vanishes for zero correlation, as discussed in Section 2.2. So,
the investor’s positive hedging demand will be lower for higher levels of market incompleteness,
leading to lower expected terminal wealth. Clearly, the converse is true when the hedging demand
is negative.

Turning to the value function, we find that when the hedging demand is positive until the
horizon, the mean-variance optimizer is worse off in incomplete markets due to higher variance
and lower expectation of terminal wealth. However, the welfare effect is ambiguous in the case
of negative hedging demand, for which the expected wealth is higher in incomplete markets,
offsetting the effect of higher variance. As will be shown in Section 3, the sign of the hedging
demand can readily be identified in particular applications, simplifying the analysis in incomplete
markets.

2.4. Optimal Pre-commitment Policy

In Section 2.2, we have already demonstrated that the mean-variance objective in a dynamic
setting results in time-inconsistency of the investment policy, in that an investor has an incentive
to deviate from an initial policy at a later date. We have so far focused on the time-consistent
investment policy in which the investor chooses an investment in each period that maximizes
her objective at that period, taking into account the re-adjustments that she will make in the
future. We now analyze the alternative way of dealing with this issue and look at the pre-
commitment investment policy in which the investor initially chooses a policy to maximize her
objective function at time 0, and thereafter does not deviate from that policy. Of course, with
standard utility functions and absent market imperfections, the solutions to the time-consistent
and pre-commitment formulations are well-known to coincide (Cox and Huang, 1989; Karatzas,
Lehoczky and Shreve, 1987). The pre-commitment solution, in our view, serves as a useful
benchmark against which to compare our time-consistent solution, especially because the explicit
analytical solutions to the dynamic mean-variance problem so far have been obtained only in the
pre-commitment case. Moreover, if there were a credible mechanism for the investor to commit
to her initial policy, she would be better off to follow her initial policy than the time-consistent
policy, since the dynamic time-consistency requirement restricts her to consider only policies that
she would not be willing to deviate from.

9This is due to the fact that the drift of the state variable is affected by the correlation ρ under measure P ∗,
as revealed by equation (22).
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The pre-commitment mean-variance problem and its variations have been analyzed in the
literature, amongst others, by Bajeux-Besnainou and Portrait (1998), Bielecki, Jin, Pliska and
Zhou (2005), Cvitanic and Zapatero (2004), Zhao and Li (2000), Zhao and Ziemba (2002). These
works have primarily employed martingale methods in a complete market setting. For complete-
ness, we here provide the pre-commitment solution for our setting, and follow the literature by
specializing to a complete-market setting, ρ = ±1. Portfolio choice problems that employ mar-
tingale methods in incomplete markets are well-known to be a daunting task. However, we can
illustrate our main points in the simple complete market setting.

Dynamic market completeness allows the construction of a unique state price density process,
ξ, consistent with no-arbitrage, and given by

ξt = ξ0e
−rt− 1

2

∫ t

0

(
µs−r

σs

)2
ds−
∫ t

0

µs−r
σs

dws . (32)

The quantity ξT (ω) can be interpreted as the Arrow-Debreu price per unit probability P of one
unit of wealth in state ω ∈ Ω at time T , and without loss of generality, we set ξ0 = 1. The
dynamic investment problem of an investor can be restated as a static variational problem using
the martingale representation approach (Cox and Huang, 1989; Karatzas, Lehoczky and Shreve,
1987). Accordingly, a mean-variance optimizer under pre-commitment solves the following prob-
lem at time 0:

max
WT

E0[WT ]− γ

2
var0[WT ], (33)

subject to E0[ξTWT ] ≤W 0. (34)

Proposition 4 presents the optimal solution to this problem in terms of the state price density.

Proposition 4. The optimal terminal wealth of a mean-variance optimizer under pre-commitment
is given by

ŴT = W 0e
rT +

1
γ
E0[ξ2T ]e2rT − 1

γ
ξT e

rT . (35)

Furthermore, under the assumption of a constant market price of risk (µt − r)/σt ≡ (µ − r)/σ,
the pre-committed investor’s optimal terminal wealth and investment policy are given by

ŴT = W 0e
rT +

1
γ
e(

µ−r
σ

)2T − 1
γ
ξT e

rT , (36)

θ̂t =
µ− r

γσ2
e−r(T−t)ξte

(µ−r
σ

)2(T−t)+rt. (37)

To facilitate comparisons with the pre-commitment solution above, we also provide the time-
consistent solution (Propositions 2–3). In the special case of a complete market, the time-
consistent optimal terminal wealth, expressed in terms of the state price density, is given by

W ∗
T = W0e

rT +
1
γ
E0

[
ξT e

rT
∫ T

0

(µs − r

σs

)2
ds
]
− 1
γ

[
ln ξT + rT +

1
2

∫ T

0

(µs − r

σs

)2
ds
]
. (38)

17



Under the additional assumption of constant market price of risk, the time-consistent optimal
terminal wealth and investment policy are

W ∗
T = W0e

rT +
1
γ

(µ− r

σ

)2
T − 1

γ

[
ln ξT + rT +

1
2

(µ− r

σ

)2
T
]
, (39)

θ∗t =
µ− r

γσ2
e−r(T−t). (40)

Clearly, the pre-commitment solution ((35)–(37)) and the time-consistent solution ((38)–
(40)) are generically different. The two solutions coincide only in the knife-edge case of a zero
market price of risk, in which case both the pre-commitment and time-consistent policies entail
investing nothing in the stock and putting all wealth in the bond. We observe that for short
investment horizons T , the pre-commitment solution approximates the time-consistent one up to
second-order terms. However, for plausible horizons, the two solutions can differ considerably. In
particular, for constant market price of risk case, the pre-commitment expected terminal wealth
is higher than the time-consistent one for sufficiently long investment horizons.10 This is because
the inability to pre-commit destroys investors welfare. While for short time-horizons the effect of
time-inconsistency can be negligible, it is amplified at longer time-horizons. Moreover, since the
state price density is positive, it can easily be observed from (36) that the terminal wealth under
the pre-commitment policy is bounded from above. In contrast, the time-consistent policy retains
the intuitive property that the terminal wealth can become arbitrarily large for sufficiently small
state prices when the cost of wealth is low.11

The pre-commitment policy is stochastic, driven by the state-price density, even under the
assumed constant investment opportunity set, while the time-consistent investment is determin-
istic. Being stochastic, the investment policy under pre-commitment induces a hedging demand
component, which is amplified at longer horizons. As a result, with longer horizons, the pre-
committed investor tends to invest more in the risky stock than the time-consistent investor
does. Finally, in bad states (high ξ) the pre-committed mean-variance optimizer increases her
risky investment, and in good states decreases investments. This is because bad, costly states
reduce her expected terminal wealth. To offset this, the investor takes on more risk by increasing
her risky investment.

10To see this, observe that the expected wealth under pre-commitment (36) grows exponentially with the horizon,
while the expected wealth under time-consistency (39) grows linearly. Even though the variance is also higher in
the pre-commitment case, it can be verified that the time-0 probability Prob0(ŴT > W ∗

T ) approaches unity with
long horizons.

11This property holds for any utility function satisfying the condition lim WT→∞u′(WT ) = 0 since the marginal
utility u′(WT ) is proportional to the state price density ξT at the optimum. In particular, one can easily demon-
strate that for CARA utility with absolute risk aversion parameter γ the optimal terminal wealth is unbounded
and is given by WT = −(1/γ) ln ξT − (1/γ) ln(λ/γ), where λ is a constant, similarly to (39).
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3. Applications

This Section provides several applications that illustrate the simplicity and the usefulness of
the methodology developed in Section 2. In Sections 3.1–3.3, we consider the portfolio choice
problem of a mean-variance optimizer for different stochastic investment opportunity sets. We
obtain explicit solutions to these problems and provide further insights, disentangling some effects
that cannot be analyzed in the general framework. We also assess the economic significance of
the intertemporal hedging demands of a mean-variance optimizer by quantitatively comparing
them with the total demand in the richer economic settings of Sections 3.2–3.3.

3.1. Constant Elasticity of Variance

In this Section, we specialize our setting to a complete market and the constant elasticity of
variance (CEV) model for the stock price:

dSt

St
= µdt+ σ̄S

α/2
t dwt, (41)

where α is the elasticity of instantaneous stock return variance, σ2
t = σ̄2Sα

t , with respect to the
stock price. This process is a generalization of geometric Brownian motion, which corresponds
to α = 0, and has been successfully employed in the option pricing literature (e.g, Cox and Ross,
1976; Schroder, 1989; Cox, 1996) to model the empirically observed pattern of stock prices with
heavy tails. Moreover, the CEV process with α < 0 generates the finding that the volatility
increases when the stock price falls (Black, 1976; Beckers, 1980). When α < 0, the distribution
of stock prices has the left tail heavier than the right one, while the converse is true for α > 0.
The CEV model also helps explain volatility smiles (Cox, 1996).

The mean-variance investor’s optimal policy under the CEV setting can be computed explic-
itly by a straightforward application of Proposition 2. It amounts to computing the anticipated
gains process under measure P ∗, which coincides with the familiar risk-neutral one due to mar-
ket completeness. We then derive the anticipated gains by computing the expectation of the
squared market price of risk, which after some manipulation, reduces to solving an ordinary
linear differential equation for which we obtain the unique explicit solution. We emphasize that
this computation does not resort to solving an HJB PDE, as it would be the case under other
popular objective functions, such as CRRA or CARA preferences. The following Corollary to
Proposition 2 presents the optimal investment policy, as well as some of its properties.

Corollary 1. The optimal stock investment policy for the CEV model (41) is given by:

θ∗t =
µ− r

γσ̄2Sα
t

e−r(T−t) − 1
γ

(
µ− r

σ̄S
α/2
t

)2
e−αr(T−t) − 1

r
e−r(T−t). (42)

Consequently,
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(i) The hedging demand is positive (negative) for α > 0 (α < 0), and vanishes for α = 0;

(ii) The optimal investment policy θ∗t is a quadratic function of the market price of risk,
(µ− r)/σ̄Sα/2

t , and may become negative for large values of market price of risk when
α < 0;

(iii) The optimal investment policy tends to 0 for α > −1 and to −∞ for α < −1, as the
time-horizon, T − t, increases.

Corollary 1(i) reveals that the sign of the hedging demand (the second term in (42)) depends
on the sign of the elasticity α. Positive elasticity implies that the market price of risk decreases
in the stock price. This induces a negative correlation between the stock returns and anticipated
portfolio gains (given by (23)) since the latter are positively related to the market price of risk. As
discussed in Section 2.2, this gives rise to a positive hedging demand. Analogously, the hedging
demand is negative for negative elasticity.

Property (ii) of Corollary 1 sheds light on the impact of the market price of risk on the
optimal investment policy. The optimal investment policy is a quadratic function of the market
price of risk for a given stock volatility. Moreover, with negative hedging demand the investor
may short the stock despite a high market price of risk or risk premium. In such a case, an
increase in the market price of risk leads to a proportionally larger increase in anticipated gains.
This then implies a larger covariance between stock returns and portfolio gains, making the
hedging demand larger than the myopic demand in absolute terms, and hence the negative stock
investment.

Turning to the horizon effect, property (iii) reveals that the optimal investment tends to either
zero or negative infinity as the time-horizon increases. There are two effects working in opposite
directions. On one hand, the investment is perceived riskier at longer horizons which induces
the investor to invest less in the stock. On the other hand, the anticipated gains are higher
with longer horizons which makes the hedging demand larger. Anticipated gains are determined
by the expected squared market price of risk under measure P ∗, which can be verified to stay
bounded for positive elasticities as the horizon increases and explodes otherwise (Appendix, proof
of Corollary 1). As a result, the first effect dominates for relatively high elasticities (α > −1),
while the second dominates for relatively low elasticities (α < −1). The two effects exactly offset
each other for the knife-edge case of α = −1, for which the policy tends to a constant.

3.2. Stochastic Volatility

We now consider an incomplete market setting in which the stock price follows the stochastic-
volatility model of Liu (2001):

dSt

St
= (r + δX

(1+β)/2β
t )dt+X

1/2β
t dwt, (43)
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where the state variable, X, follows a mean-reverting square-root process

dXt = λ(X̄ −Xt)dt+ ν̄
√
XtdwXt, (44)

and where β 6= 0 is the elasticity of the market price of risk, δ
√
Xt, with respect to instantaneous

stock return volatility, σt = X
1/2β
t , and λ > 0 (to exclude explosive processes).

In this setting, Liu derives an explicit solution to the portfolio choice problem for an in-
vestor with CRRA preferences over terminal wealth. The case of β = −1 corresponds to the
stochastic-volatility model employed by Chacko and Viceira (2005), who study the intertem-
poral consumption and portfolio choice problem for an investor with recursive preferences over
intermediate consumption. They obtain an exact solution to the problem for investors with
unit elasticity of intertemporal substitution of consumption. The case of β = 1 reduces to the
stochastic-volatility model of Heston (1993), popular in option pricing.

Our mean-variance investor’s dynamic optimal policy is again a straightforward, simple appli-
cation of Proposition 2. Since the squared market price of risk equals δ2Xt, explicitly finding the
solution amounts to computing the conditional expectation of the state variable under measure
P ∗, which is easily seen (second equation in (22)) to also follow a mean-reverting, square-root
process as in (44). The conditional expectation of such a process is well-known (e.g., Cox, In-
gersoll and Ross, 1985). In contrast, the solution method of Liu is based on the derivation of
the HJB equation for the investor’s value function. However, in the case of CRRA preferences
this approach is cumbersome for two reasons. First, it involves guessing the value function and
reducing the HJB to a system of ODE, one of which is a Riccatti equation. Second, this system
of equations itself is notorious for complexity. Corollary 2 reports our solution and some of its
properties.

Corollary 2. The optimal stock investment policy for the stochastic-volatility model (43)–(44)
is given by:

θ∗t =
δ

γ
X

(β−1)/2β
t e−r(T−t) − ρν̄δ

(1− e−(λ+ρν̄δ)(T−t)

λ+ ρν̄δ

) δ
γ
X

(β−1)/2β
t e−r(T−t). (45)

Consequently,

(i) The hedging demand is positive (negative) for ρ < 0 (ρ > 0) and vanishes for ρ = 0;

(ii) The optimal investment policy θ∗t is positive (negative) for positive (negative) stock risk
premium;

(iii) The optimal investment policy is increasing (decreasing) in the market price of risk, δ
√
Xt,

for β < 0 or β > 1 (0 < β < 1) when the stock risk premium is positive, and the converse
is true when the stock risk premium is negative;

(iv) The optimal investment policy tends to 0 for λ+ ρν̄δ > −r and to ∞ for λ+ ρν̄δ < −r, as
the time-horizon, T − t, increases;
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(v) The expected terminal wealth, Et[W ∗
T ], is decreasing in the correlation ρ. The variance of

terminal wealth, vart[W ∗
T ], attains its minimum when the market is complete, ρ2 = 1, and

its maximum for some ρ∗ < 0. The value function, Jt, is decreasing in ρ on the interval
[−1, ρ∗] and ambiguous otherwise.

Corollary 2(i) shows that the sign of the hedging demand (second term in (45)) is determined
by the sign of the correlation between the stock and state variable. When this correlation
is negative, the instantaneous stock returns are negatively correlated with anticipated portfolio
gains since the latter are positively related to the squared market price of risk, δ2Xt. As discussed
in Section 2.2, such a negative correlation with anticipated gains induces a positive hedging
demand. Analogously, a positive correlation ρ gives rise to a negative hedging demand.

Property (ii) of Corollary 2 reveals that the mean-variance optimizer always holds a long
position in a risky stock with positive risk premium, as in static or myopic portfolio choice
problems.12 In contrast, Liu (2001) finds that a CRRA investor with low risk aversion may short
the risky stock even for a high positive risk premium. Moreover, the mean-variance investment
policy is increasing in the market price of risk for negative (β < 0) or relatively high (β > 1)
elasticities of market price of risk with respect to stock volatility when the stock risk premium
is positive (property (iii)). With a negative elasticity, the market price of risk is high when the
stock volatility is low that makes the stock attractive. For high elasticities, high market price
of risk is associated with a high volatility. However, since the elasticity is high, an increase in
the market price of risk offsets an increase in the stock volatility making the stock attractive.
Conversely, for intermediate elasticities (0 < β < 1), the optimal investment decreases in the
market price of risk.

Property (iv) also shows that the optimal investment either vanishes or explodes as the time-
horizon increases. This horizon effect depends on the covariance between the stock returns and
state variable per unit of stock volatility, ρν̄, amplified by the risk premium scale parameter, δ.
With positive correlation and high state variable volatility, hedging demand is small and vanishes
with long horizons. Otherwise, increasing the stock investment would lead to higher anticipated
gains and higher variability of terminal wealth amplified by longer time-horizon. Conversely for
sufficiently negative correlation.

Corollary 2(v) also sheds further light on the effect of market incompleteness on wealth and
welfare. First, the expected terminal wealth is decreasing in the correlation between the stock and
state variable. For negative correlation, it decreases since the hedging demand is positive, and
becomes smaller as the correlation approaches zero. For positive correlation, expected terminal
wealth declines since the hedging demand is negative, and becomes larger in absolute terms as
the correlation approaches unity. In congruence with Proposition 3, the variance of terminal
wealth is lowest in the complete market case (ρ2 = 1), in which perfect hedging is possible,

12The optimal investment, however, may become negative for negative speed of mean-reversion λ, which corre-
sponds to an explosive process for the state variable.
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Table 1
Percentage Hedging Demand over Total Demand

for the Stochastic-Volatility Model with elasticity β = −1

The table reports the percentage hedging demand over total demand for different levels of correlation
ρ, speed of mean-reversion λ and time-horizon T − t. The other pertinent parameters are fixed at their
estimated values. The relevant model parameter values are taken from Chacko and Viceira (2005, Table
1) who estimate the stochastic-volatility model with elasticity β = −1 using U.S. stock market data
based on monthly returns from 1928 to 2000 and annual returns from 1871 to 2000. Panel A reports
our results for (annualized) parameter values ρ = 0.5241, ν̄ = 0.6503, δ = 0.0811 and λ = 0.3374 based
on estimates from the monthly data of 1926–2000. Panel B reports the results for parameter values
ρ = 0.3688, ν̄ = 1.1703, δ = 0.0848 and λ = 0.0438 based on annual data of 1871–2000. Both tables also
report results for varying levels of ρ and λ, with bolded ratios corresponding to the estimated parameter
values of ρ and λ.

Panel A: Monthly Data Parameter Estimates Panel B: Annual Data Parameter Estimates
Horizon Horizon

ρ 6-month 1-year 5-year 10-year 20-year 6-month 1-year 5-year 10-year 20-year
-1.00 2.4 4.39 12.3 14.9 15.6 4.8 9.3 36.4 57.0 78.4
-0.50 1.2 2.2 6.23 7.5 7.8 2.4 4.7 20.1 33.8 51.3
0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.37 -1.0 -1.7 -4.8 -5.6 -5.8 -1.8 -3.6 -17.7 -33.6 -57.3
0.50 -1.2 -2.3 -6.5 -7.6 -7.8 -2.5 -5.0 -24.7 -47.6 -81.5
0.52 -1.3 -2.4 -6.8 -8.0 -8.2 -2.6 -5.2 -26.0 -50.3 -86.2
1.00 -2.5 -4.6 -13.1 -15.3 -15.6 -5.0 -10.2 -54.9 -111.8 -189.1
λ 6-month 1-year 5-year 10-year 20-year 6-month 1-year 5-year 10-year 20-year

0.00 -1.4 -2.8 -14.8 -31.8 -73.8 -1.9 -3.7 -20.1 -44.2 -107.9
0.04 -1.4 -2.7 -13.2 -24.6 -41.7 -1.8 -3.6 -17.7 -33.6 -57.3
0.30 -1.3 -2.4 -7.3 -8.8 -9.2 -1.7 -3.2 -9.7 -11.7 -12.2
0.34 -1.3 -2.4 -6.8 -8.0 -8.2 -1.7 -3.2 -9.0 -10.6 -10.8
0.60 -1.2 -2.1 -4.4 -4.6 -4.6 -1.6 -2.8 -5.8 -6.1 -6.1
0.90 -1.1 -1.8 -3.0 -3.1 -3.1 -1.5 -2.4 -4.0 -4.1 -4.1

and attains a maximum at some intermediate correlation level ρ∗ < 0. Thus, for relatively
low correlation (ρ < ρ∗) the expected wealth is decreasing in correlation while the variance is
increasing, which leads the welfare to decrease in correlation. The welfare effect is ambiguous for
relatively high correlation (ρ > ρ∗) since lower expected wealth is counterbalanced by decreased
variance. However, for plausible parameter values (Table 1, Panel A: ρ = 0.5241, ν̄ = 0.6503,
δ = 0.0811, λ = 0.3374), it can be shown that the loss in expected wealth dominates, and hence
the welfare decreases in correlation.

Finally, we investigate the economic significance of the mean-variance intertemporal hedging
demands induced by the stochastic volatility setting. To this end, we compute the ratio of the
hedging demand to total optimal demand, θHt/θ

∗
t , for a range of plausible parameter values.

Conveniently, this ratio is deterministic and depends only on the correlation ρ, the state variable
speed of mean-reversion λ and volatility parameter ν̄ for a given time-horizon. Table 1 presents
the percentage hedging demand for varying levels of correlation, speed of mean-reversion and the
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investor’s horizon.13 The relevant parameter values are taken from Chacko and Viceira (2005),
who estimate the stochastic-volatility model with elasticity β = −1 using U.S. stock market data
based on monthly returns from 1926 to 2000 and annual returns from 1871 to 2000.

Inspection of the results in Panel A of Table 1, based on monthly data parameter estimates,
reveals a relatively small ratio of the hedging demand over total demand, ranging from −1.3%
to −8.2% for the parameter estimates ρ = 0.52 and λ = 0.34 (in bold). This small magnitude
of the hedging demand is due to the relatively low correlation and high speed of mean-reversion
estimates. In contrast, Panel B, based on annual data parameter estimates, reveals a considerably
larger percentage hedging demand, ranging from −1.8% to −57.3% for the parameter estimates
ρ = 0.37 and λ = 0.04. Our results are in line with the findings of Chacko and Viceira, although
in absolute terms they are large. Chacko and Viceira find the percentage hedging demand to
range from −1.5% to −3.6% for the monthly data and from −5.2% to −18.4% for the yearly
data for an infinitely-lived recursive-utility investor with relative risk aversion and elasticity of
intertemporal substitution ranging [1.5, 40] and [1/0.8, 1/40], respectively.14 Thus, the hedging
demand in our setting is larger in absolute terms than in Chacko and Viceira.

3.3. Time-Varying Gaussian Mean Returns

In this Section, we consider the mean-variance optimizer’s problem in an incomplete market in
which the stock price dynamics are specialized to follow:

dSt

St
= (r + σXt)dt+ σdwt, (46)

where the market price of risk, Xt, follows a mean-reverting Ornstein-Uhlenbeck process

dXt = λ(X̄ −Xt)dt+ νdwXt, (47)

with λ > 0. Kim and Omberg (1996) explicitly solves the portfolio choice problem of an investor
with CRRA preferences over terminal wealth in this incomplete market setting. Merton (1971)
studies the consumption and portfolio choice problem of an agent with CARA preferences in
this Gaussian mean-reverting setting for the special complete-market case of positive perfect
correlation, ρ = +1. Wachter (2002) provides an explicit solution to the consumption and
portfolio choice problem of an investor with CRRA preferences under this setting with negative
perfect correlation, ρ = −1. Campbell and Viceira (1999) study the infinite-horizon discrete-time
consumption and portfolio choice of an investor with recursive utility and under discrete-time

13We do not consider varying the levels of ν̄ and δ since they always appear multiplicatively with the correlation
ρ in the hedging and total demand expressions. So, separately varying the levels of ν̄ and δ would lead to a range
of percentage hedging demand similar to that generated by different levels of ρ.

14Chacko and Viceira compute the ratio of hedging demand to myopic demand, which we then convert into the
ratio of hedging demand to total demand. Moreover, they also consider the case of the relative risk aversion being
less than unity, which is less empirically plausible for the average investor. In that case, they find that the ratio
of hedging demand to myopic demand is positive.
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versions of the dynamics (46)–(47), where the state variable is taken to be the dividend-price
ratio.

For the mean-variance optimizer, finding the optimal investment policy again reduces to
computing the expectation of the squared market price of risk, X2

t , under measure P ∗. It follows
from (22) that under this measure, the market price of risk follows a simple mean-reverting process
as in (47) for which the first and second moments can easily be derived (e.g., Vasicek, 1977).
This approach avoids solving the HJB equation which is a tedious task in the case of CRRA
preferences and incomplete markets since it amounts to solving a system of nonlinear ordinary
differential equations (e.g., Kim and Omberg, 1996). The following Corollary to Proposition 2
reports our mean-variance solution and some of its unambiguous properties.

Corollary 3. The optimal stock investment policy for the time-varying Gaussian mean returns
model (46)–(47) is given by:

θ∗t =
Xt

γσ
e−r(T−t) − ρν

γσ

(
λ
(1− e−(λ+ρν)(T−t)

λ+ ρν

)2
X̄ +

1− e−2(λ+ρν)(T−t)

λ+ ρν
Xt

)
e−r(T−t). (48)

Consequently,

(i) The mean hedging demand is positive (negative) for ρ < 0 (ρ > 0) and vanishes for ρ = 0
when X̄ > 0, and the converse is true when X̄ < 0;

(ii) The optimal stock investment, θ∗t , is increasing in the market price of risk, Xt.

The hedging demand (second term in (48)) in general may become positive or negative for any
combination of model parameters depending on the sign and magnitude of the market price of risk
Xt, which is Gaussian and can possibly take on negative values. The mean hedging demand, the
unconditional expectation of the hedging demand, however, is positive for negative correlation
between the stock and state variable, and negative for positive correlation. The intuition for this
is as in the stochastic-volatility model of the previous Section (Corollary 2(i)).

Corollary 3(ii) reveals the optimal investment policy to be increasing in the market price
of risk. Thus, our dynamic mean-variance optimizer under the mean-reverting Gaussian set-
ting retains this familiar property of the myopic or static portfolio choices despite a potentially
large hedging demand, as demonstrated below. However, the welfare implications of the market
incompleteness for this setting are complicated due to the fact that the hedging demand may
change signs over time depending on the behavior of the market price of risk, but can explicitly
be analyzed for a given set of model parameters.

We here assess the significance of the intertemporal hedging demands by computing the ratio
of the mean hedging demand over the mean total demand, as in Campbell and Viceira (1999).15

15The ratio of the hedging demand over the total demand is stochastic and depends on the state variable Xt.
Therefore, as a tractable quantitative assessment of the percentage hedging demand, we follow Campbell and
Viceira and consider the mean hedging demand over the mean total demand, which is deterministic.
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Table 2
Percentage Mean Hedging Demand over Mean Total Demand

for the Mean-Reverting Gaussian Returns Model

The table reports the percentage mean hedging demand over mean total demand for different levels of
correlation ρ, speed of mean-reversion λ and the investor’s time-horizon T − t. The other pertinent
parameters are fixed at their estimated values. The relevant parameter values are taken from the esti-
mates provided in Wachter (2002, Table 1). These parameter estimates are based on their discrete-time
analogues in Barberis (2000) and Campbell and Viceira (1999), and are: ρ = −0.93, ν = 0.065 and
λ = 0.27. The table also reports results for varying levels of ρ and λ, with bolded ratios corresponding to
the estimated parameter values of ρ and λ.

Horizon
ρ 6-month 1-year 5-year 10-year 20-year

-1.00 19.1 32.5 71.0 81.6 87.4
-0.93 17.9 30.7 68.2 78.7 84.4
-0.50 10.0 17.9 45.5 54.2 58.1
0.00 0.0 0.0 0.0 0.0 0.0
0.50 -11.2 -22.2 -96.5 -135.1 -143.5
1.00 -23.8 -50.1 -427.7 -920.6 -1020.9
λ 6-month 1-year 5-year 10-year 20-year

0.00 19.0 34.4 87.9 98.5 100.0
0.27 17.9 30.7 68.2 78.7 84.4
0.30 17.7 30.3 66.1 75.8 80.6
0.60 16.6 26.9 48.7 51.6 52.0
0.90 15.5 23.6 37.3 38.0 38.0

This ratio depends only on the correlation ρ, the speed of mean-reversion λ and the instantaneous
variance of the state variable ν for a given time-horizon T − t. Table 2 reports the percentage
mean hedging demand for varying levels of correlation, speed of mean-reversion parameter and
the investor’s horizon. The parameter values are taken from the estimates provided by Wachter
(2002) and are described in the caption of Table 2.

Inspection of Table 2 establishes the percentage mean hedging demand over mean total de-
mand to be positive and fairly large, ranging from 17.9% to 84.4% for the parameter estimates
ρ = −0.93 and λ = 0.27 (in bold). This result is primarily due to the large negative correlation ρ,
which implies (on average) a positive and large hedging demand. Our finding is consistent with
that reported in the literature under a similar economic setting but with different investor pref-
erences. Campbell and Viceira (1999) find the percentage mean hedging demand to range from
22.9% to 65.5% for an infinitely lived recursive-utility investor with relative risk aversion and
elasticity of intertemporal substitution ranging [1.5,40] and [1/0.75,1/40], respectively. Results
in Brandt (1999) confirm the findings of Campbell and Viceira for the case of CRRA preferences
with relative risk aversion 5. A large hedging demand in proportion to wealth is also reported in
Wachter.
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4. Extensions and Ramifications

In this Section, we demonstrate that the baseline analysis of Section 2 can easily be adopted
to alternative or richer economic environments. Section 4.1 illustrates our methodology in a
discrete-time framework, and provides an explicit solution to the stochastic-volatility model in
discrete time. Sections 4.2 – 4.3 demonstrate that the results of Section 2 are readily extendable
to more realistic environments with stochastic interest rates and with multiple stocks, state
variables and sources of uncertainty.

4.1. Discrete-Time Formulation

We consider the mean-variance asset allocation problem in a discrete-time setting. The ex-
tant literature, to our best knowledge, lacks analytic expressions for multi-period discrete-time
investment policies in rich stochastic environments and characterizes optimal policies by em-
ploying either numerical methods or various approximations (e.g., Ait-Sahalia and Brandt, 2001;
Bansal and Kiku, 2007; Brandt, Goyal, Santa-Clara and Stroud, 2005; Brandt and Santa-Clara,
2006; Campbell and Viceira, 1999, 2002, among others). In contrast, we here derive a recur-
sive representation for the optimal investment policy in discrete time and provide fully-explicit
closed-form solutions for specific stochastic investment opportunity sets as in the continuous-time
formulation. To our knowledge, these explicit solutions are new in the literature.16

We let the time increment denote ∆t ≡ T/M , where M is an integer number, and index time
by t = 0,∆t, 2∆t, ..., T . The uncertainty is generated by two correlated discrete-time stochastic
processes w and wX , with correlation ρ. The increments of the processes, ∆wt and ∆wXt, are
serially uncorrelated and distributed according to some distribution with zero mean and variance
∆t, D(0,∆t). An investor trades in two securities, a riskless bond that provides a constant
interest rate r over the interval ∆t, and a risky stock that has price dynamics given by

∆St

St
= µ(St, Xt, t)∆t+ σ(St, Xt, t)∆wt,

where the state variable X follows the process

∆Xt = m(Xt, t)∆t+ ν(Xt, t)∆wXt.

An investor’s wealth W then follows

∆Wt = [rWt + θt(µt − r)]∆t+ θtσt∆wt, (49)

where θt again denotes the dollar stock investment. The investor maximizes the objective function
(6) subject to the dynamic budget constraint (49) for each time t = 0,∆t, ..., T −∆t. Proposition

16Since the purpose of this Section is to demonstrate the tractability of our analysis in discrete time, we employ
a simple Euler discretization scheme and abstract away from potential issues of convergence of our discrete-time
stochastic processes to their continuous-time analogues.
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5 is the discrete-time analogue of Proposition 1 and provides a recursive representation for the
optimal investment policy in terms of the anticipated portfolio gains, ft = Et[W ∗

T ] −WtR
T−t.

The proof is similarly based on deriving the Bellman equation in discrete-time. Not surprisingly
though, since the anticipated gains process cannot be represented in differential form in discrete-
time, the optimal policy is characterized not in terms of partial derivatives of f , but in terms of
its time-t conditional covariance with one-period stock returns.

Proposition 5. The optimal stock investment policy of a dynamic mean-variance optimizer in
discrete-time is given by

θ∗t =
µt − r

γσ2
t

R−(T−∆t−t) − covt(∆St/St,∆ft)
σ2

t ∆t
R−(T−∆t−t), (50)

where process ft represents the expected total gains or losses from the stock investment and is
given by

f(St, Xt, t) = Et

[
T−∆t∑
s=t

θ∗s(µs − r)R(T−∆t−s)∆t

]
, (51)

R = (1 + r∆t)1/∆t and t = 0,∆t, ..., T −∆t.

The discrete-time optimal investment policy has the same structure as in Proposition 1 and is
given by myopic and hedging demands. The absence of a discrete-time version of the Feynman-
Kac formula, however, does not allow us to characterize the optimal policy entirely in terms
of the exogenous model parameters, as in Proposition 2. Nevertheless, expression (50) can be
used to obtain an explicit representation for the optimal policy for specific applications either by
solving (50) backwards or by guessing the structure of the solution.

To illustrate an application of Proposition 5, we solve the discrete-time versions of the models
of Sections 3.2–3.3. Specifically, the discrete-time dynamics of the stock price and state variable
for the stochastic-volatility model are specified as follows:

∆St

St
= (r + δX

(1+β)/2β
t )∆t+X

1/2β
t ∆wt, (52)

∆Xt = λ(X̄ −Xt)∆t+ ν̄
√
Xt∆wXt, (53)

where β 6= 0 and λ > 0. In discrete time, there is a probability that Xt hits the zero-boundary
even with a non-explosive process. To exclude this, we assume that either the interval ∆t is so
small that this event has negligible probability or the distribution function of ∆wt and ∆wXt is
truncated in such a way that it never happens. To obtain the optimal investment policy explicitly,
we first conjecture that the solution has the form θ∗t = g(t)X(β−1)/2β

t R−(T−∆t−t), where g(t) is a
deterministic function. Substituting this expression into the recursive representation (50) gives
a recursive equation for the function g(t) that can be solved explicitly.

The discrete-time dynamics of the stock price and state variable for the time-varying Gaussian
mean returns model are given by:

∆St

St
= (r + σXt)∆t+ σ∆wt, (54)
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∆Xt = λ(X̄ −Xt)∆t+ ν∆wXt, (55)

where λ > 0. Campbell and Viceira (1999) consider a discrete-time version of these dynamics
and derive optimal policies under recursive utility by employing log-linear approximations. To
obtain an explicit solution we conjecture that it has the form θ∗t = Xt/γσ− (g1(t)+g2(t)Xt)/γσ,
where g1(t) and g2(t) are deterministic functions. Substituting θ∗t into representation (50), as
in the previous case, we obtain recursive equations for g1(t) and g2(t) which we solve explicitly.
Corollary 4 reports the results.

Corollary 4. The optimal investment policy for the discrete-time stochastic-volatility model
(52)–(53) is given by

θ∗t =
δ

γ
X

(β−1)/2β
t R−(T−∆t−t) − ρν̄δ

1− (1− (λ+ ρν̄δ)∆t)(T−∆t−t)/∆t

λ+ ρν̄δ

δ

γ
X

(β−1)/2β
t R−(T−∆t−t),

(56)
and for the discrete-time model with Gaussian mean-returns (54)–(55) is given by

θ∗t =
Xt

γσ
R−(T−∆t−t) − g1(t) + g2(t)Xt

γσ
R−(T−∆t−t), (57)

where

g1(t) = (A+B)
(
1− [(1− λ∆t)(1− ρν∆t)](T−∆t−t)/∆t

)
−B

(
1− [(1− λ∆t)2(1− 2ρν∆t)](T−∆t−t)/∆t

)
,

g2(t) =
(
1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)

1− (1− λ∆t)2(1− 2ρν∆t)

)(
1− [(1− λ∆t)2(1− 2ρν∆t)](T−∆t−t)/∆t

)
,

and A and B are constants, explicitly reported in the Appendix.

It can be verified that as time interval ∆t approaches zero, the discrete-time policies converge
to the continuous-time ones reported in Corollaries 2 and 3. As a result, the comparative statics
for (56) and (57) are similar to those in the continuous-time case. We note that in deriving
expressions (56) and (57), we do not assume normality of the stochastic processes w and wX , as
in continuous-time.

4.2. Multiple Stock Formulation

We now generalize the baseline analysis of Section 2 with a single stock and state variable to
the case of multiple stocks and state variables. Specifically, uncertainty is generated by two
multi-dimensional Brownian motions w = (w1, ..., wN)> and wX = (wX1, ..., wXK)> with N ×K

correlation matrix ρ, where each element of the matrix ρ = {ρnm} represents the correlation
between the Brownian motions wn and wXm. An investor trades in a riskless bond with a
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constant interest rate r and N risky stocks, and so the market is again potentially incomplete.
The stock prices, S = (S1, ..., SN)>, follow the dynamics

dSit

Sit
= µi(St, Xt, t)dt+ σi(St, Xt, t)>dwt, i = 1, ..., N,

where µi and σi are deterministic functions of S and K state variables, X = (X1, ..., XK)>, which
satisfy

dXjt = mj(Xt, t)dt+ νj(Xt, t)>dwXt, j = 1, ...,K.

We let µ ≡ (µ1, ..., µN)> denote the vector of stock mean returns and σ ≡ (σ1, ..., σN)> the
volatility matrix, assumed invertible, with each component σ = {σin} capturing the covariance
between the stock return and Brownian motion wn. Similarly, m ≡ (m1, ...,mK)> and ν ≡
(ν1, ..., νK)> will denote the mean growth and the volatility matrix of the sate variables X,
respectively. The investor’s wealth follows

dWt = [rWt + θ>t (µt − r)]dt+ θ>t σtdwt, (58)

where θt = (θ1t, ..., θNt)> denotes the vector of dollar investments in the N stocks at time t.

The dynamic optimization problem of the investor is as in Section 2. For each time t ∈ [0, T ],
she maximizes the time-t objective function (6) subject to the dynamic budget constraint (58).
As in Section 2, the optimal policy is characterized in terms of the anticipated portfolio gains,
f , and arises from the HJB equation adjusted for time-inconsistency. Proposition 6 generalizes
Proposition 2 and reports the optimal investment and anticipated gains in terms of the model
parameters and the hedge-neutral measure.

Proposition 6. The optimal investment policy in the multiple-stock economy is given by

θ∗t =
1
γ

(σtσ
>
t )−1(µt − r)e−r(T−t) −

(
ISt

∂ft

∂S>t
+ (νtρ

>σ−1
t )>

∂ft

∂X>
t

)
e−r(T−t), (59)

where ISt is a diagonal N×N matrix with S1t, ..., SNt on the main diagonal, ∂ft/∂St and ∂ft/∂Xt

denote the row-vectors of partial derivatives with respect to relevant variables. The anticipated
portfolio gains, f , can be represented as

f(St, Xt, t) = E∗
t

[ ∫ T

t

1
γ

(µs − r)>(σsσ
>
s )−1(µs − r)ds

]
,

where E∗
t [·] denotes the expectation under the unique hedge-neutral measure P ∗ on which are

defined N -dimensional Brownian motion w∗ and K-dimensional Brownian motion w∗X with cor-
relation ρ, given by

dw∗t = dwt + σ−1
t (µt − r)dt, dw∗Xt = dwXt + ρ>σ−1

t (µt − r)dt,

and measure P ∗ is defined by the Radon-Nikodym derivative

dP ∗

dP
= e−

1
2

∫ T

0
(µs−r)>(σsσ>s )−1(µs−r)ds−

∫ T

0
(σ−1

s (µs−r))>dws .
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The optimal investment policy (59) is given by myopic and intertemporal hedging terms,
retaining the structure of the single-stock case. It can again be shown that the hedging demands
can be expressed in terms of the covariance of stock returns and anticipated portfolio gains.
Proposition 6 also identifies the effect of cross-correlations on the optimal investment and reveals
that the hedging term for one stock depends on the correlations of other stocks with the state
variables. The optimal investment expression also allows for some simple comparative statics
with respect to the risk aversion parameter, interest rate and stock volatility matrix with similar
implications to those in Section 2. We can also obtain expressions for optimal terminal wealth,
its moments and the value function of the mean-variance optimizer and identify the effect of
market incompleteness, as in Section 2.3.

4.3. Stochastic Interest Rates

In this Section, we incorporate stochastic interest rates into our analysis and demonstrate that
the optimal policies can explicitly be computed as in the baseline model of Section 2. Specifically,
we consider an incomplete-market economy with an additional source of uncertainty generated
by a Brownian motion wr that is correlated with Brownian motions w and wX with correlations
ρrS and ρrX , respectively. The locally riskless bond now has a stochastic interest rate r that
follows the dynamics

drt = µr(Xt, rt, t)dt+ σr(Xt, rt, t)dwrt, (60)

where µr and σr are deterministic functions of X and r. Furthermore, we allow the stock price
and state variable parameters µ, σ, m and ν to additionally depend on the interest rate r.

In our analysis we take the bond as the numeraire so that all relevant quantities are in

terms of the bond price Bt = B0e
∫ t

0
rsds, as is common in various problems in finance. To

facilitate tractability, we employ the mean-variance criterion over terminal wealth in units of this
numeraire, which allows us to adopt our earlier solution method and characterize the optimal
policy in units of the numeraire, that is, θ̃t ≡ θ∗t /Bt.17 Proposition 7 reports our results.

Proposition 7. The optimal investment policy in the economy with stochastic interest rates is
given by

θ̃t =
µt − rt
γσ2

t

−
(
St
∂ft

∂St
+
ρνt

σt

∂ft

∂Xt
+
ρrSσrt

σt

∂ft

∂rt

)
, (61)

where ft is as in Proposition 2, but with r following (60).

The optimal policy (61) has the same structure as the baseline case. The main difference is
that the hedging term now additionally accounts for the interest rate fluctuations by incorporating
the sensitivity of anticipated portfolio gains (f) to interest rates. As in Section 3, the optimal

17Otherwise, if the mean-variance criterion is over WT and the interest rate is stochastic, in contrast to Lemma
1 the value function is not separable in Wt and the policy θ∗t is no longer independent of Wt, which makes the
problem intractable.
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policies may explicitly be computed for various stochastic investment opportunities. We consider
a simple application where all the fluctuations in the investment opportunities are driven by the
stochastic interest rate r. In particular, the stock price follows a geometric Brownian motion with
constant parameters µ and σ, while the interest rate follows a Vasicek model (Vasicek, 1977)

drt = λr(r̄ − rt)dt+ σrdwrt. (62)

Along the lines of Corollaries 1–3, it can be demonstrated that the optimal policy is given by

θ̃t =
µ− rt
γσ2

− ρrSσr

γσ

(
λr

(1− e−(λr−ρrSσr/σ)(T−t)

λr − ρrSσr/σ

)2µ− r̄

σ
+

1− e−2(λr−ρrSσr/σ)(T−t)

λr − ρrSσr/σ

µ− rt
σ

)
.

This policy is comparable to that of the case of time-varying Gaussian mean-returns (48) in
Section 3.3, but now additionally allows us to consider comparative statics with respect to the
parameters of the interest rate dynamics (62).

5. Conclusion

Despite the popularity of the mean-variance criteria in multi-period problems in finance, little is
known about the dynamically optimal mean-variance portfolio policies. This work makes a step
in this direction by providing a fully analytical characterization of the optimal mean-variance
policies within a familiar, dynamic, incomplete-market setting. The optimal mean-variance dy-
namic portfolios are shown to have a simple, intuitive and tractable structure. The solution is
obtained via dynamic programming and is facilitated by deriving a recursive formulation for the
mean-variance criteria, accounting for its time-inconsistency. We also identify a “hedge-neutral”
measure that absorbs intertemporal hedging demands and allows explicit computation of optimal
portfolios in a straightforward way for various stochastic environments. Given the tractability
offered by our analysis, we believe that our results are well suited for various applications in finan-
cial economics. In concurrent work, we investigate the hedging strategies of non-replicable claims
in incomplete markets according to the minimum-variance criterion – the related “mean-variance
hedging” literature has had limited success in providing explicit solutions to this problem. We
also foresee potential applications in security pricing with incomplete markets, for which the
investor preferences are to be accounted for.
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Appendix: Proofs

Proof of Lemma 1. The HJB equation in differential form (12) follows from equation (9)
when the decision making interval, τ , tends to zero. To derive the terminal condition for JT ,
we note that varT [WT ] = 0 and ET [WT ] = WT . The definition of the value function, JT , then
implies JT = WT .

To show that Wt does not affect θ∗t , using Itô’s Lemma we rewrite the budget constraint (3)
as

d(Wte
r(T−t)) = θt(µt − r)er(T−t)dt+ θtσte

r(T−t)dwt, (A.1)

integrate from t to T and substitute WT into the time-t objective function:

Et[WT ]− γ

2
vart[WT ] = Wte

r(T−t) + Et

[∫ T

t
θs(µs − r)er(T−s)ds

]

− γ

2
vart

[∫ T

t
θs(µs − r)er(T−s)ds+

∫ T

t
θsσse

r(T−s)dws

]
. (A.2)

It can be observed from (A.2) that the objective function is separable in Wte
r(T−t), and hence the

optimal policy θ∗s does not depend on Wt for s ≥ t. Since the investor solves for the investment
policy by backwards induction, θ∗s also does not depend on Ws for s > t. Due to the Markovian
nature of the economy, θ∗t depends only on St, Xt and t. The fact that the function ft depends
only on St, Xt and t follows from the expression for ft in terms of the optimal policy, given in
(11). The separability of the value function Jt from Wte

r(T−t) follows from (A.2). Q.E.D.

Proof of Proposition 1. To prove Proposition 1, it remains to derive the first order condition
for the problem (15). The objective function in (15) is quadratic and concave in θt, and so the
unique optimal policy solves the first order condition:

(µt − r)er(T−t) − γθ∗t σ
2
t e

2r(T−t) − γσt

(
σtSt

∂ft

∂St
+ ρνt

∂ft

∂Xt

)
er(T−t) = 0,

leading to the expression (16). Q.E.D.

Proof of Proposition 2. Under standard conditions, there exists a probability measure P ∗

under which the function ft admits the Feynman-Kac representation (21) (Karatzas and Shreve,
1991) and under this measure, the processes S and X satisfy the stochastic differential equations
(22). Comparing (22) with (1)–(2), we obtain that measure P ∗ transforms Brownian motions wt

and wXt into w∗t and w∗Xt satisfying (24).

We next find the Radon-Nikodym derivative dP ∗/dP . To apply Girsanov’s Theorem (Karatzas
and Shreve, 1991), we first decompose the Brownian motion wX as a sum of two uncorrelated
Brownian motions: dwXt = ρdwt +

√
1− ρ2dw̃t, where w̃t = (wXt − ρwt)/

√
1− ρ2. We observe

that in terms of dw̃t, the representations (24) can be rewritten as follows:

dw∗t = dwt +
µt − r

σt
dt, dw∗Xt = ρ

(
dwt +

µt − r

σt
dt

)
+
√

1− ρ2dw̃t.
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Since measure P ∗ affects only the first component of the two-dimensional Brownian motion
(wt, w̃t)>, the Radon-Nikodym derivative (25) obtains by Girsanov’s Theorem. Finally, substi-
tuting ft given by (23) into the recursive representation (16), we obtain (26). Q.E.D.

Proof of Proposition 3. First, we derive the terminal wealth expression. Substituting the
optimal policy θ∗t from (16) into (A.1) and rearranging terms we obtain

d(Wte
r(T−t)) = −dft +

µt − r

γσt
dwt +

√
1− ρ2νt

∂ft

∂Xt
dw̃t, (A.3)

where w̃t is defined in Proposition 3. Integrating (A.3) from t to T , we obtain (28). Since w̃t

and wt are uncorrelated, the variance of terminal wealth is given by

vart[W ∗
T ] = vart

[
1
γ

∫ T

t

µs − r

σs
dws

]
+ vart

[√
1− ρ2

∫ T

t
νs
∂fs

∂Xs
dw̃s

]
,

which leads to expression (29). The expressions for Et[W ∗
T ] and Jt are immediate.

We next prove assertions (i)–(iii). Property (i) follows from the wealth variance expression
(29). Since (µt − r)/σt is assumed to not depend on St, the first term in (29) does not depend
on the correlation ρ. The second term is strictly positive in incomplete markets and vanishes
in complete markets, ρ2 = 1, and hence the assertion. To prove property (ii) we compute the
derivative of ft with respect to correlation ρ in terms of the hedging demand. Since (µt − r)/σt

depends only on Xt, ft in (23) also depends only on Xt. As a result, the PDE (20) for ft becomes:

∂ft

∂t
+
(
mt − ρνt

µt − r

σt

)
∂ft

∂Xt
+
ν2

t

2
∂2ft

∂X2
t

+
1
γ

(
µt − r

σt

)2

= 0, (A.4)

with fT = 0. Differentiating (A.4) with respect to ρ and denoting f̃t ≡ ∂ft/∂ρ, we obtain the
equation for f̃t:

∂f̃t

∂t
+
(
mt − ρνt

µt − r

σt

)
∂f̃t

∂Xt
+
ν2

t

2
∂2f̃t

∂X2
t

− νt
µt − r

σt

∂ft

∂Xt
= 0, (A.5)

where f̃T = 0. Applying the Feynman-Kac Theorem to equation (A.5), using the expression (18)
for θHt and the fact that ft does not depend on St we obtain:

∂ft

∂ρ
=

1
ρ
E∗

t

[∫ T

t
θHs(µs − r)er(T−s)ds

]
.

As a result, if θHs > 0 for s ∈ [t, T ], function ft is increasing (decreasing) in ρ when ρ is positive
(negative). This is equivalent to saying that ft is increasing in ρ2. Conversely, if θHs < 0 for
s ∈ [t, T ], ft is decreasing in ρ2.

The proof of Assertion (iii) follows from (i) and (ii). If the hedging demand is positive over
the horizon, the expected terminal wealth is lower in incomplete markets, while the variance is
higher. As a result, the value function is unambiguously lower in this case. Q.E.D.
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Proof of Proposition 4. The optimal pre-commitment terminal wealth ŴT solves the first
order condition

1− γŴT + γE0[ŴT ]− ψξT = 0, (A.6)

where ψ is the Lagrange multiplier of the static budget constraint (34). Taking time-zero expec-
tation on both sides of (A.6) yields ψ = 1/E0[ξT ], or ψ = erT , since E0[ξT erT ] = 1. Substituting
ψ back into (A.6) we obtain

ŴT =
1
γ

(
1 + γE0[ŴT ]− ξT e

rT
)
. (A.7)

(A.7) substituted into the static budget constraint (34) leads to γE0[ŴT ] = γW0e
rT − 1 +

E0[ξ2T ]e2rT , which along with (A.7) yields the optimal terminal wealth (35).

With a constant market price of risk, (µ− r)/σ, E0[ξ2T ] = e−2rT+(µ−r
σ

)2T leading to (36). To
compute the pre-commitment investment policy, θ̂t, we first consider the optimal time-t wealth:

Ŵt = Et

[
ξT
ξt
ŴT

]
= a(t)− 1

γ
e−(2r−(µ−r)2/σ2)(T−t)erT ξt, (A.8)

where the second equality follows by substituting ŴT from (36) and evaluating the moments
of ξT , and a(t) is a deterministic function of time. Applying Itô’s Lemma to (A.8) and using
dξt = −ξt[rdt+ (µ− r)/σdwt] yields:

dŴt = (a′(t)− b(t)ξt)dt+
µ− r

γσ
e−(2r−(µ−r)2/σ2)(T−t)erT ξtdwt,

where b(t) is a time-deterministic function. Matching the coefficients with the dynamic budget
constraint (3) yields θ̂t in (37). Q.E.D.

Proof of Corollary 1. In the case of a complete market, measure P ∗ coincides with the risk-
neutral one. To compute the optimal investment policy from Proposition 2, we need to evaluate
the expected squared market price of risk, E∗

t [(µs−r)2/σ2
s ], under the risk-neutral measure. Since

the squared market price of risk in the CEV model is (µ − r)2/(σ̄2Sα
t ), we need to determine

g(t, s) ≡ E∗
t [S−α

s ] for s > t. By Itô’s Lemma, the process for S−α
t under the risk-neutral measure

satisfies:

dS−α
t =

(
−αrS−α

t +
α(1 + α)σ̄2

2

)
dt− ασ̄S−α

t dw∗t . (A.9)

Integrating (A.9) from t to s and taking the time-t expectation under the risk-neutral measure
on both sides, we obtain the equation for g(t, s):

g(t, s) = S−α
t −

∫ s

t

(
αrg(t, y)− α(1 + α)σ̄2

2

)
dy. (A.10)

Differentiating (A.10) with respect to s yields the linear differential equation

∂g(t, s)
∂s

= −αrg(t, s) +
α(1 + α)σ̄2

2
, (A.11)
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with initial condition g(t, t) = S−α
t . The unique solution to equation (A.11) is given by

g(t, s) = S−α
t e−αr(s−t) + (1 + α)σ̄2 1− e−αr(s−t)

2r
. (A.12)

Substitution of (A.12) into the optimal investment policy (26) leads to the θ∗t reported in Corollary
1. We also note that the process for the market price of risk is explosive for α ≤ −1 since the
conditional expectation (A.12) is unbounded for large horizons. For −1 < α < 0, the conditional
expectation (A.12) is not well-defined since it may become negative for large investment horizons,
implying that the process hits the zero-boundary with a positive probability.

Property (i) is immediate from the expression for the optimal investment policy (42). Property
(ii) follows from (42) and the fact that the hedging demand is negative for α < 0. Finally, property
(iii) obtains since the product of exponents in (42) tends to zero (negative infinity) with increasing
horizon for α > −1 (< −1). Q.E.D.

Proof of Corollary 2. Since the squared market price of risk is equal to δ2Xt, finding θ∗t
amounts to evaluating E∗

t [Xs]. It follows from (22) that the state variable under measure P ∗

follows the process

dXt = (λ+ ρν̄δ)
( λX̄

λ+ ρν̄δ
−Xt

)
dt+ ν̄

√
Xtdw

∗
Xt,

for which the conditional moments are well-known (e.g., Cox, Ingersoll and Ross, 1985), yielding

E∗
t [Xs] =

λX̄

λ+ ρν̄δ
+
(
Xt −

λX̄

λ+ ρν̄δ

)
e−(λ+ρν̄δ)(s−t). (A.13)

Substituting (A.13) into (26) yields the desired result.

Assertion (i) follows from the fact that (1− e−(λ+ρν̄δ)(T−t))/(λ+ ρν̄δ) is always positive. As
a result, the sign of the hedging demand (second term in (45)) depends only on the correlation.
Assertion (ii) for the case of ρ < 0 is immediate from the fact that the hedging demand is positive
in this case. For ρ > 0, it follows from the fact that ρν̄δ(1 − e−(λ+ρν̄δ)(T−t))/(λ + ρν̄δ) is less
than unity. Property (iii) follows directly from the properties of function X(β−1)/β . Assertion
(iv) obtains due to the fact that the product of exponents in the hedging term tends to zero
(infinity) with increasing horizon for λ+ ρν̄δ > −r (< −r).

Turning to property (v), we first prove that ft decreases in correlation ρ. Since ft =
δ2
∫ T
t E∗

t [Xs]ds, it remains to show that E∗
t [Xs] decreases in ρ. We observe that by virtue of

(A.13), E∗
t [Xs] =

∫ s
t e

−(λ+ρν̄δ)(y−t)dy+Xte
−(λ+ρν̄δ)(s−t), which is clearly decreasing in correlation

ρ. Similarly, using Proposition 3, it can be shown that the variance of terminal wealth can be
represented as vart[W ∗

T ] = (1−ρ2)G(ρ), where G(ρ) ≡ Et[
∫ T
t ν̄2Xs(∂fs/∂Xs)2ds] is a positive de-

creasing function of ρ. Clearly, the minimum is attained in a complete market with ρ2 = 1. The
first order condition for finding the ρ∗ at which vart[W ∗

T ] is maximized is 2ρG(ρ) = (1−ρ2)G′(ρ).
Since the right-hand-side is negative and G(ρ) is positive, the first order condition can only be
satisfied for ρ∗ < 0. Q.E.D.
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Proof of Corollary 3. Since the squared market price of risk is X2
t , finding the optimal

investment policy amounts to computing E∗
t [X2

s ], which is well-known (e.g., Vasicek, 1977):

E∗
t [X2

s ] =
( λX̄

λ+ ρν
+
(
Xt −

λX̄

λ+ ρν

)
e−(λ+ρν)(s−t)

)2
+ ν2 1− e−2(λ+ρν)(s−t)

2(λ+ ρν)
. (A.14)

Substituting (A.14) into (26) yields the reported result.

Property (i) follows from the fact that since the unconditional expectation of the state vari-
able, X̄, is assumed positive, the sign of the mean hedging demand depends only on the sign of
the correlation ρ. To show property (ii), we observe that the optimal investment policy can be
rewritten as follows:

θ∗t =
(
1− ρν

1− e−2(λ+ρν)(T−t)

λ+ ρν

)Xt

γσ
e−r(T−t) − ρνλ

γσ

(1− e−(λ+ρν)(T−t)

λ+ ρν

)2
X̄e−r(T−t).

Similarly to the proof of Corollary 2(ii), it can be shown that 1−ρν(1− e−2(λ+ρν)(T−t))/(λ+ ρν)
is positive, which then implies that θ∗t is increasing in the market price of risk Xt. Q.E.D.

Proof of Proposition 5. The proof is similar to the proof of Proposition 1. The first step
is to derive the Bellman equation adjusted for time-inconsistency in terms of anticipated gains,
f . The second step is to derive the first order condition for the strategy θ∗t . In discrete time,
however, the explicit representation for the process for ft is not available. As a result, the optimal
strategy is in terms of covt(∆St/St,∆ft). Q.E.D.

Proof of Corollary 4. The first step is to obtain the anticipated gains process f . Substituting
the conjecture θ∗t = g(t)X(β−1)/2β

t R−(T−∆t−t) for the stochastic-volatility model (52)–(53) into
the expression for ft (51), we obtain:

ft = Et

[T−∆t∑
s=t

δXsg(s)∆t
]
. (A.15)

To compute Et[Xs], we take expectations of both sides of the state variable process, (53), and
obtain a difference equation for Et[Xs]:

Et[Xs+∆t] = λX̄∆t+ (1− λ∆t)Et[Xs], (A.16)

with initial condition Et[Xt] = Xt. The unique solution to equation (A.16) is

Et[Xs] = (Xt − X̄)(1− λ∆t)(s−t)/∆t + X̄. (A.17)

Substituting (A.17) into (A.15) yields:

ft = d(t) + δXt

T−∆t∑
s=t

g(s)(1− λ∆t)(s−t)/∆t∆t, (A.18)
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where d(t) denotes a time-deterministic function. Using (A.18), we compute ∆ft and substitute
it into the recursive expression for the optimal strategy (50). Taking into account the conjecture
for θ∗t , after some algebra we obtain a recursive equation for g(t):

g(t) = δ/γ − ρν̄δ
T−∆t∑

s=t+∆t

g(s)(1− λ∆t)(s−∆t−t)/∆t∆t. (A.19)

Evaluating (A.19) at time t −∆t and then subtracting it from (A.19), we obtain the following
forward difference equation for g(t): g(t−∆t) = λδ∆t/γ+(1− (λ+ ρν̄δ∆t)g(t)) , with condition
g(T −∆t) = δ/γ. The explicit solution to this equation is

g(t) =
δ

γ
− ρν̄δ

1− (1− (λ+ ρν̄δ)∆t)T−∆t−t

λ+ ρν̄δ

δ

γ
,

which then yields the reported result.

For the case of Gaussian mean-returns dynamics (54)–(55), we first obtain ft by substituting
our conjecture θ∗t = Xt/γσ − (g1(t) + g2(t)Xt)/γσ into (51). Then, substituting ft into (50)
we obtain recursive equations for g1(t) and g2(t). Solving them as in the previous stochastic-
volatility case we obtain g1(t) and g2(t), as reported in Corollary 4, with constants A and B

explicitly given by

A =
ρν(1− λ∆t)(2X̄ − ϕν2λ∆t

√
∆t)∆t

1− (1− λ∆t)(1− ρν∆t)
− ϕν2λ∆t

√
∆t

−
(
1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)

1− (1− λ∆t)2(1− 2ρν∆t)

)(
X̄ − ϕν

√
∆t

2ρ
+
ρν(1− λ∆t)(X̄ + ϕν

√
∆t/2ρ)∆t

1− (1− λ∆t)(1− ρν∆t)

)
,

B =
( ρν(1− λ∆t)(X̄ + ϕν

√
∆t/2ρ)∆t

(1− λ∆t)2(1− 2ρν∆t)− (1− λ∆t)(1− ρν∆t)

+X̄ − ϕν
√

∆t
2ρ

)(
1− (1− (1− λ∆t)2)(1 + 2ρνλ∆t)

1− (1− λ∆t)2(1− 2ρν∆t)

)
,

where ϕ = cov(∆w,∆w2
X).18 Q.E.D.

Proof of Proposition 6. The proof is a multi-dimensional version of the proofs for Proposi-
tions 1–2. Q.E.D.

Proof of Proposition 7. The proof is similar to those of Propositions 1–2, but now accounting
for the mean-variance criterion being over WT /BT . As in the proof of Lemma 1, substituting
the integral representation for WT /BT into the criterion we show that θ̃t does not depend on
Wt/Bt. Then, as in Section 2 we obtain an HJB equation in terms of dft and d(Wt/Bt), where
ft ≡ Et[W ∗

T /BT ] −Wt/Bt, whose solution yields (61). Employing measure P ∗ it can be shown
that ft is the same as in Proposition 2, but now with stochastic rt. Q.E.D.

18It can easily be demonstrated that ϕ = 0 if ∆w and ∆wX are normally distributed.
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