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Abstract

Background: Muscle fascicle pennation angle (PA) is an important parameter related
to musculoskeletal functions, and ultrasound imaging has been widely used for
measuring PA, but manually and frame by frame in most cases. We have earlier
reported an automatic method to estimate aponeurosis orientation based on Gabor
transform and Revoting Hough Transform (RVHT).

Methods: In this paper, we proposed a method to estimate the overall orientation
of muscle fascicles in a region of interest, in order to complete computing the
orientation of the other side of the pennation angle, but the side found by RVHT.
The measurements for orientations of both fascicles and aponeurosis were
conducted in each frame of ultrasound images, and then the dynamic change of
pennation angle during muscle contraction was obtained automatically. The method
for fascicle orientation estimation was evaluated using synthetic images with
different noise levels and later on 500 ultrasound images of human gastrocnemius
muscles during isometric plantarflexion.

Results: The muscle fascicle orientations were also estimated manually by two
operators. From the results it’s found that the proposed automatic method
demonstrated a comparable performance to the manual method.

Conclusions: With the proposed methods, ultrasound measurement for muscle
pennation angles can be more widely used for functional assessment of muscles.

Keywords: Ultrasound image, Pennation angle, Hough transform, Sonomyography,
SMG, Electromyography, EMG, Gastrocnemius muscle, Orientation

Background
Muscle fascicle pennation angle (PA), muscle thickness (MT) and fiber length (FL) and

their dynamic changes during muscle contraction have become important measures for

skeletal muscle studies using ultrasound, for example [1-5]. The change of PA and FL

over the time can form signals, representing architectural muscle behavior under contrac-

tion, similar to the change of MT, which has been defined as sonomyography (SMG) [6].

SMG can provide muscle functional information complementary to electromyography

(EMG) and torque signals [7,8]. In previous studies, pennation angles were convention-

ally detected manually in ultrasound images of muscles, for example [2,9-11], and this

greatly affects the wider applications of this parameter, particularly for the study of dy-

namic muscle contraction [12-14].
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Recently, a number of studies have been reported for the automatic estimation of

muscle fascicle orientation and pennation angle using revoting Hough transform

(RVHT) [15,16], Radon transform [17,18] or features-separability filtering [19].

However, these proposed methods could only provide the orientation of aponeuroses

or some individual fascicles in ultrasound images with quality contrast. During muscle

contraction, the fascicles may not only change in orientation and length, but also their

contrasts in ultrasound images, and this makes the orientation estimation of individual

fascicles not so reliable using the above methods. For a typical ultrasound image of

muscle, such as the gastrocnemius muscle as shown in Figure 1, the process of estimat-

ing the pennation angle involves the measurement of orientations of the aponeuroses

and the fascicle region between aponeuroses. The aim of this study is to use RVHT to

estimate the aponeurosis orientation and to use the dominant texture orientation of the

fascicle region to represent the fascicle orientation. Note that in estimation of the fas-

cicle orientation, the information from a region rather than several individual fascicles

are employed. Then the pennation angle is estimated as the difference between orienta-

tion of the fascicle and the deep aponeurosis. Since the measurement is automatic, it

can be used to measure the pennation angle in each ultrasound image collected during

muscle contraction.
Methods
Estimation of deep aponeurosis orientation

The estimation of the deep aponeurosis orientation (O2 in Figure 1) was based on the

methods that we have reported earlier, which included using Gabor filtering to enhance

ultrasound images and RVHT to estimate the orientation [15,16]. This process was

repeated for each frame of ultrasound images, and the orientation change was recorded

using RVHT method [15,16].
Estimation of dominant fascicle orientation of selected region

To compute the dominant orientation of the selected region of fascicle in ultrasound

images, such as the O1 region shown in Figure 1, the local orientation field was

acquired in a multi-step process for each pixel. The original region, I i; jð Þ, was first
Figure 1 Typical sonogram of the medial gastrocnemius muscle.
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smoothed with a Gaussian filter. Then at each pixel, the gradients, @x i; jð Þand@y i; jð Þ,
were computed and then the primary local orientation for each pixel was computed

using Rao’s scheme [20]:
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where θ i; jð Þ is the least square estimation of the orientation at pixel i; jð Þ and w x w

defined its neighborhood area involved.

The reliability coefficient of the orientation field [20] was measured by
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where Γ is a small neighboring region of the pixel i; jð Þ, and its size is related to the local

frequency of strongly oriented patterns. The reliability coefficient here is a number be-

tween 0 and 1, and its two extremities, 0 and 1, correspond to the isotropic region and

the strongly oriented pattern, respectively. To estimate the dominant orientation of the

selected region, we used the median value of the orientations for each pixel in the re-

gion, as long as its reliability coefficient was larger than an empirically pre-defined

threshold, 0.6 in this paper. The fascicle pennation angle was computed as the differ-

ence between the dominant orientation of the selected fascicle region O1 and the deep

aponeurosis orientation O2.

Estimation of the dynamic changes of pennation angle

In the first image of a series of ultrasound images collected during muscle contraction,

the interested fascicle region was manually selected and its orientation was calculated

based on the proposed method. Meanwhile, the orientation and location of the inter-

ested deep aponeurosis were detected, with visual verification. The procedure for pro-

cessing the 1st frame and calculating the pennation angle is described in Figure 2a.

Since the location and orientation of the deep aponeurosis would change little during

the contraction, its change between two frames was confined within a certain range.

This helps to track consistently the same aponeurosis during the muscle contraction.

For the selected fascicle region, the dominant orientations at the same region of inter-

est in the subsequent frames were computed using the same procedures as those for

the first frame, as shown in Figure 2b. Thus, the dynamic changes of the pennation

angle could be automatically estimated frame by frame as the muscle contracts and

relaxes.



Figure 2 Procedures of estimating the pennation angles. (a) Procedure of estimating the pennation
angle in the first frame of the ultrasound image sequence and (b) Procedure of estimating the pennation
angle in the subsequent frames following the first frame.
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Results
Evaluation of the texture dominant orientation method using synthetic images

All codes used in this section were written in Matlab. The method was first evaluated

using a set of synthetic images with different levels of noises. The image was constructed

to simulate a region of muscle fascicle by first constructing an image with only horizon-

tally parallel patterns and each column of which was a sinusoid waveform in gray level

with peak and valley of 250 and 125 (in a range between 0 to 255) respectively, then pat-

terns were rotated by 18.4 degrees (arctangent of 1/3). After rotation, different levels of

noises were imposed onto them using Matlab function “imnoise”. The noise had a mean

of 0 and normalized variance from 0% to 100%. To reduce errors caused by the

digitization operations in synthetic image generation, the synthetic images were rotated

by −18.4 degrees (− arctangent of 1/3) and the orientation were then estimated using

the proposed method and compared to the altered ground truth of 0°. Figure 3a to 3c

show typical synthetic images with different noise levels, with the normalized variance

of 0%, 50% and 100%. The error of estimated results in comparison with the actual value

was shown in Figure 3d. The results indicated that the proposed orientation method

was robust for a noise level smaller than 30%. As the increase of the noise level from

50% to 100%, the estimation error was relatively stable, though there was a small vari-

ance of within +/− 5 degrees in comparison with the actual value.
Evaluation of the automatic estimation method for continuous pennation angle changes

A dynamometer (Humac/Norm Testing and Rehabilitation System, Computer Sports

Medicine, Inc., Massachusetts, USA) was used to assist the subject to conduct the

designed contraction pattern of isometric plantarflexion. A real-time B-mode ultrasonic

scanner (EUB-8500, Hitachi Medical Corporation, Tokyo, Japan) with an electronic lin-

ear array probe (L53L, Hitachi Medical Corporation, Tokyo, Japan) was used to obtain

ultrasound images of muscles. The ultrasound probe was aligned perpendicularly to the

gastrocnemius muscle belly using a custom-designed foam container with fixing straps



Figure 3 Analysis of results on synthetic images. Analysis of results on synthetic images with different
noise levels, the actual orientation is arctangent of 1/3 (18.4 degrees), the arrows overlaid on (a-c) stand for
the orientations estimated. (a) Synthetic image, noise: mean= 0, normalized variance = 0%; (b) Synthetic
image, noise: mean= 0, normalized variance= 50%; (c) Synthetic image, noise: mean= 0, normalized
variance= 100%. (d) Errors of the estimated orientation compared to the actual value.
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and the long axis of the ultrasound probe was arranged parallel to the long axis of the

gastrocnemius muscle, and then a very generous amount of ultrasound gel was applied

to secure acoustic coupling between the probe and skin during the muscle contrac-

tions, as shown in Figure 4. The probe was adjusted to optimize the contrast of muscle

fascicles in ultrasound images. The B-mode ultrasound images were displayed in real

time and digitized by a video card (NI PCI-1411, National Instruments, Austin, USA)

at a rate of 25 frame/s for later analysis.

Surface EMG signals were collected from the gastrocnemius muscle using bipolar

Ag-AgCl electrodes (Axon System, Inc., NY, USA), amplified by a multiple channel

amplifier (RM6280 Multi-Channel Biosignal Collection and Processing System,

Chengdu Instrument Company, Chengdu, China), with a gain of 2000, filtered separ-

ately by 10–400 Hz, 5-100 Hz band-pass analog filters within the amplifier, and then

digitized by a 12-bit data acquisition card (NI-DAQ 6024E, National Instruments Cor-

poration, Austin, TX, USA) with a sampling rate of 1 kHz. Ultrasound image

sequences, surface EMG and torque signals were simultaneously collected and stored

by a custom-made program for ultrasonic measurement of motion and elasticity

(UMME, http://www.tups.org).

http://www.tups.org


Figure 4 The experimental setup. The experimental setup including the torque, EMG and ultrasound
image data collection modules.
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One young male subject (age 29, body weight 67Kg and height 172 cm) participated

in the test to demonstrate the feasibility of the method. Human subject ethical approval

was obtained from the relevant committee in the authors’ institution, and informed

consent was obtained from the subject prior to the experiment. The testing position of

the subject was in accordance with the Humac/Norm User’s Guide. The subject was

instructed to put forth his maximal effort of isometric plantarflexion for a period of 3 s

with verbal encouragement provided. The maximal voluntary contraction (MVC) was

defined as the highest value of torque recorded during the entire isometric contraction.

A rest of 5 min was allowed before the subject performing another MVC test. The

MVC torque was then calculated by averaging the two recorded highest torque values
Figure 5 Comparison of Fascicle orientations estimated using manual and automatic methods.
Fascicle orientations estimated manually by the two operators and the results using the proposed
automatic method. The x-axis is equivalent to 0–20 s in imaging time.
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from the two tests. The subject was instructed to generate a torque waveform in rough

sinusoid shape, up to 90% of his MVC, using ankle plantarflexion movements in prone

position.

The first frame of the collected ultrasound image sequence (500 frames) for the lateral

gastrocnemius in plantarflexion motion was shown in Figure 1, and the estimated changes

of orientation of fascicle region O1 using the proposed methods, denoted by ap, was

shown in Figure 5. To evaluate the automatic measurement results, the fascicle orienta-

tions in all the frames of ultrasound images were manually estimated by two operators,

who had the experiences in ultrasound imaging of muscles. Their estimations were

blinded from each other, and their results were denoted by aa1 and aa2 and shown in

Figure 5. It was observed that there were good correlations among the results obtained by

the two operators and estimated by the proposed automatic method. The Bland-Altman

plots [21] of the results showed that there was a good agreement between the results

obtained by the automatic method and the manual estimation (Figure 6a). It was also
Figure 6 The Bland-Altman plot. (a) The Bland-Altman plot of the mean fascicle orientations estimated
manually by the two operators, (aa1+ aa2)/2, and the results obtained using the proposed automatic
method, ap. (b) The Bland-Altman plot of the results obtained by the two operators. The bold horizontal
line represents the mean and the thin lines indicates the mean+ 1.96*SD and mean-1.96*SD levels. SD
represents standard deviation.



Zhou et al. BioMedical Engineering OnLine 2012, 11:63 Page 8 of 10
http://www.biomedical-engineering-online.com/content/11/1/63
found that the agreement between results obtained by the two operators was also good

(Figure 6b).

The pennation angle estimated using the automatic method was shown in Figure 7a

together with its smoothed version (Figure 7b) which was processed using a smoothing

algorithm proposed by Perona and Malik [22]. The corresponding torque signal and

the root mean square (RMS, 256-points) values of EMG signals were shown in

Figure 7c-d. The results showed that the signal about the pennation angle change well

represent the cyclic contraction of the muscle, and this new signal can be used for

functional assessment of muscles.
Discussion
In this study, we separated the process for automatic estimation of the pennation angle

into two steps, including the estimation of orientations of the deep aponeurosis and the

muscle fascicles in a selected representative region. The muscle pennation angle can be
Figure 7 Pennation angle along with the torque and EMG signals. (a) The signal about the pennation
angle (PA) estimated using the automatic method, (b) Smoothed signal of (a), (c) the torque signal
recorded, and (d) the EMG RMS signal.
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obtained using the difference between these two orientations. A procedure was pro-

posed for automatic measurement of pennation angle in a sequence of ultrasound

images of muscles. Using the synthetic images with fascicle-like patterns with various

noise levels, we demonstrated that the proposed fascicle orientation estimation method

is robust.

In the estimation of the dominant orientation of the fascicles in the selected region

of interested, we proposed to use the reliability of orientation field [20] to rule out con-

tributions from regions where the texture orientation is not reliable or in other words,

where the pattern appears more isotropic than oriented. The reliability coefficient

ranges from 0 to 1, with 0 representing an isotropic region and 1 representing a

strongly oriented pattern. When the reliability coefficient is smaller than a certain

threshold, the calculated orientation is regarded as not reliable and should be

neglected. In this study, we selected a threshold of 0.6, which was determined after

many trials. Whether this value is applicable for ultrasound images from different mus-

cles with different image qualities should be further investigated in the future.

It was noted that the original signal about the pennation angle changes detected

using the proposed method was not as smooth as the torque signal, but was similar to

the EMG RMS signal (Figure 7). This noisy feature was also observed in the pennation

angle changes detected manually (Figure 5). The reason for such “noises” overlapped

with the signals about the pennation angle changes was not clear, and future studies

are required to better understand whether such “noises” are caused by intrinsic proper-

ties of muscle during contraction or by calculation errors. We have also demonstrated

that the signal could be processed to become smoother. Using the original pennation

angle changes, we compared the results obtained by the automatic method and the

manual method, using the mean of the results obtained by the two operators. The

results showed a good agreement (Figure 6) between the results by the proposed auto-

matic method and the averaged manual estimation. Similar results have been reported

previously [17,23]. The automatic method proposed in this paper may help solve pro-

blems of subjectivity and inconsistency caused by the conventional manual measure-

ment, in addition to reduce the processing time.
Conclusions
In summary, we have successfully developed a method for automatic measurement of

muscle pennation angle in a series of ultrasound images of muscles. The preliminary

results demonstrated the measurement was reliable. Further studies are required to test

whether this new method is applicable for ultrasound images of different muscles

under different contractions. Since the pennation angle can be easily obtained automat-

ically using this new method, we think this important muscle parameter can be used

more widely for the functional assessment of muscles.
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