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e uniaxial cyclic loading tests have been conducted to study the mechanical behavior of dry and water saturated igneous rock
with acoustic emission (AE) monitoring. 
e igneous rock samples are dried, naturally immersed, and boiled to get specimens
with di�erent water contents for the testing. 
e mineral compositions and the microstructures of the dry and water saturated
igneous rock are also presented.
e dry specimens present higher strength, fewer strains, and rapid increase of AE count subjected
to the cyclic loading, which re�ects the hard and brittle behavior and strong burst proneness of igneous rock. 
e water saturated
specimens have lower peak strength, more accumulated strains, and increase of AE count during the cyclic loading.
e damage of
the igneous rocks with di�erent water contents has been identied by the Felicity Ratio Analysis. 
e cyclic loading and unloading
increase the dislocation between the mineral aggregates and the water-rock interactions further break the adhesion of the clay
minerals, which jointly promote the inner damage of the igneous rock. 
e results suggest that the groundwater can reduce the
burst proneness of the igneous rock but increase the potential support failure of the surrounding rock in igneous invading area. In
addition, the results inspire the fact that the water injection method is feasible for so�ening the igneous rock and for preventing
the dynamic disasters within the roadways and working faces located in the igneous intrusion area.

1. Introduction

Igneous intrusions that penetrate rock and coal strata are a
common geologic phenomenon [1–3]. In China, the whole
Permo-Carboniferous coal system was invaded by magma
from the south area to the north area. 
e cooling magma
can form hard igneous sill and dyke [4]. With the increasing
mining depth of coal mines, intrusive igneous rock is usually
found around roadways and in the overlying strata above
mining stopes [5]. In�uenced by the multiple human mining
activities and the natural shock and vibrations of earthquake,
the hard igneous rock would suddenly break, instantly releas-
ing a tremendous amount of elastic strain energy, which will
easily induce the occurrence of complex dynamic disasters,
such as rock bursts, water inrush, and gas outbursts [6–
10]. 
e dynamic disasters in coal mines caused by the
intrusive igneous rock impact the safety and productivity

of the coal mines. 
erefore, it is signicant to investigate
the deformation and failure characteristics of igneous rock
and further study burst risk assessment, monitoring, and
forecasting as well as burst control measures.

Cyclic loading and unloading tests with acoustic emission
monitoring are an e�ective approach to quantitatively mea-
suring deformation and damage characteristics of various
materials [11–20]. Sherif et al. [12] captured and analyzed AE
signals to characterize the crack formation and crack width
development in the cyclic loading processes. AE method
had been utilized to capture the fatigue crack growth of
concrete mortar under cyclic contact loading [14]. Chilali et
al. [15] studied the e�ect of water ageing on the mechanical
behavior of �ax bre-reinforced thermoplastic and ther-
mosetting composites using load-unload cyclic tests with
AE monitoring. 
e features of AE signals were found to
be very useful in classifying damage mechanisms of the
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material. In addition to the bre-reinforced composites and
metallic materials, the AE method also is applied to research
the mechanical behaviors of rock material. Browning et al.
[16] used cumulative AE hits and AE hits rate to evaluate
the onset and evolution of new crack damage caused by
inelastic processes in rocks under di�erent loading con-
ditions. Trippetta et al. [17] found that there is a certain
relation between the AE energy and the elastic moduli of
seismogenic Triassic Evaporites subjected to cyclic stressing.
Wang and Park [18] carried out cyclic loading tests on granite
samples and pointed out that the strain energy analysis is
necessary for the prediction of rock burst hazard before a
practical mining activity. Fan et al. [19] concluded that the
intervals of discontinuous cyclic loading strongly change the
mechanical response of the salt samples. 
e fatigue life and
the residual strain prior to the failure of the salt samples
can be veried by the acoustic emission (AE) activity. Yue
[20] proposed a tentative formula for predicting the level of
damage and the closeness to failure of a RC column on the
bases of AE monitoring technique. 
ey proved that that AE
technique is very e�ective for assessing the damage of RC
columns subjected to earth quake-type loadings. He et al. [21]
conducted a true-triaxial unloading test on limestone with
acoustic emissionmonitoring and researched the relationship
between the characteristics of rock burst and AE parameters.
Tan et al. [22] found that the AE characteristics can be
used to predict the rock burst tendency of the coal-rock
combination body. 
e Kaiser E�ect [23] and Felicity E�ect
[24] of rock were found and used to re�ect the damage and
failure characteristics of rock materials [25, 26]. Not just
in laboratory tests, the acoustic emission and microseismic
monitoring are also applied to detect faults/breaking signals
for both healthy evaluation and disaster control in mining
engineering [27–29].

In addition to the various loading actions, groundwa-
ter has signicant e�ect on the mechanical properties of
rock materials [30]. Coupling of water-rock interaction is
very complex, which has aroused extensive attention among
researchers. 
e water content is known as one of the most
notable factors for lowering the strength of rocks [31]. A
large number of studies [32–34] consistently show that the
water-rock interaction undermines the mechanical property
of rock, which ismainly found expressed in strength decrease,
the change of the deformation, and failure characteristics. Li
et al. [35] suggested that moisture content has a signicant
e�ect on shear properties reduction of both sandstone and
mudstone, which must be considered in mining or exca-
vation processes. Lei et al. [36] indicated that the drainage
conditions have clear e�ect on the mode of deformation of
porous rocks and the di�usion of pore pressure, which leads
to a signicant reduction in rock strength and stabilization of
the dynamic rupture process. Some researchers have revealed
that a small increase in water content may signicantly lower
the strength and sti�ness of rock [30, 37, 38]. Actually, the
surrounding igneous rock is commonly found immersed in
groundwater during the extraction of coal seams in Permo-
Carboniferous coal system. 
us, it is necessary to study
the in�uence of water-rock interaction on the mechanical
properties of igneous rock.


is paper presents the microstructures and mineral
compositions of the igneous rock rstly and then shows the
results of uniaxial compressive tests with incremental cyclic
loading and acoustic emission (AE) monitoring of the dry
and di�erent water saturated igneous rock specimens. 
e
stress-strain curves of the specimens are compared with each
other. 
e evolution of the accumulated AE count is shown
to be strongly dependent on the cycle number and water
saturation level, which is explained by the evolution of the
damage accumulation caused by coupled e�ect of water-rock
interaction and the incremental cyclic loading in the igneous
rock. Besides that, Felicity Ratio is discussed to reveal the
plastic deformation and stability of the igneous specimens
with di�erent water content.

2. Experimental Conditions and Methodology


e igneous rock samples were collected from the Tashan
coalmine in China.
e designed annual production capacity
of the mine is 15 million tons, which is one of the largest
coal mines in China. 
e coal seam being extracted in the
mine is the no. 3–5 coal seam, which is buried in Permo-
Carboniferous coal system. 
e thickness of the no. 3–5 coal

seam is as large as 20mand the layered igneous sill is 30.5 km2

overlaying the coal seam.
Firstly, the igneous rock was processed into rock slices to

identify its lithology. 
e X-ray di�raction and transmission
and scanning electron microscopic methods were used to
investigate the mineral components and microstructures of
the igneous rock. 
e instruments are shown in Figure 1.


en, the samples were processed into cylinders with
50mm in diameter and 100mm in length (Figure 2(a)). 
e
specimens were divided into three groups and each group has
three specimens. Under the guidance of the Code for Rock
Tests of Hydroelectric and Water Conservancy Engineering
(SL 264-2001) of China, the preliminary tests are conducted
and indicate that the water content of the dry igneous
rock specimens does not increase more than 8 days and 24
hours under natural temperature water and boiling water,
respectively. According to the above-mentioned procedures
the specimenswith di�erent water content (dry, natural water
saturated, and boiled water saturated) were obtained:

(1) Drying: the specimens (1#, 2#, and 3#) were dried 24
hours in an electric dry oven and the temperature was
set to 105∘C (Figure 2(b)).

(2) Natural temperature immersed saturated: the speci-
mens (4#, 5#, and 6#)were immersed 8 days in natural
temperature water (Figure 2(c)).

(3) Boiled saturated: the specimens (7#, 8#, and 9#)
were immersed 24 hours in boiling water and the
temperature is 100∘C (Figure 2(d)).

In this study, during the uniaxial compression strength
(UCS) test, the specimens were subjected to an incremen-
tal cyclic axial loading until failure using a conventional
mechanical rigid testingmachine.
e initial and lower limits
of the load applied on the specimens are �0 = 40 kN and
�min = 10 kN, respectively. 
e incremental load is set to
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(a) (b)

Figure 1: D8 Advance X-ray di�ractometer (a) and JSM-7001F Field Emission Transmission Electron Microscopy (b).

(a) (b) (c) (d)

Figure 2: Natural specimens (a), dry specimens (b), natural immersed saturated specimens (c), and boiled saturated specimens (d).
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Figure 3: Loading path. 
e initial load �0 = 40 kN, the lower limit
�
min
= 10 kN, and the incremental load Δ� = 40 kN.

Δ� = 40 kN. 
e loading-unloading velocities were both
0.002mm/s. 
e loading path shown in Figure 3 was applied
on each group of the specimens.
ree duplicate tests for each
group specimens were conducted to enhance the reliability of
the results.

To characterize the damage and its evolution of the
igneous rock,Micro-II digital AE system (Physical Acoustics,
NJ, USA) was employed to monitor the AEs in the specimens
under the cyclic compression. 
e two pairs of piezoelectric
receivers were xed on the sample surface at 1/4 and 3/4 to
orientate the AEs. 
e AE sampling frequency and threshold

were set to 1MHz and 40 dB, respectively. 
e test system is
shown in Figure 4.

3. Results and Discussion


e rock thin section, mineral components, and microstruc-
tures of the igneous rock are shown in Figures 5 and 6.
Water contents of the natural water saturated and boiled
water saturated specimens are calculated. 
en, the stress-
strain curves, residual strains, and accumulated residual
strains of specimens with di�erent water contents under
the incremental cyclic loading are described. Additionally,
the stress and AE count of specimens with di�erent water
contents during the cyclic loading are compared. Lastly,
the Felicity Ratios of the igneous rock in di�erent water
saturation states are analyzed. 
ose results are shown in the
following sections, respectively.

3.1. Lithology andMineral Components. 
e igneous rockwas
identied as lamprophyre based on the rock thin section (Fig-
ure 5(a)), which is mainly composed of dioritic porphyrite
and some clay minerals. Some microvoids can be found on
the surface of the rock samples and themagnied image (Fig-
ure 5(b)) shows that the microvoids extend to the interior of
the rock and thesemicrovoids provide the pathways forwater.
Figure 5(c) suggests that the lamprophyre mainly contains
the orthoclase, dolomite, pyroxmangite, bloedite, quartzite,
and some clayminerals.
e content of the orthoclase reaches
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5 cm 10 cm

(a)

(b) (c)

Figure 4: Scheme of the testing system. Micro-II digital AE system (a), position of AE sensors (b), andWAW-1000 conventional mechanical
rigid testing machine (c).

31.4%. 
e clay minerals interact with water and then so�en
the rock [39], such as the chlorite, kaolinite, montmoril-
lonite, and illite (Figure 5(d)). 
ese minerals are called
“water sensitive minerals.” Figures 6(a) and 6(b) unfold the
microstructures of lamprophyre in dry state. Some cracks are
found in the mineral aggregates. Figures 6(c) and 6(d) reveal
the microstructures of lamprophyre in water saturation state.
Figure 6(c) demonstrates that the aggregate of orthoclase is
usually surrounded by clay minerals. 
e alterations of the
clay minerals under the water-rock interaction improve the
extension of crack between orthoclase and clay minerals.

e water interactions nally result in the disintegration of
mineral aggregates, which is shown in Figure 6(d).

3.2. Water Content. 
e water content of the rock is calcu-
lated by the following equation:

�� =
�� − �0
�0
× 100, (1)

where �� is the water content of the rock,�� is the weight of
the saturated rock, and�0 is the weight of the dry rock.


e parameters to calculate the water contents of the
specimens in natural temperature immersed saturated and
boiled saturated state are shown inTables 1 and 2, respectively.
It is found that the average water contents of the natural tem-
perature immersed saturated and boiled saturated specimens
are 0.64% and 0.89%, respectively.

As shown in Figure 5, the tested hard brittle igneous
samples contain cleavage planes (Figure 5(a)) andmicrovoids

(Figure 5(b)). 
ese planes and voids provide channels for
water to enter the inside of rock. Besides that the brittle
igneous rock contains some water sensitive minerals [39],
such as montmorillonite, chlorite, and illite. 
e water chan-
nels and the water sensitiveminerals within the rock promote
the water-rock interaction and further increase the inner
damage of the igneous rock. 
e damage is basically divided
into three categories [39], themineral dissolution, expansion,
and disintegration. 
e dissolution and disintegration of
the bloedite and orthoclase promote the destruction of the
mineral aggregates in lamprophyre; the expansion of the
montmorillonite and illite result in the degradation of the
lamprophyre specimens. 
ese actions directly break the
structural integrity of the mineral aggregate in the rock. In
addition, the saturated rock has a higher pore water pressure
than the dry rock and the increase of the pore water pressure
leads to the decrease of the e�ective stress, which weakens the
elastic modulus and strength of the igneous rock.

3.3. Stress-Strain. Figure 7 shows the strain-stress curves of
specimens with di�erent water content from incremental
cyclic loading tests. In experiments, rectangular rosettes were
used to record the strain data and the 1# and 2# strain
gauges record the axial and lateral strain, respectively. 
e
comparisons of the axial strain and the loading andunloading
displacement for the tested specimens are shown in Figure 8.

ough there are some di�erences, the strain data basically
correspond to the loading and unloading displacement. 
e
cycle number in the tests decreases with increase of water
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Figure 5: SEM and thin section image of igneous rock sample showing the microstructure (a), (b) and the components analysis of the dry
igneous rock based on XRD pattern (c).

Table 1: Weight of specimens in natural temperature, immersed saturated, and dry state and their water content.

Specimen �01/g ��1/g ��1/% Average value/%

4# 522.27 524.76 0.48

0.645# 535.93 539.64 0.69

6# 530 534 0.76

Table 2: Weight of specimens in boiled saturated and dry state and their water content.

Specimen �02/g ��2/g ��2/% Average value/%

7# 529.16 533.25 0.77

0.898# 537.14 542.73 1.04

9# 536.71 541.32 0.86
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Figure 6: Typical microstructures of the mineral aggregates in lamprophyre.

content and the peak strength of the specimens also decreases
obviously. 
e average peak strength of the dry, the natural
water saturated, and the boiled water saturated specimens
are 162MPa, 128MPa, and 85.4MPa, respectively. 
e peak
strength of the boiled water saturated specimens is just 52.7%
of that of dry specimens. However, the higher the water
content a specimen has, the larger the strain the specimenwill
have under the same stress condition.Aplastic hysteresis loop
is formed for each cycle, and a�er each cycle there remains
a residual strain which increases from one cycle to another
meaning that the sample undergoes inelastic deformation
and damage during each cycle.


e di�erences between the residual strains (��) and
the accumulated strains (��) of the three groups of water
content specimens are plotted in Figure 9 with respect to
cycle number. Figure 9(a) indicates that the residual strains
(��) of the specimens in the two types of water saturated
states rapidly decrease at the beginning, and then the residual
strain (��) of the natural immersed specimens slowly reaches
its minimum value before failure, while the residual strain
(��) of the boiled saturated specimens increases again before
failure. As for the dry specimens, the residual strain decreases
slowly at the beginning, and then rapidly decreases at the
middle, and nally reaches the minimum value before fail-
ure. 
e residual strain in the rst cycle of the specimens
increases with the increase of the water content. As shown
in Figure 9(b), the accumulated residual strain increases
with increasing of loading cycles, and the rise speed is more
apparent when the specimen is in boiled saturated state.

Figure 9(b) also indicates that the accumulated residual strain
increases with increasing of water content, especially for
the boiled saturated specimen. 
e dry specimen shows its
hard brittle characteristic in the incremental cyclic loading
process. Figure 7 shows that the strength of the dry specimen
reaches 162MPa, while small amounts of residual strains
(Figure 9) are accumulated during the cyclic loading. Less
strains and high strength suggest the hardness and brittleness
of the igneous rock. Due to boiling, strength of igneous rock
with higher water content is reduced to 85.4MPa (52.7% of
the dry specimen); meanwhile, the double residual strains
are accumulated compared with the dry specimen.
e lower
strength and higher strains indicate that the hard brittle
characteristic of the igneous rock is weakened with the
increase of the water content. Some researchers reported that
the hard brittle rock has strong burst proneness [40], which is
an important reason of the dynamic disasters in geotechnical
engineering. From this aspect, the groundwater can reduce
the burst proneness of the igneous rock to some degree.
However, the stability of the surrounding rock in the igneous
invading area will be in�uenced by the groundwater, which
increases the support di�culty in the eld.

3.4. Stress and AE Parameters. AE monitoring has been
widely employed as an e�ective technology to research the
damage process of the rock materials [41]. As one of the AE
parameters, AE count directly re�ects the evolution of the
plastic failure in the rock [42]. AE energy is a kind of dened
energy, which is a parameter related to the amplitude and the
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Figure 7: Axial stress and strain curves of the di�erent water content samples from incremental cyclic loading tests.

amplitude distribution of the signals. 
e AE energy is the
area under the envelope of signal detection; it only has the
mathematical meaning, rather than the actual energy of the
acoustic emission signal. Nevertheless, the acoustic emission
energy is of great signicance for the fracture and damage
degree of materials. 
e cumulative AE energy refers to the
cumulative value of AE energy during a sound emission.
is
parameter describes the total intensity of acoustic emission
in the testing progress, which is the process parameter,
and is also the external performance of the change of the
internal structure of the material. 
e laws of the AE count,
cumulative AE energy, and the axial stress in function with
time can describe the fatigue feature of the rock subjected to
cyclic load. Figure 10 shows that the AE count and stress of
the tested three duplicates are basically same in each group.

e comparisons of AE count and accumulated AE energy
for three specimens with di�erent water contents are shown
in Figure 11. Figure 11(a) shows that the number of AEs slowly
increases in the former seven cycles, while it rapidly increases

in the eighth cycle; meanwhile, a large amount of cumulative
AE energy is concentrated in the peak stage of stress. 
ese
results indicate that the plastic failures of the dry igneous rock
suddenly occur at a high stress level and the stored energy
is suddenly released, which fully re�ects the hard and brittle
behavior and the strong burst proneness of the igneous rock.

erefore, more attention should be paid to the potential
dynamic disasters induced by the rock burst of the igneous
rock in the deep mining engineering. 
e AE features of
the water saturated igneous rock are signicantly di�erent
than the dry rock. Figure 11(b) shows that the numbers
of AEs of the natural water saturated specimen are more
concentrated in the former loading cycles.
e cumulativeAE
energy is stepwise increased and a relatively larger step of AE
accumulated energy is produced at a lower stress level during
the loading process. 
ese mean that the plastic failures of
the water saturated igneous rock are contiguously extended
and the igneous rock lost its burst proneness under the water-
rock interaction. 
e concentrated AE count in the former
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Figure 8: Direction and location of strain gauge. Strain data and loading and unloading displacement of di�erent water content specimens
with time.
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Figure 10: AE counts and stress of the tested specimens versus time.
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Figure 11: Comparison between the axial stress, cumulative AE energy, and AE counts with time of specimens with di�erent water content
Felicity Ratio.

loading cycles of the natural water saturated specimen re�ects
that the water-rock interaction improves the development of
the damage in the igneous rock. Figure 11(c) shows that the
numbers of the AEs of the boiled water saturated specimen
uniformly occurred during both the loading and unloading
of each cycle and the cumulated AE energy also increases
stepwise. During the loading, the axial deformations of the

rock specimen are its macroresponse to its accumulated
intrinsic microdamage and cracking. Water-rock interaction
promotes the development of themicrodamage and cracking,
which can be proved by the active AEs responses for the
specimens with higher water content. 
e AE counts that
occurred during both loading and unloading re�ect dramatic
plastic feature of the specimen. 
e igneous rock completely
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loses its burst proneness under the actions of the water. 
e
AE count can re�ect the real-time microfracture actions;
the higher AE count represents the specimen being in high
damage state. Compared with the dry specimens, the AE
count of the boiled saturated specimens reaches high levels
in its all loading cycles, which proves that the higher the
water content of the igneous rock is, the easier it is to
enter the high damage state. 
e peak stresses of the three
di�erent water content specimens are 162MPa, 128MPa,
and 85.4MPa, respectively. Obviously, the peak stress of the
specimens decreases with the increase of their water content.

ese results proved that the water can obviously change the
properties of the igneous rock, especially under the dynamic
loading and unloading process. E�ective measures should
be taken based on a comprehension of the hydrogeological
conditions of a led mining project in igneous intrusion
area.

3.5. Felicity Ratio. 
e phenomenon that acoustic emission
only starts when the stress exceeds the previously applied
stress is called Kaiser E�ect (KE), whichwas rst propounded
by Dr. Joseph Kaiser in his doctoral dissertation in 1950 [43].
Another phenomenon is that a signicant acoustic emission
might be generated before the previous maximum load was
reached in the cyclic process, which was discovered and
dened as Felicity E�ect (FE) by Fowler in the 80s. Based
on the principles of the KE and FE, Felicity Ratio (FR)
was dened to describe the damage state of the material
quantitatively. Researchers concluded that the higher the FR
is, the lower the damage state is. In other words, a high FR
value (FR > 1) is linked to low damage state, while the lower
FR value (FR < 1) is related to high damage state. In this
paper the FR is dened as (2) to show the damage state of
the specimens with di�erent water contents.

� = �1�2
, (2)

where�1 is the stress corresponding to the signicant acoustic
emission that occurred in the repeated loading process; �2 is
the maximum stress in the former loading process.

Considering the changes of properties of the rock speci-
mens caused by water-rock interaction and a xed threshold
in the experiments, the numbers of AE event or AE count
are not suitable for determining the “the signicant AE
occurred” time in the present paper. In order to nd the
“the signicant AE occurred” time, take the results of natural
water saturated specimens as an example; the relationship
between the accumulative count and stress with time is
presented in Figure 12.

We take the time when the obvious in�ection point
occurred in the cumulative acoustic AE count curve as the
“the signicant AE occurred” time (Figure 12). Based on (2)
and the stress, AE count data of specimens with di�erent
water contents, the FR, and the initial time of the AE counts
in each cycle are listed in Table 3. Figure 13 shows the FR of
specimens with di�erent water contents with respect to time.
Overall, the FR of the specimen decreases with the increase
of the time. In practical terms, the FR of the dry specimen in
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Figure 12: 
e stress corresponding to the signicant acoustic
emission that occurred in the repeated loading process.

the rst six cycles is larger than 1.0 and less than 1.0 in the
last cycle. As for the natural water saturated specimen, the FR
is larger than 1.0 in the rst three cycles and less than 1.0 in
the later three cycles.
e FR of the boiled saturated specimen
is larger than 1.0 only in the rst cycle and then less than 1.0
in the later cycles. Basically, the brittle igneous rock presents
the FE earlier with higher water content. In other words, the
higher the water content of igneous rock is, the more easily it
is to enter the high damage state.

4. Conclusions


e fewer accumulated residual strains, abrupt occurrence
of a large amount of AE counts, and rapidly increased AE
energy at high peak stress stage in the uniaxial cyclic loading
and unloading process of the dry igneous rock re�ect its hard
brittle characteristic and strong burst proneness. 
us, more
attention should be paid to the potential dynamic disasters
induced by the rock burst of the igneous rock in the deep
mining engineering.


e average peak strengths of the dry, the natural water
saturated, and the boiled water saturated specimens are
162MPa, 128MPa, and 85.4MPa, respectively. With the
increase of the water content, the strength of igneous rock
decreases obviously. 
e natural water saturated and boiled
saturated rocks present lower peak strength, more residual
strains, and the stepwise increased AE energy during the
cyclic loading and unloading process. 
e Felicity Ratios of
igneous samples with di�erent water contents further con-
clude that the water-rock interaction promotes the igneous
rock into the high damage state. 
ese results suggest that
the water injection method is a feasible method that can be
used to so�en the igneous rock and to prevent the dynamic
disasters within roadways and working faces located in the
igneous intrusion area.


e cleavage planes and microvoids of the igneous rock
provide the channels for water to enter the inside of the rock.
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Table 3: Felicity Ratio and initial time of the AE counts in each cycle of specimens with di�erent water contents.

Cycle number 2 3 4 5 6 7 8

Dry 1.143 1.09 1.042 1.03 1.03 1.02 0.97

time/s 587 923 1260 1660 2141 2654 3263

Natural water-saturated 1.19 1.03 1.02 0.9 0.87 0.93 0.91

Time/s 300 623 1000 1400 1822 2320 2878

Boiled-saturated 1.13 1 0.98 0.85 0.83 - -

Time/s 464 873 1451 2053 2604 - -
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Figure 13: Felicity Ratio and stress of the di�erent water content specimens in function with time. KE refers to the Kaiser E�ect; FE refers to
Felicity E�ect.


e researched igneous rock mainly contains the orthoclase,
dolomite, pyroxmangite, bloedite, quartzite, and some clay
minerals. 
e content of the orthoclase reaches 31.4%. 
e
orthoclase and clay minerals constitute themineral aggregate
of igneous rock. 
e cyclic loading and unloading increase
the dislocation between the mineral aggregates and water-
rock interaction further breaks the adhesion of the clay
minerals, which jointly promote the inner damage of the
igneous rock.
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