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Abstract

Recently, fiber-based polymer composites have been subjected to direct and indirect dynamic loads in
various applications. However, the dynamic behavior of the fiber composites is crucially influenced
due to excitation frequency, temperature, fiber length, fiber loading, and other geometrical
constraints. The effectiveness of viscoelastic property on fiber composite ensures reliability and
minimizes the effects of dynamic loading in structural applications. Limited reviews have reported the
viscoelastic performance of natural fiber composite through DMA. Notably, the previous review
articles lagged in addressing the performance affecting parameters such as frequency, temperature,
fiber type, fiber loading, filler type, etc. This review has two parts: the viscoelastic performance of
mono and synthetic natural fiber composites. The present review aims to express a broad
understanding of natural fiber polymer composites, DMA analysis, and viscoelastic performance.
Also, this study detailed DMA performance affecting factors. Comprehensively, the reviewed works
revealed that Visco elastic performance of mono (Matrix-natural) /synthetic-natural fiber composites
is extensively influenced by excitation frequency, temperature, length of the fiber, fiber loading, and
type/size of filler particles. Further, aboundless opportunity is available to enhance the DMA
performance fiber reinforced composites.

1. Introduction

Last two decades, researchers have been investigating polymer-based composites to estimate design and
performance. The composites are categorized as metal matrix, ceramic matrix, and polymer matrix composites.
The polymer matrix composite is highly preferred among the composites because of its significant advantages
such as eco-friendly, low density, specific strength, specific modulus, and cost-effectiveness [1]. Generally, the
composite material is prepared (figure 1) using a matrix with one or more reinforcements of dissimilar
constituents. The individual constituents are identified to eliminate drawbacks of existing materials.

The natural fiber polymer composite (NFPC) was primarily focused on its green environmental attributes
like biodegradability, recyclability, reduction in CO, emissions, and competitive price. NFPCs often contain a
thermoset polymer matrix (figure 1) embedded with low-density fiber bundles, micro/nanoparticles, and
structural reinforcements. In addition to the previous statement, fiber composites bring significant growth and
production volume in NFPC applications in automotive, aircraft, civil, and marine industries [2, 3].

1.1. Fabrication process

The NFPCs are fabricated using hand layup, compression molding, vacuum molding, fiber stacking, resin
transfer, and pressure bag molding. Moreover, other techniques also involved in composite fabrication like
continuous lamination, centrifugal casting, cold press molding, filament winding, and vacuum forming are also
employed based on the end product/applications.

© 2022 10P Publishing Ltd
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Figure 1. Natural fiber polymer composite.

NFPCs can be fabricated with manufacturing methods used for conventional composites of thermoset
matrix and thermoplastic composites. These traditional composite fabrication methods include resin transfer
molding (RTM), vacuum infusion, compression molding, direct extrusion and compounding, and injection
molding. Different manufacturing techniques and constituents result in composite materials with diverse
properties.

The hand layup technique is popular among researchers due to its adaptability and complexity. Initially, the
fibers are chemically treated to enhance their physical properties. A mold is prepared as per the size of the
composite, and a polythene sheet is placed on top of the mold. The wax/gel is applied to the polythene sheet as a
releasing agent. The fiber layers are arranged according to the stacking sequence, and the matrix is uniformly
applied to the fiber surface. The exact process is repeated until to obtain the required thickness. Finally,
deadweight is placed on top of the mold until its curing (24 h) [4]. The fabrication process is typically shown in
figure 2.

However, the benefits and drawbacks of hand layup fabrication are listed below [4, 5].

1.1.1. Advantages

+ Itrequires a simple mold, equipment, minimum cost, and reliability.

+ The process doesn’t have size and shapes limitations.

+ The possibility of joining with other materials is a supplementary benefit.
+ Production oflarge products is possible with minimum risk factor.

+ Complex contours and complicated shapes can be fabricated.

So the applications are vast in automotive, aerospace, building science, sports utilities, household products,
etc.

1.1.2. Limitations

+ Production efficiency is low compared to other fabrication processes.
+ Adaptability for mass production is challenging due to low efficiency.

+ The quality of the output products depends on environmental conditions, labor skills, matrix, and
reinforcements.
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Figure 2. Fabrication process of polymer matrix composite.
Table 1. Application of natural fiber polymer composite in various automotive vehicles [6].
Manufacturer Model NFC composite parts
Audi A2,A3, A4, Avant, A6 Seat backs, side and back door panel, boot lining, hat track, and spare tire lining.
BMW 3,5and 7 series and others Door panels, headliner panel, noise insulation panels, seat backs, molded foot,
and well linings.
Daimler/Chrysler A, C,Eand S Class Evo Bus Door panel, windshield, dash board, business table and pillar cover panel.
(exterior)
FORD Mondeo CD 162, FOCUS Door panels, B-Pillar, and boot liner.
Mercedes-Benz Trucks Internal engine cover, engine insulation, Sun visor, interior insulation, bumper,
wheel box, and roof cover.
Toyota Brevis, Harrier, Celsior, RAUM Door panels, seat backs, and spare tire cover.
Volkswagen Golf, Passat Variant, Bora, Door panels, seat backs, boot liner, and boot lid finish panel.
Fox, Polo
Volvo C70,V70 Seat padding, natural foams, and cargo floor tray.

1.1.3. Applications

The dynamic performance plays a vital role in the new material development. However, limited reviews have
reported the viscoelastic performance of natural fiber reinforced composite through DMA. Notably, the
previous review articles lagged in addressing the performance affecting parameters such as frequency,
temperature, fiber type, fiber loading, filler type, etc. The application of natural fiber polymer composite for
various automotive vehicles is shown in table 1.

This review has two parts: the viscoelastic performance of mono and synthetic natural fiber composites. The
present review aims to express a broad understanding of natural fiber polymer composites, DMA analysis, and
viscoelastic performance. Also, this study detailed DMA performance affecting factors. Comprehensively, the
reviewed works revealed that viscoelastic performance of mono (Matrix-natural)/synthetic-natural fiber
composites is extensively influenced by excitation frequency, temperature, fiber length, fiber loading, and type/
size of filler particles. The current review deals with the importance of the dynamic performance of the polymer
matrix composite. Figure 3 depicts the directions of the review starting from a material selection (fibers, matrix,
and filler), fabrication methods, fiber composite types, DMA analysis, and performance affecting parameters on
viscoelastic performance attributes.
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Figure 4. DMA test specimens [4] [License No: 1223029-1].

2. Overview of DMA analysis

Dynamic mechanical analysis (DMA) is a vital technique for estimating the dynamic performance of different
materials such as thermoplastics, thermosets, elastomers, ceramics, and metals. Primarily it is used to estimate
the viscoelastic behavior of polymeric composite under a thermal environment [7]. Apart from DMA,
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses are used to estimate the
thermal behavior of fiber-reinforced polymer composites [8]. The DMA analysis is used to determine the glass
transition temperature (T,), dynamic mechanical (viscoelastic) properties like storage modulus (E’), loss
modulus (E’), and Tan 6 (damping factor) of polymer composites through the functions of temperatures,
frequencies, and time [9, 10].

The ASTM D5023, D4065, D4440, and D5279 are primarily used to prepare the DMA specimens. In general,
the ASTM D5023 is commonly preferred under three-point bending mode with the specimen dimension of
50 x 13 x 3 mm [figure 4] [11]. In torsion mode testing, the ASTM D5279 is used for the DMA of plastics.
Further, the rheological properties of thermoplastic resins and other types of molten polymers are estimated
through ASTM D4440. Also, DMA can be utilized for evaluating the different types of polymers by various
deformation modes. Like shear, three-point bending, dual cantilever, compression, and tension modes. The
appropriate mode is preferred based on the specimen’s modulus, shape, and measurement purpose. The
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Figure 5. Schematic DMA setup and deformation mode types.

specimens are clamped between the fixed and movable fixtures and placed in an electronic controlled thermal
chamber (figure 5). The developed sinusoidal force from the electric motor is transferred through the probe to
the specimen.

The sinusoidal force causes the material deformation and the relationship between the applied force Vs.
deformation (viscosity and elasticity) is analyzed. At different frequencies, the material’s response to a gradual
rise in temperature is evaluated.

The appropriate frequency (0.2 to 10 Hz) and temperature (25 °C-180 °C) range are selected for the material
witha2 °Cmin " heating rate. The materials deform within their viscoelastic limits and are successively cooled
by liquid nitrogen. Further, the viscoelastic properties are analyzed by the complex modulus and cole-cole
technique [4].

The DMA performance of the polymer composite is analyzed through different regions (glassy, transition,
and rubber regions) based on the material state (figure 6). The glass transition region infers the material changes
from arigid, glassy solid to a flexible and elastomeric solid. It measures the stiffness and modulus of natural fiber
incorporated polymer matrix composite. As the temperature rises, the rigid glass material transforms into soft
material. The material is hard and brittle in the glassy region because of a lack of mobility. Rubbery state region
showing material soft and flexible at this time has some mobility.

In polymer science, the glass transition is the process of softening polymer by cooling to glass or changing
glass on heating to a soft state. The glass-transition temperature (T,) is the range of temperatures that change
from a solid glass state to a soft state and is lower than the melting temperature.

3. Viscoelastic attributes

The viscoelastic performance of natural fiber-reinforced polymer matrix composites is analyzed by classifying
the composites into subclasses like mono fiber, hybrid, and synthetic natural fiber composite (SNFC). The fiber
stacking sequences of mono and synthetic natural fiber composites are shown in figure 7. The review focused on
analyzing mono and synthetic natural fiber composite (SNFC) viscoelastic performance through frequency,
temperature, fiber loading, fiber type, and filler type.

Non-uniform fiber dimensions and variations in the physical & chemical configurations influence the
composite strength and performance. The researchers found that developing composites as laminates is an
effective technique to address the inconsistency of fibers. The single fiber combinations were used to develop the
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Figure 7. Stacking sequence of mono and Synthetic natural fiber composites.

mono composite laminates. Moreover, the hybridization enriches composite properties further by introducing
different types of fibers in the same laminate. The viscoelastic performance of the (Mono/SNFC) composites is
primarily influenced by frequency, temperature, loading, type of fiber, matrix, and filler. The effect of above
mention parameters is systematically explained in figure 8.

3.1. Mono composites
The viscoelastic performance of mono-natural fiber (hemp, kenaf, jute, sansevieria, and banana) composites is
analyzed through temperature, frequency, type of fiber, filler, and matrix.

3.1.1. Effect of temperature

In the jute fiber composite, the visco-elastic properties such as storage modulus, loss modulus, tan 6, and glass
transition temperature are evaluated with the effect of temperature. The magnitude of the storage modulus
determines the interfacial bonding between the fiber and matrix. The increasing temperature suddenly decreases
the storage modulus in the glassy region. There is a reduction in storage modulus in the transition region, but the
temperature rise improves the loss modulus due to internal damping. Increased temperature after softening
increases molecular mobility in polymeric composites [12]. In the temperature range of 25 °C-150 °C, the short
hemp reinforced polypropylene fiber composite offers better temperature resistance under the frequency of

1 Hz. However, as the fiber content/coupling agents increased, no changes were found in the transition
temperature. Simultaneously increasing the fiber content to the maximum offers better results from DMA
analysis [13]. The increase in fiber content increases the chance of a higher reinforcing effect at elevated

6
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temperatures. After reaching the alpha relaxation temperature, the effect is more probable for high fiber content
[13]. The effects of extrusion process temperature showed an increasing modulus in rheological and dynamic
mechanical analysis of kenaf-polyethylene composites at higher temperatures [ 14].

The amount of jute/nanofiber reinforcement affects the crystallization and thermal degradation
temperature. The higher interaction of polymer and nanofibers restricts the molecular mobility, enhancing the
modulus/Tan 6 [15]. The banana epoxy composites hold higher Tan § (0.44) than the sansevieria composite
(0.35). The banana composites have weaker interfacial bonding with the matrix, but it holds a higher glass
transition temperature of 120 °C than sansevieria composites (100 °C) [16].

3.1.2. Effect of frequency

The varying input frequencies (0.2, 0.5, 1, 2, 5, and 10 Hz) significantly impacted the epoxy composites’ dynamic
mechanical properties. At 1 Hz frequency, the Tan ¢ was found to be maximum, whereas further increased
frequency reduces the Tan § peak. Enhancing the input frequency reduces the glass transition temperature and
thermal stability. The storage modulus in the glassy region increased proportionally with the frequency [17]. In
the type of fiber reinforcement in the nitrogen environment, the storage modulus fluctuates in the glassy region
compared to the rubbery region at 1 Hz frequency. The knitted fiber reinforcement enhances Tan ¢ with better
interaction with the matrix, and the change in weaving pattern influenced the behavior [18]. With the increase in
frequency from 1 Hz to 10 Hz, the Tan 6 peak enhanced from 0.284 to 0.317. Similarly, the loss modulus (E’)
increased from 68.3 MPa to 87 MPa [12]. The effect of frequency on the viscoelastic behavior (Tan 6 and E’) on
jute fiber composite is typically shown in table 2.

The complex modulus and the loss modulus in doum fiber reinforced polypropylene composite increased
with oscillation frequency. Similarly, a gradual fluctuation was recorded during that time [19]. The addition of
clay up to 3% in the coconut sheath enhanced the vibration-resistant properties after it was reduced [20]. The
increasing frequency of the jute-wire mesh-epoxy composite influences the tan § (damping factor) peak and
shifts with a minor change. Varying frequency from 0.5 Hz—5 Hz, the 45° wire mesh composite (WMC) exhibits
lowloss modulus (1.15 GPa) than 90° WMC for the same region [11].

At 0.5 Hz, the 45° WMC had higher storage modulus (35.5 GPa) in the glassy region; further, increase in
temperature, the high molecular dislocation significantly reduces its storage modulus in the transition region.
For the frequencies 0.5, 1, and 5 Hz, a minor variation was found in the Tan ¢ values (figure 9), but the 90° WMC
shows a higher Tan é than the 45° WMC in the glassy region. The storage and loss modulus were enhanced with
increased frequency [11]. It also noticed that the glass transition temperature decreased with an increase in
frequency due to the fiber matrix damage. The above effect reduces the interfacial bonding between the fiber and
the composite matrix. Thermal stability is also considered the glassy temperature region value mainly depending
on the adhesion between fibers and matrix, which restricts polymer chain movement [11, 12]. The storage
modulus in the copper and aluminum wires reinforced jute composites was enhanced by 45.38% (45°) and
32.74% (90°) at 1 Hz frequency. A sudden drop was observed in the storage modulus for an increase in
temperature in the transition region due to the rheological properties of the fiber and matrix [21].

3.1.3. Effect of fiber
Increase in fiber loading results in better thermal stability and load-bearing capacity of the composites. The
viscoelastic performance of pineapple leaf fiber (PALF); short fiber (15 mm), long fiber (30 mm), and mixed

7
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Figure9. Tan ¢ at a different frequency.

Table 2. Viscoelastic properties of 30 wt% of jute fiber s loading epoxy
composite [12].

Symbols Input frequency Tan § Peak Peak of E’ (MPa)
J30F1 1 Hz 0.284 68.3
J30F2 2 Hz 0.344 85.4
J30F5 5Hz 0.372 79.9
J30F10 10 Hz 0.317 87.0

(15 mm-30 mm) reinforced vinyl ester (VE) composites (PALF/VE) were analyzed, and better interfacial
bonding was observed in the low Tan ¢ value. The long fiber composite exhibited a better modulus and Tan §
than the short and the mixed one. [22]. The different weight percentages (40, 50 & 60) were compared, and it was
found that the date palm fiber reinforced epoxy composite had improved the storage and loss modulus. Among
the different composites, the 50% fiber loading significantly improved viscoelastic behavior [23, 24].

3.1.4. Effect of filler

Fillers are the critical component that affects the viscoelastic behavior of the natural fiber composites. The
addition of the nanofiber (10-30 nm) enhanced the storage and loss modulus, but the Tan ¢ decreased the
weight by 0%—5%. The viscoelastic performance of virgin (base) composite and nanocomposites was compared
and analyzed that in the glass transition region, the storage modulus of all the composite samples dropped
drastically at the temperature range between 65 °C—80 °C [15]. The 30 mm coccidia indica fiber provides a better
storage modulus, and minimum variation in loss modulus caused significant interlocking between fiber and
matrix [25]. The silicate nanocomposite materials had better thermo-mechanical properties for weight 0%—5%
filler addition leading to ease production through simple processes. Nanoparticle (silicate) addition enhances
the composites’ storage modulus, thermal stability, and flame retardancy [26].

8
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3.1.5. Effect of matrix

In the reinforced fiber-matrix composites, the matrix element holds the fiber in the proper location due to the
adhesive property. The meshing characteristic of the matrix is mainly responsible for the better dynamic
mechanical properties that are highly affected by temperature (rise), which affects the composite’s behavior [11].
The different viscoelastic performance affecting factors on mono fiber composites are summarized in table 3.

3.2. Synthetic natural fiber composites (SNFC)

A composite consisting of natural and synthetic fibers is referred to as synthetic-natural fiber composites
(SNEFC). Synthetic fibers such as glass fiber, carbon fiber, and kevlar are known for their high strength &
modulus, and their composites are extensively used for high-performance applications. The addition of
synthetic fibers to natural fiber composites enhances viscoelastic properties. The natural fibers contribute to
their low density, non-abrasiveness, non-corrosive nature, biodegradability, low cost, high specific strength,
better stiffness properties, easy availability, and recyclability [38—40] to the SNFC composites.

3.2.1. Effect of temperature

Low-temperature composites have minimum damping property in the glass transition region due to fiber
carrying maximum stress and allowing only a minor strain of the interface bonding molecules in the matrices.
Adding fiber content enhances the loss modulus peak by improving the adhesion between the fiber and matrix in
the hemp and glass fiber reinforced composites [41]. There is a sharp reduction in the storage modulus at the
temperature range between 60—70° C in the flax and basalt fiber composite. The thermal degradation
temperature increases with the increase in the percentage of basalt fiber in the composite pure PLA composite.

In the kenaf-basalt, epoxy fiber composite holds maximum loss modulus at the glass transition temperature,
which reduces exponentially with increased temperature due to increased polymer mobility [42]. The
chemically treated fiber shows lower T, than the untreated composite, which depicts lower Tan ¢ [43]. Due to the
presence of more lignocellulosic content in flax fiber, the storage modulus of flax samples consistently decreased
with an increase in temperature. At degradation temperature of flax fiber composites was lower than that of
basalt/flax composites [44]. The kevlar/cocos nucifera composite initially degrades in the range of 100 °C-200
°C due to the water molecules evaporating from the composites and the dehydration brought through alcohol
groups. The kevlar epoxy composite shows [39] a higher resistance towards heat, and the higher char residue
formation validates.

3.2.2. Effect of frequency
A study of glass/sisal-polyester composite showed a shift of T, to higher temperatures as frequency increases. It
was attributed to a dephasing response shown by the composite at higher frequencies (figure 10). During the
activation energy estimation, the composite’s relaxation assumes a linear proportionality and the change in the
glass transition temperature. Also, the Tan ¢ peak increases with the input frequency [45].

The storage modulus in the glass/ramie fiber composite was influenced at a higher frequency above T,,. The
increasing frequency shifts the tan 6 curve to the higher temperature region due to decreased rotational and
translational movement of the chains of molecules. The increase in activation energy is held as a function of

9
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Table 3. Effect of parameters on viscoelastic properties in mono fiber composite.

Fiber Matrix Effects References ~ Fiber Matrix Effects References

Shortssisal Polypropylene The addition of sisal fiber in polypropylene increases the [1] Doum palm Polypropylene Coupling agent and fibers loading enhanced the rheolo- [27]
storage modulus and increases the stress transfers fibers gical properties
between fiber & matrix.

Coconut Polyester Organo clay Loading affect the viscoelastic properties [19] Sugar palm Phenolic Seawater and Alkaline treatments affects the viscoelastic [28]

sheath and glass transition temperature behaviors

Jute Vinyl ester resin The storage modulus increase with the increase in fiber [26] Kenaf Polyester Viscoelastic extremely affected by the water presence in [29]
loading, and better stress transfer is observed. Chemi- the test specimen
cally treated composites Tg decreased (128° to
125°C).

Jute Polypropylene The addition of jute fiber reduces the magnitude of the [30] Kenaf Polyurethane Increasing natural rubber loading decreasing storage [31]
damping factor peak by reducing the molecular modulus with the decrease in volume percentage of
movements Polyurethane

Jute Epoxy resin & Acrylated Acrylated epoxidized soybean oil ratio influence the sto- [32] Hemp Polypropylene  Long fiber increase the storage modulus than the short [33]

epoxidized soybean oil rage and loss modulus fiber and matrix bonding are fibers loading
stronger than single resin composite

Ramie Epoxy Viscoelastic stiffness, segmental mobility and damping [34] Hemp Epoxy Increasing cellulose enhance storage modulus, loss [35]
capacity affected for fiber loading. modulus peak due rigid than the matrix. Chemical

treatment of fibers lengthening the loss mod-
ulus peak
Ramie Polylacticacid (PLA) Sodium hydroxide (NaOH) and ammonia improves the [36] Flax Epoxy Composite delamination in DMA analysis reduce the [37]

storage modulus and lower damping factor

storage modulus and improved the loss factor
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Table 4. Viscoelastic behaviors SNF composite.

Fiber Matrix Effects References Fiber Matrix Effects References
Flax/Basalt PLA 30 Wt% basalt/flax enhance the storage modulus [43] Carded ensete web/ Polyester Mono ensete composite having least storage [54]
and higher T,. Glass modulus. Tan delta peak decreases for
glass outer layer composites
Ramie/glass Polyester Higher fiber loading, and volume percentage of [46] Bagasse/Kevlar Vinylester T, of the composite increased to 2 °C-6 °C [55]
reinforcement returned lower effectiveness compared to neat vinylester related to
coefficient. damping.
Jute/carbon Polyester The arrangement of fiber layer influence the sto- [49] Jute/Glass Epoxy Storage modulus of SNFC falls between the [56]
rage and loss modulus and no effect found in mono glass/jute.
T,. outer layers yield better viscoelastic proper-
tiesdue to its strength.
Nylon 66/organic poly- Polypropylene Fibers addition notably increase the storage mod- [50] Pennisetum purpur- Epoxy Variation in found Ty between the SFC,neat  [57]
ethylene terephtalate ulus and demises the tan & which shows better eum/glass epoxy, untreated, 5%, and 10% alkali-
boding between the fiber and matrix. treated fiber composites.
Bamboo/Glass Polyester/Vinyl Higher weight percentage of bamboo fiber [10] Flax/Glass Pineapple Epoxy Treated SNFC showed higher storage [58]
Ester decrease the storage modulus and Loss and Glass modulus than hybrid LCE resin and low-
modulus estdamping factor (Tan &) when com-
pared to
Pineapple leaf/Glass Polyester Equal proportion of the fibers shows the higher [51] Sisal/Glass Polyester Fiber stacking sequence predominantly [59]
damping properties. affect and viscoelastic properties
of SNFC.
Bamboo/Glass Polypropylene High frequency lean towards weak bonding [52] Banana/pineapple Polyester 30 wt% fibers loading produce high Ty and [60]
between reinforcements and matrix. SNFC leaf/glass Increasing frequency reduce the Tan delta

hold better viscoelastic properties

peakand T,
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frequency which makes the glass fiber have high rigidity imposed against the activation energy [47]. In another
test, the damping properties of the glass fiber reinforced composites

increased with an increase in the frequency of the same thickness. At the same time, frequency influences the
fiber-matrix interfacial bonding [48].

3.2.3. Effect of fiber

The fiber hybridization influences the dynamic mechanical properties of ramie/glass fiber composites [46]. The
glass fiber inclusion reduces the storage modulus above the T, [10,49-52]. The storage modulus of glass-jute
composites falls between the mano glass and mano jute composites. Abnormal trends were found for the
temperature variations in loss modulus and the Tan ¢ at Tg. The fiber stacking sequence affects the viscoelastic
behavior of fiber composites. The outer carbon layer composite holds higher storage modulus than jute fiber
layer composites. At 85 °C, the storage modulus drops around 1 GPa irrespective of the composite type. The
outer carbon fiber and inner jute layer composites enhance the loss modulus because the carbon fiber resists the
force [53]. The viscoelastic behaviors of different SNFC are recorded in table 4.

4. Conclusion

In the survey, the results are summarized by considering the performance influencing parameter of viscoelastic
performance in natural fiber mono/synthetic polymer reinforced composites are concluded as follows:

+ Various combinations; natural fiber/polymer matrix (Mono natural fiber composites), natural fiber/
synthetic/polymer matrix reinforced composites (Synthetic natural fiber composites) literature were
reported.

+ Increasing frequency (0.2-10 Hz) significantly enhances the storage and loss modulus, but minor variation is
observed in tan é. Similarly, the glass transition temperature (T) decreases due to the fiber matrix damage
(Interfacial bonding).

+ Increasing the weight percentage of fiber enhances the viscoelastic performance within a defined region.
Hence, beyond the limit, the composite performance was not adequate.

+ The fiber matrix bonding mainly depends on the matrix type and weight percentage, primarily affected by the
temperature. It was clearly identified that better bonding influences the composites’ viscoelastic performance.

+ The temperature increase drastically decreases the storage modulus in the transition region due to higher
molecular dislocation.

+ Lower Tan § maximizes the load barring capacity, resulting from better bonding between the matrix and the
fiber. At the same time, the storage modulus and loss modulus were significantly enhanced.
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