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This paper is a mechanism design study for a monopolist selling multiple identical items to potential buyers arriving
over time. Participants in our model are time sensitive, with the same discount factor; potential buyers have unit demand
and arrive sequentially according to a renewal process; and valuations are drawn independently from the same regular
distribution. Invoking the revelation principle, we restrict our attention to direct dynamic mechanisms taking a sequence
of valuations and arrival epochs as input. We define two properties (discreteness and stability), and prove under further
distributional assumptions that we may at no cost of generality consider only mechanisms satisfying them. This effectively
reduces the mechanism input to a sequence of valuations and leads to formulate the problem as a dynamic program
(DP). As this DP is equivalent to a well-known infinite-horizon asset-selling problem, we finally characterize the optimal
mechanism as a sequence of posted prices increasing with each sale. Remarkably, this result rationalizes somewhat the
frequent restriction to dynamic pricing policies and impatient buyers assumption. Our numerical study indicates that, under
various valuation distributions, the benefit of dynamic pricing over a fixed posted price may be small. Besides, posted
prices are preferable to online auctions for a large number of items or high interest rate, but in other cases auctions are
close to optimal and significantly more robust.
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1. Introduction
The problem of maximizing revenue when selling goods
to potential buyers arriving over time has received con-
siderable attention from researchers and practitioners alike
(see Elmaghraby and Keskinocak 2003). However, while
much work has been done on how posted (or reservation)
prices should be set and updated dynamically in that envi-
ronment (the active academic literature on dynamic pricing
dates back to the early 1960s), there is surprisingly little
justification available for why price-based policies should
be used over other types of selling strategies. In particular,
the recent spectacular growth of the Internet website eBay
suggests that online auctions (see Lucking-Reiley 2000 for
a description of their many possible formats) may some-
times constitute a viable, and perhaps even better, alterna-
tive. Our objective in the present paper is to identify, among
these two strategies and as many others as possible, the
profit-maximizing mechanism for selling identical goods to
a stream of self-interested and time-sensitive buyers.
We begin with a (necessarily incomplete) review of the

large literature available on the sale of identical items by
a monopolist over time. When the seller announces prices,
this challenge is usually referred to as the “posted price”
or “dynamic pricing” problem (see Bitran and Caldentey
2003 and Elmaghraby and Keskinocak 2003 for recent sur-
veys). When the seller instead either accepts or rejects the

buyers’ bids, it is known as the “house-selling,” “asset-
selling,” or “reservation price” problem, which is one of
the primary motivations for the development of the theory
of optimal stopping (Chow et al. 1971) and the theory of
search (Mortensen 1986). While that distinction is irrele-
vant to our study (where the selling mechanism is endoge-
nous), we refer the reader to Arnold and Lippman (2001)
for a discussion of the differences between price-taking
and price-setting models. Another differentiating feature
among these studies is the structure of the buyers’ arrival
process: “discrete-time” models with constant interarrival
times (e.g., Das Varma and Vettas 2001), “continuous-
time” models where the arrivals follow a Poisson pro-
cess (e.g., Kincaid and Darling 1963, Gallego and van
Ryzin 1994, Arnold and Lippman 2001), or more generally
a renewal process (e.g., Karlin 1962, Elfving 1967). We
also assume a renewal process, but under the restrictions
imposed (essentially increasing failure rate (IFR) interar-
rival time distribution) we show that the corresponding
price determination problem is ultimately equivalent to that
studied in Das Varma and Vettas (2001) and Arnold and
Lippman (2001). In fact, our Proposition 3 is equivalent to
their Proposition 1 and Theorem 11 (respectively), and our
Proposition 4 is equivalent to Theorem 12 from the latter
paper (Arnold and Lippman 2001). Most of these stud-
ies either assume “no recall,” “myopic,” “nonstrategic,” or
“impulse” buyers who will never wait (any transaction must
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occur immediately upon their arrival) or, on the contrary,
“full recall” buyers who are completely time insensitive.
In contrast, we assume (as in Besanko and Winston 1990)
that buyers are “rational” or “time strategic,” i.e., that they
may a priori choose to trade off waiting time against selling
price strategically, according to a specified utility function
with nontrivial time discounting. Finally, while a finite time
horizon is more realistic in some settings (see Kincaid and
Darling 1963, Gallego and van Ryzin 1994 and most other
references cited in Bitran and Caldentey 2003), our study
considers an infinite time horizon (as in Elfving 1967, Das
Varma and Vettas 2001, and Arnold and Lippman 2001).
Note that all the papers cited in the previous paragraph

restrict a priori the range of mechanisms considered to
dynamic posted (or reservation) prices, and focus then on
the value of the price parameters characterizing the opti-
mal choice within that family. In contrast, the problem of
mechanism design consists of identifying the allocation and
payment rules (taking strategies of self-interested partici-
pants as an input) maximizing the expected revenue pre-
dicted by a specified game solution concept. The approach
for solving such problems has largely been developed by
Myerson (1981), who considers a market environment with
one item for sale to a fixed number of risk-neutral bidders
with private valuations drawn from a commonly known dis-
tribution. Applying the so-called revelation principle (see
§2.2), he proves that the optimal mechanism is any of the
standard types of auctions with a suitably chosen reserve
price. His method has since been extended to various other
environments, notably by Maskin and Riley (1989, 1984)
to markets with multiple identical units and risk-averse
bidders—see Klemperer (1999) for a survey. However,
studies in this stream of literature are essentially static:
They ignore both the process through which bidders arrive
to the market in the first place, and the impact of the timing
of transactions on the participants’ utility functions.
In that it jointly considers a dynamic market environment

and a mechanism design problem, the present paper is an
attempt to bridge the branches of literature described in the
previous two paragraphs. A remarkable similar attempt is
in Riley and Zeckhauser (1983), who derive the optimal
selling strategy for a discrete-time model with fixed, addi-
tive buyer acquisition costs and time-insensitive bidders,
where the seller is free to update his selling strategy imme-
diately before every new bidder arrival. Another important
related paper is McAfee and McMillan (1988), which also
considers a discrete-time model with a fixed bidder acqui-
sition cost and time-insensitive bidders, but a finite buyer
population and a predetermined selling strategy; through an
extension of the revelation principle to a dynamic market
environment, these authors also identify the correspond-
ing optimal mechanism. A significant part of our analysis
consists of transforming the continuous-time problem con-
sidered into an equivalent discrete-time one. Consequently,
it is unsurprising that the mechanism we eventually obtain
bears some resemblance to the ones derived in those last

two papers. However, our model uniquely captures both
time sensitivity of participants and probabilistic features of
dynamic bidder arrivals, which we believe are key drivers
of trading interactions occuring on online auction sites such
as eBay. The present paper also shows how Myerson’s
solution methodology can be adapted to a dynamic pro-
gramming (DP) framework. Likewise, Vulcano et al. (2002)
propose a DP formulation for a dynamic mechanism design
problem, but in a discrete-time market environment where a
random number of bidders arrive in each period, and there
is no strategic interaction between bidders across periods.
The remainder of this paper is structured as follows:

The next section, §2, includes in §2.1 a description of the
market environment investigated, and an exact formulation
of the corresponding mechanism design problem in §2.2.
Next, §2.3 contains the definition of two properties for
dynamic mechanisms, along with the theoretical result that
if an optimal mechanism exists, there must also exist an
optimal mechanism satisfying them. This result is key to
the solution of the mechanism design problem considered,
which we develop in §2.4—see Theorem 3 for a summary.
A numerical study is presented in §3. Finally, §4 contains
concluding remarks, and the proofs of all stated results
(except Theorem 3), as well as a summary of mathematical
notations used in this paper, can be found in the appendix.

2. Model and Analysis

2.1. Market Environment

Consider a risk-neutral seller with K identical items for
sale. Starting at time 0 (when this sale opportunity is adver-
tised), he faces an arrival stream of self-interested poten-
tial buyers, each with unit demand. We assume that the
buyers’ arrival epochs t1 � t2 � · · · are exogenous and
follow a renewal process characterized by its transform
��z�=E�zx	, with x ∼ tn+1 − tn for n� 0 (t0 = 0 by con-
vention). Each buyer n has a linear utility characterized by
a privately known random valuation function vn�t� (maxi-
mum willingness to pay), where t denotes the time when
the transaction is realized (if applicable). Most of this paper
explicitly focuses on the case vn�t� = vn1�tn�+���t� for all
potential buyers n, where v1� v2�    are independent and
identically distributed (i.i.d.) random variables following a
distribution known to the seller and characterized by a den-
sity f �·�, cumulative distribution function (c.d.f.) F �·�, and
compact support V = �v� v̄	 with 0 � v < v̄ < +�. The
process � = ��v1� t1�� �v2� t2��   � is thus a marked point
process where arrival times and marks are independent.
We refer to this valuation structure as the patient bidders
case, sometimes also referred to in the literature as the case
“with recall.” However, the analysis ultimately extends to
the impatient bidders case (or “without recall”) vn�t� =
vn1�tn��t�. As is discussed later in §2.2.2, the solution con-
cept we use (dominant equilibrium) makes our analysis
robust with respect to the information structure assumed
for the buyers, so we voluntarily leave its specification
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incomplete here. Finally, the seller and the potential buyers
have a time-discount factor � ∈ �0�1�. While this concept
will be defined more precisely in §2.2.4 along with the par-
ticipants’ utility functions, its loose meaning is that the net
value to the seller (respectively, bidder n) of any profit y
occurring at time t is �ty (respectively, �t−tny).
In addition to the seller’s risk neutrality and the station-

arity of demand, four other salient assumptions about the
market environment are made in this paper:

Assumption 1. h�t�≡ E��x−t � x > t	 is a nondecreasing
function of t (where x∼ tn+1 − tn).

Assumption 2. j�v� ≡ v − �1 − F �v��/f �v� is a nonde-
creasing function of v.

Assumption 3. The seller and the potential buyers have
the same discount factor � ∈ �0�1�.
Assumption 4. Potential buyers have unit demand.

Assumption 1 is satisfied by all interarrival time dis-
tributions with IFR. It allows restriction of the search to
mechanisms where allocation and payment decisions occur
upon bidder arrivals, and typically rules out multimodal
distributions, where the expected time until the next arrival
may drastically increase when conditioned on the time
elapsed since the last arrival. Assumption 2 is a very sim-
ilar assumption that applies to the valuation distribution,
and is typical in mechanism design studies; it is also sat-
isfied by all IFR distributions. Intuitively, this assumption
rules out mechanisms where potential buyers are discrim-
inated based on which part of the valuation distribution
support they are inferred to belong to. Although Myerson
(1981) shows how it can be relaxed using convex anal-
ysis, this extension is left to future research to facilitate
our focus on the dynamic aspect of mechanism design.
Assumption 3 is arguably more restrictive (note, however,
that the time to which the discount factor applies is dif-
ferent for each market participant): In some situations, the
seller may act for a company while buyers may be end
consumers, in which case their respective time sensitivi-
ties would likely follow different structures. Interestingly,
however, the buyers’ discount factor seems immaterial in
the optimal solution eventually obtained (see §2.4), which
suggests that relaxing Assumption 3 may not change the
nature of the optimal mechanism—this conjecture is not
resolved here, however. Finally, while Assumption 4 typi-
cally restricts the applicability of this model to situations
where potential buyers are indeed end consumers, Maskin
and Riley (1989) show in a static environment how this
assumption can be relaxed. Even though we do not under-
take this task here, in the future one may thus be able to
successfully apply their method in a dynamic setting.

2.2. Problem Formulation

This subsection begins in §2.2.1 with a reminder of the
main concepts and basic terminology of mechanism design.

Readers seeking a more exhaustive or technical presen-
tation may refer to Klemperer (1999) or Fudenberg and
Tirole (1991), and those already familiar with this topic
may directly proceed to §2.2.2, which contains a discus-
sion of the solution concept we use (dominant equilibrium)
and the information structure we assume. We introduce our
formal definition of a dynamic mechanism in §2.2.3, and
that of the participants’ utility functions in §2.2.4, which
also contains a mathematical statement of the optimization
problem we study.

2.2.1. Mechanism Design Terminology. In game-
theoretic terms, any set of rules describing in a given mar-
ket which outcome will result from a trading interaction
is known as a mechanism. It is usually defined as follows:
Its allocation rule determines whether each given market
participant gets an item and, if appropriate, which one and
when; its payment rule determines what each participant
must pay as a result of the interaction (and if appropriate, to
whom and when); the information structure describes the
information available to each participant when trading deci-
sions are made; and the strategy space describes how those
trading decisions are expressed, that is, the exact format
in which participants provide competitive information. For
example, in a simple fixed-price mechanism with no supply
constraint, the relevant information structure (for buyers) is
just the listed price for the item, a buyer’s strategy consists
of expressing the number of items requested at that price
(possibly zero), the allocation rule assigns to each buyer
the number of items he requested, and the payment rule
specifies that each participant pays the listed price times the
number of items requested. For a second example, consider
the sale of a single item through a first-price sealed-bid
auction with no reserve price: The strategy space consists
of payment offers (bids) made privately by each bidder,
the information structure describes what each participant
knows about the number of competitors and their willing-
ness to pay, and the allocation rule assigns the item to the
highest bidder, who according to the payment rule must
pay the amount he bid (while other bidders pay nothing).
In static mechanism design studies, the incentives of each

potential buyer are typically modelled with a utility func-
tion entirely characterized by a privately known valuation
(maximum willingness to pay). In our dynamic environ-
ment, however, the primitives of each bidder n include not
only a valuation vn, but also an exogenous arrival time tn.
These two quantities together define the bidder’s type �n =
�vn� tn�, which for our purposes entirely characterizes him.
Once equipped with a description of the participants’

utility functions (we defer a rigorous definition of these
functions until §2.2.4), any given mechanism fulfills the
definition of a game of incomplete information (see Part III
in Fudenberg and Tirole 1991). As such, any solution con-
cept or equilibrium (e.g., Bayesian Nash equilibrium, dom-
inant equilibrium) adapted to this type of game can be
applied to try and predict the set of strategies that will be
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played by all players, or strategy profile. Formally, a strat-
egy is defined as a mapping from each player’s type and
information set onto the action space. In turn, for a given
strategy profile, every realization of the players’ types cor-
responds to a value for the seller’s (discounted) revenue,
and one can thus compute the expectation of the seller’s
discounted revenue over all players’ types.
For a given solution concept, the problem of mechanism

design consists of finding the mechanism for which the
seller’s expected revenue associated with a strategy profile
predicted by that concept is the highest possible.

2.2.2. Game Solution Concept and Information Struc-
ture. As in several other mechanism design studies (e.g.,
Laffont and Maskin 1982, Chung and Ely 2002), the solu-
tion concept we use in this paper is dominant equilibrium
(DE); this corresponds to the requirement that every par-
ticipant’s strategy is optimal for him for every possible
combination of the other players’ strategies (see §2.2.4 for
a mathematical formulation). In contrast, the other game
solution concept widely used in the literature, Bayesian
Nash equilibrium (BNE), only assumes that each player’s
strategy maximizes his expected utility conditional on his
beliefs of the other players’ strategies. We observe that our
DE formulation seems consistent with our assumption that
buyers have unit demand, as the end consumers it typically
applies to are arguably more risk averse in practice than the
seller. The primary reason for that choice here, however, is
mathematical tractability, as we are only able to prove the
feasibility of various mechanisms constructed during the
analysis (see in particular the proof of Theorem 1) under a
dominant equilibrium formulation.
There are, otherwise, respective advantages and disad-

vantages to both solution concepts (see Chapter 23 in
Mas-Colell et al. 1995, and Chung and Ely 2003, for more
complete discussions). One drawback of BNE is that it
relies on fairly strong assumptions about the participants’
beliefs and their cognitive or computational abilities, e.g.,
that all players share the exact same beliefs about the other
players’ types, that all players have the ability to compute
a utility expectation conditional on those beliefs, and that
all players believe that all the other players will perform
that computation as well. As a result, the predictions only
supported by a BNE are likely to be far less robust to
misspecifications of the information structure or incorrect
assumptions about the participants’ behavior than predic-
tions supported by a DE, and in that sense, are more risky.
On the other hand, dominant equilibria do not always exist
(this is not an issue in the present study), and the much
stronger restrictions they impose (a DE is also a BNE, but
the converse is not necessarily true) may result in optimal
mechanisms yielding lower (predicted) revenue; note that
the choice between BNE and DE is thus somewhat reminis-
cent of the classical trade-off in finance between expected
return and volatility.
To the best of our knowledge, Mookherjee and Reichel-

stein (1992) describe the most generic conditions to date

under which any outcome supported by a BNE can also
be supported with a DE. Unfortunately, the market envi-
ronment they consider assumes single-dimensional types,
and it is not clear how their results could be extended to
our setting with a two-dimensional type space. As a result,
our restriction to DE here may very well entail a loss of
(predicted) revenue for the seller, and we are unable to
determine how much that potential loss may amount to.
Finally, an important consequence of our DE formulation

is that, in contrast with a BNE formulation, our revenue
predictions are independent of the information structure we
assume for the buyers (besides the private knowledge of
their own individual type). That is, the conditions imposed
by a DE insure that buyers’ behavior will not be affected
by any beliefs and/or knowledge about their competitors’
valuations and arrival times. Consequently, we voluntarily
left the buyers’ information structure incompletely specified
in our market environment description in §2.1. For a spe-
cific treatment of the issue of robustness with respect to the
information structure, see Bergemann and Morris (2001)
and references therein. We do assume, however, that the
seller knows both the buyers’ interarrival time and valuation
distributions, and the fact that they are all independent.

2.2.3. Formal Mechanism Definition. In full general-
ity, a mechanism can be defined as a pair of allocation and
payment functions, both taking as input variable a strategy
profile (see §2.2.1 for definitions). A major apparent diffi-
culty, however, is that there is no restriction inherent to this
definition on what the strategy space of participants should
be, so that the realm of mechanisms to search may seem
beyond the reach of analysis. As in all other mechanism
design studies we are aware of, this difficulty is resolved by
invoking the so-called revelation principle. This principle
allows us to restrict the search with no loss of generality to
direct mechanisms, where the strategy space is nothing but
the type space: In the present setting, each potential buyer n
only provides information to the mechanism through the
required input of the type �n = �vn� tn� that entirely charac-
terizes him. More precisely, this principle states that given
a mechanism with an arbitrary strategy space where a par-
ticular outcome is supported by an equilibrium, one can
construct an associated direct mechanism where the same
outcome will also be supported by an equilibrium where
participants truthfully reveal their type. We do not discuss
here the rigorous game-theoretic justifications of this prin-
ciple, and refer the reader instead to Myerson (1981) for
a more formal statement in a classical mechanism design
study, and to McAfee and McMillan (1988) for a justifica-
tion of applying this principle to a dynamic market envi-
ronment (see §1 for a detailed discussion of this last paper).
We are now ready to define a direct dynamic mecha-

nism � as a sequence ��n�n�1, where �
n ≡ �qn� yn� is a pair

of allocation and payment functions, respectively. They are
mappings qn� �′n �→ �0�1�n and yn� �′n �→ ��+�n, where

�n ≡ ��n = ��v1� t1��    � �vn� tn�� ∈ �V ×�+�n�

ti � tj for i� j � n� (1)
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and �′n ≡ ���n� t�� �n ∈ �n� t ∈ �+� tn � t�. In that def-
inition, qni ��

n� t� and yni ��
n� t�, respectively, represent the

cumulative allocation to, and transfer payment from, bid-
der i at time t, after the arrival of n bidders described by
the stream �n—note that random allocation rules are not
investigated here. We also define the space of all demand
streams as �= ��= ��n�n�1� for all n� 1� �n ∈�n�, and
refer to the probability measure relative to � as P .
A first natural restriction on the mechanisms � =

�qn� yn�n�1 we consider is an availability constraint: The
total number of items allocated at any point in time can
never exceed the total number of items available, K. This
can be stated mathematically as �AC��

∑n
i=1 q

n
i ��

n� t��K
for all n� 1, �n ∈�n, and t � tn.
A second, more salient, restriction we impose for the

sake of tractability is that each bidder n may either:
(i) never get any item, and not ever pay anything; or (ii) be
allocated an item at some time #n���� tn after he arrives,
and simultaneously pay a positive amount yn��� for it,
exclusive of any other transfer payment to the seller. In
particular, we exclude delayed and continuous payment
schemes. Accordingly, the mechanism can alternatively
be characterized through the following random variables,
defined for each bidder i: qi��� ∈ �0�1� (final allocation),
yi��� ∈ �+ (final payment), si��� ∈ �i� i + 1�   � (alloca-
tion time index), and #i��� ∈ �ti�+�	 (allocation time).
The relationship with the original definition of a dynamic
mechanism � = �qn� yn�n�1 is

�qni ��
n� t�� yni ��

n� t��

=


�qi���� yi���� if n� si��� and t � #i����

�0�0� otherwise�
(2)

and the availability constraint can be expressed as
�AC��

∑+�
i=1 qi��� � K for all � ∈ �. In the case (i)

described above where bidder i is never allocated an item
and �qi���� yi���� = �0�0�, the r.v. si��� and #i��� are
defined by extension to be both equal to +�. From now
on, the dependence of all r.v. on � and � will be omitted
when it is clear from context.
While we will use the component functions of �qn� yn�

in §2.3 to study some properties of the optimal mecha-
nism, in subsequent sections we will only need the sets
of limit variables �qn� yn� #n�n�1 or �qn� yn� sn�n�1. When
using those limit variables in our analysis, we will enforce
the condition that they should exclusively be a function
of the information available to date (or adapted to the
stochastic process of bidder arrivals). That is, the mech-
anism may generate allocation and payment decisions at
a given time based only upon the information available
at that point. In (loose) measure-theoretic terms, the vari-
ables #i should define stopping times relative to an appro-
priately defined filtration associated with ��n�n�1, and the
variables �qi� yi� should be � -measurable, where � is an
appropriately defined %-algebra associated with #i. Because
no ambiguity about this issue will arise, however, we will
not use these technical concepts further in the exposition.

2.2.4. Utility Functions and Optimization Problem
Statement. We define the expected utility function of the
seller as Uo���≡E��

∑+�
n=1�

#nyn	, and the (random) utility
function of bidder n� 1 as un�vn�≡ �#n−tn �vnqn− yn�. We
thus consider an infinite-horizon setting so that our model
does not capture the market environments with an intrin-
sic time limit (e.g., perishable goods) that are sometimes
encountered in practice.
Note that the definition of the nth bidder’s utility func-

tion un is relative to the exogenous time tn at which
he arrives. Also, while that definition describes the util-
ity of bidder n truthfully reporting his valuation vn (and
arrival time tn) to the mechanism, we can more gen-
erally define un�v� vn� as the utility of the nth bidder
with true valuation vn when reporting any other valu-
ation v—but still his correct arrival epoch tn—to the
mechanism (clearly, un�vn� vn� = un�vn�). Mathematically,
un�v� vn� ≡ �#n�v	−tn �vnqn�v	 − yn�v	�, where ��v�n	 ≡
��n−1� �v� tn���n+1�   � and )n�v	 ≡ )n���v�n	� for any
v ∈ V and random variable )n (e.g., qn, yn, and #n) defined
on � and relative to index n� 1. The optimization problem
can now be stated in the patient bidders case as

Max
�

Uo���

subject to �AC� and

un�vn�� 0 for all � ∈� and n� 1� �IR�

un�vn�� un�v� vn�

for all �∈� and n�1�v∈V  �IC�

(3)

The last two constraints in (3) capture the self-interested
behavior of participants and reflect the solution concept
used to predict the outcome of the game: �IR� ensures indi-
vidual rationality, namely, that a potential buyer will only
participate if his utility from doing so is nonnegative, and
�IC� guarantees incentive compatibility, namely, that a bid-
der cannot benefit from misrepresenting his valuation when
interacting with the mechanism. In that form �IC� does not
guarantee that a bidder could not benefit from misrepresent-
ing his arrival epoch (which constitutes a part of his type),
i.e., waiting for some time after his arrival for strategic
purposes before communicating his valuation to the mech-
anism. Defining un�v� t� vn� tn� analogously as the utility
obtained by the nth bidder with type �vn� tn� when pretend-
ing instead that his valuation is v and his arrival epoch t �
tn, an appropriate way to enforce full incentive compatibil-
ity would be to use instead the constraint �IC′�� un�vn� �
un�v� t� vn� tn�. However, it turns out that the mechanisms
obtained by solving (3) under Assumptions 1–4 (see §2.1)
will also satisfy the more stringent condition �IC′�.
An important remark is that �IR� and �IC� must hold

for every realization of the demand stream �, because we
require the outcome prediction associated with all mech-
anisms considered to be supported by a DE. Note that
under the alternative requirement that the seller’s revenue
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prediction be supported by a BNE, these constraints would
only have to hold in expectation, conditional on the bid-
ders’ information set. Note that in our formulation �IR�
implies that no feasible mechanism will involve participa-
tion fees (i.e., qn = 0 implies yn = 0). These fees could
conceivably arise and result in higher predicted revenues
under a BNE formulation—see §2.2.2 for a related discus-
sion. We observe, however, that the absence of participa-
tion fees seems preferable in a market where most potential
buyers are end consumers (there are no buyer participation
fees on the popular auction site eBay, for example), which
is consistent with our unit-demand Assumption 4.
Finally, observe that a formulation of the mechanism

design problem corresponding to the impatient bidders case
is obtained by adding to (3) the constraint �IB�� qn = 1⇒
#n = tn for all n, that is, by merely considering a subset of
the feasible solution space for (3).

2.3. Optimal Mechanism Properties

In this section, we introduce two properties of dynamic
mechanisms holding under Assumption 1, and show that it
is costless to restrict the search to mechanisms satisfying
them; this later allows us to significantly simplify the prob-
lem formulation. Note that, as in the rest of this paper, the
notion of mechanism optimality involved in the results of
this section relates exclusively to our DE formulation (3).

Definition 1. A mechanism � is said to be discrete if the
sales it generates occur exclusively upon bidder arrivals.
Equivalently, #n = tsn for all � and n� 1.

Note that the definition of a discrete mechanism does not
preclude the possibility of recall: It imposes a restriction
on when an allocation may be generated, not on to whom
it should be made. Because all mechanisms of interest for
impatient bidders are discrete, the following proposition is
nontrivial only with patient bidders:

Proposition 1. If h�t�≡ E��x−t � x > t	 is a nondecreas-
ing function of t (Assumption 1), then any optimal mecha-
nism is discrete.

The proof of Proposition 1 relies on a comparison
between the seller’s optimal expected discounted revenue
to go at an arbitrary time and the expected future value
of that quantity at the next bidder arrival given the same
information; in that comparison, h�t� represents the condi-
tional additional discounting associated with delaying the
future expected revenue stream until the next arrival. We
will assume throughout that h�t� is indeed a nondecreas-
ing function of t, as required by Proposition 1. As stated
in the discussion of that assumption above, it is satis-
fied in particular when the interarrival time x follows an
IFR distribution. This justifies the restriction from now
on to discrete mechanisms, and the simplified definitions
qn� �n �→ �0�1�n and yn� �n �→ ��+�n (see (1)). In this
setting, the two variables #n and sn become redundant, and
we will exclusively use the latter from now on.

Definition 2. A discrete mechanism ��n�n�1 is said to
be stable if the allocations and payments it generates
for two arrival streams with identical valuation sequences
but different arrival times are identical. Mathematically, if
�= ��v1� t1�� �v2� t2��   � and �� = ��v1� t̂1�� �v2� t̂2��   �,
then �n��n�= �n� ��n� for all n.

In other words, the allocations and payments generated
by a stable mechanism do not depend on the bidders’ arrival
times, just their valuations and order of arrival—note that
this definition is only sensible when applied to discrete
mechanisms. Our interest in this second property is justi-
fied by the following theorem, which constitutes the main
result of this section:

Theorem 1. If there exists a discrete optimal mechanism,
there also exists an optimal mechanism that is stable.

Found in the appendix, the proof of Theorem 1 consists
of modifying an arbitrary optimal discrete mechanism to
construct a mechanism that is shown by induction to still
be optimal, but also stable. The combination of Proposi-
tion 1 and Theorem 1 justifies the restriction to discrete
and stable mechanisms, and that we will work from now
on with the even simpler definitions qn� V n �→ �0�1�n and
yn� V n �→ ��+�n.

2.4. Optimization Problem Solution

The first part of this section is a proof culminating with
the statement of Theorem 3, the main theoretical result of
this paper. Its first step is an alternative expression for the
expected utility function of the seller:

E��#nyn	 = E��tsn yn	

because the mechanism is discrete�

= E�E��tsn yn � sn		
by the law of total probability�

= E�E��tsn � sn	E�yn � sn		
because the mechanism is stable�

= E�����snE�yn � sn		
by the definition of �����

= E�����snyn	

by the law of total probability

(4)

Note that the same reasoning applies when yn is replaced
with qn in the equalities above, and it can also be used
to prove that E��#n−tn)n	 = E�����sn−n)n	, where )n is
either qn or yn. Now applying the monotone convergence
theorem to the series with the general term given by (4)
yields

Uo���=
+�∑
n=1

E�����snyn	 (5)

We next adapt and apply to this problem to the method-
ology developed in §4 of Myerson (1981). In particular,
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the following lemma and proposition, justifying alternative
expressions for the feasible space and objective function
of (3) correspond, respectively, to his Lemmas 2 and 3.
Their respective proofs (see the appendix) are mere adap-
tations to our setting of the ones found in his paper, with a
couple of modifications because we use a DE (as opposed
to a BNE) formulation, and consider an infinite number of
bidders with time-discounted payments (as opposed to a
finite number of bidders with no discounting).

Lemma 2. The conditions �IR� and �IC� in (3) are equiv-
alent to the following set of conditions:

un�v�� 0 for all n� 1 and � ∈�� �IR1�

�tsn�v′ 	−tnqn�v
′	� �tsn�v	−tnqn�v	

for all n� 1� � ∈�� and v� v′ ∈ V 2� �IP1�

un�vn�= un�v�+
∫ vn

v
�tsn�v	−tnqn�v	dv

for all n� 1� � ∈�� and vn ∈ V  �IC1�

(6)

Proposition 2. For any mechanism � satisfying the feasi-
bility conditions (6),

Uo���=E

[+�∑
n=1

(
vn −

1− F �vn�

f �vn�

)
����snqn

]

−
+�∑
n=1

����nE�un�v�	 (7)

The second main step is based on the (classical) observa-
tion that only the variables �qn� sn�n�1 relative to the alloca-
tion decisions (i.e., not the payment variables yn) appear in
the first term of the right-hand side of (7). Besides, under
�IR1� the maximum possible value of the second term is
zero. Therefore, if �qn� sn�n�1 solves

Max
�qn� sn�n�1

E

[+�∑
n=1

(
vn −

1− F �vn�

f �vn�

)
����snqn

]

subject to �AC� and �IP1��

(8)

and �yn�n�1 can then be found such that �IC1� and
�IR1� are satisfied as well as E�un�v�	 = 0 for all n,
then �qn� yn� sn�n�1 is an optimal solution to the original
problem (3).
When a single item is for sale (K = 1), the relaxation

of (8) where constraint �IP1� has been removed is equiva-
lent to the infinite-horizon discounted asset-selling problem
with recall, where the discrete discount factor is ���� and
the distribution for the sequential purchasing offers is w∼
v − �1− F �v��/f �v� (denote the corresponding probabil-
ity law by H ). The solution to this classical problem is to
immediately accept any offer wn such that wn � �w, where �w
satisfies �w/����= �wP�w � �w�+ ∫ �

�w wdH�w�, and reject
all other offers (see Chapters 4 and 7 in Bertsekas 1995).

In the common case where j�v�≡ v− �1− F �v��/f �v� is
nondecreasing (see Assumption 2 discussed in §2.1), this
is equivalent to immediately selling the item to the first
bidder n such that vn � p1, where p1 satisfies

j�p1�= p1
�����1− F �p1��

1−����F �p1�
 (9)

When multiple items are for sale (K > 1), the opti-
mal policy is found by introducing a state variable k ∈
�1�    �K� representing the number of items remaining to
be sold, and applying the same result through backwards
induction on k by adding to each item’s selling price in the
Bellman equation for (8) the optimal expected discounted
revenue associated with the sale of all the other items
still remaining at that point. Consequently, there exists a
finite sequence �pk�1�k�K such that it is optimal to sell the
�K − k+ 1�th item to the first bidder n arriving after the
�K−k�th sale, such that vn � pk. Equivalently, defining by
recurrence an increasing finite sequence �nl�1�l�K by n1 =
min�n� vn � pK�, nl =min�n > nl−1� vn � pK−l+1� for l� 2
(arrival index of first and lth buyers, respectively), and

l�n�=
{
max�l� nl < n� if n1 <n�

0 otherwise
(10)

(number of items sold by the nth arrival), the optimal
allocation policy can be written as �qn = 1�pK−l�n�� v̄	�vn� and
ŝn = n/ �qn. Note that ����ŝn−n �qn = 1�pK−l�n�� v̄	�vn� and
pK−l�n� is independent of vn, so � �qn� ŝn�n�1 satisfies con-
straint �IP1� and is therefore an optimal solution to (8).
Turning now to the payment functions �yn�n�1, observe

that according to �IC1� the term ����nE�un�v�	 appearing
in the objective (7) can be expressed for all v′ ∈ V as

����nE�un�v�	=E�����sn�vnqn − yn� � vn = v′	

−
∫ v′

v
E�����snqn � vn = v	dv (11)

Therefore, setting �yn = pK−l�n� �qn (the first bidder n arriv-
ing after l�n� items have been sold and having a valuation
greater or equal to pK−l�n� gets the next item, and his pay-
ment equals pK−l�n�), E�un�v�	= 0 for all n as

∫ v′

v
E�����ŝn �qn � vn = v	dv

=����n
∫ v′

v
1�pK−l�n�� v̄	�v�dv

=����n�v′ −pK−l�n��1�pK−l�n��v̄	�v
′�

=E�����ŝn�vn �qn − �yn� � vn = v′	 (12)

In addition, it is straightforward to verify that �yn satis-
fies constraints �IC1� and �IR1�; we have therefore proven
that the mechanism � �qn� �yn� ŝn�n�1 is an optimal solution
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to the mechanism design problem (3). In the remainder
of this paper, we refer to this mechanism as DP ∗, stand-
ing for optimal dynamic pricing. An important remark is
that because DP ∗ satisfies the additional constraint �IB�
(see §2.2.4), it is also optimal for the impatient bidders
case: In line with results described in the literature for dis-
crete asset-selling problems, the option to recall past offers
is worthless in this environment—this result would likely
break down if instead the number of potential bidders was
assumed to be finite, or the valuation distribution to be
unknown (see Riley and Zeckhauser 1983).
Finally, we provide a method to compute explicitly the

sequence of prices �pk�1�k�K associated with DP ∗: for
k� 2, pk maximizes the right-hand side of the Bellman
equation

Rk =����max
p∈V

��1− F �p���p+Rk−1�+ F �p�Rk	� (13)

where Rk is the optimal expected discounted revenue-to-go
when k items are available for sale at time 0. Thus, Rk =
E�����N�pk�	�pk + Rk−1�, where N�pk� is a positive geo-
metric random variable with parameter F �pk�. Substituting
the right-hand side of this last expression calculated explic-
itly into the first-order condition associated with (13) yields
the recursive system appearing in the following theorem,
which summarizes the analysis.

Theorem 3. Under Assumptions 1–4, the dynamic mecha-
nism DP ∗ solves (3): It supports a dominant equilibrium
maximizing the seller’s expected discounted revenue among
all mechanisms where full transfer payments occur instan-
taneously upon item allocations. It is characterized by a
sequence of prices �pk�1�k�K , and consists of using a fixed
price of pk for the �K − k+ 1�th sale. This sequence can
be computed using the recursion




p1 solves (9), R1 = j�p1��

pk solves j�pk�= pk
�����1− F �pk��

1−����F �pk�

−Rk−1
1−����

1−����F �pk�
�

Rk =Rk−1 + j�pk��

(14)

where Rk is the optimal expected discounted revenue-to-go
when k items are available for sale at time 0. DP ∗ is also
optimal for the problems with impatient and time-strategic
bidders obtained by adding, respectively, constraint �IB�
and �IC′� to (3).

To interpret system (14), we use the analogy between
mechanism design and monopoly pricing introduced in
Bulow and Roberts (1989). First, consider the single-item
case K = 1: Replacing in the usual Cournot framework the
“quantity” q with the probability of sale 1 − F �p1�, the

marginal revenue associated with a bidder with valuation p1
is precisely given by

d

dq
�p1�1− F �p1��	= p1 +

dp1
dq

q = j�p1��

the left-hand side of (9). Besides, the right-hand side
of (9) is equal to the expected discounted revenue
R1 = p1E�����

N�p1�	 obtained when starting at t = 0 to sell
an item for a fixed price of p1 (as before, N�p1� denotes a
positive geometric random variable with parameter F �p1�).
Therefore, Equation (9) is just the statement that the win-
ning bidder should be determined so that marginal revenue
from the current sale equals marginal cost or salvage value,
that is, the (discounted) revenue to be expected if the cur-
rent sale attempt were to fail. Incidentally, note that as
intuition suggests, p1 increases as � increases: When the
seller’s time value decreases, he can charge a higher price
as the longer time to sell that it entails becomes less penal-
izing. The equation in the second line of system (14) is
identical to (9), except that its right-hand side has a second
term capturing the negative impact of the postponement of
the k−1 remaining sales on the marginal cost/salvage value
of the (K−k+1)th item. The equations in its first and third
lines imply that Rk =

∑k
i=1 j�pi� for k� 1, which expresses

that the optimal expected discounted revenue when k items
are available is the sum of the individual marginal revenues
associated with the sales of those items.
In the final part of this section, we prove and interpret

two basic properties of the mechanism DP ∗—the first one
is also established and interpreted in a discrete-time setting
equivalent to ours by Das Varma and Vettas (2001).

Proposition 3. The sequence of prices �pk�1�k�K charac-
terizing the mechanism DP ∗ is decreasing with k, so that
unit prices increase as sales occur over time.

The intuition for this proposition is that delaying the first
sale when K items are available increases the discounting
of the revenues associated with all K future sales, whereas
a delay in (say) the last sale only impacts its own time-
discount factor. As a result, the optimal mechanism DP ∗

initially uses a relatively low price pK for the first sale,
which reduces on average not only the time until this first
sale, but also the epoch (and discounting) of all subse-
quent sales. As more sales occur and fewer items are left
to be sold, DP ∗ progressively increases the selling price as
short-term revenues become more attractive in the trade-
off between selling price and sales epochs introduced by
time discounting. Proposition 3 is important from a theo-
retical standpoint, because as mentioned in §2.2, it implies
that DP ∗ is also optimal for the mechanism design problem
obtained by replacing the incentive compatibility constraint
�IC� in (3) by the more stringent constraint �IC′� (see the
discussion after (3) in §2.2). In other words, because prices
prescribed by DP ∗ increase over time, for any bidder and
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any demand realization the only potential consequence of
intentionally delaying the type input into the mechanism is
a reduction of discounted profit. Interestingly, the princi-
ple of selling a limited inventory of (near) identical items
at posted prices increasing over time seems to be common
in the sale of art photographs and real-estate units within
a development project—although these situations clearly
exhibit some unique specificities, we infer that some of the
rationale we develop in this paper for using such a mecha-
nism may also be relevant in those markets.
The following proposition describes the limiting behav-

ior of the optimal mechanism as the number of items ini-
tially available becomes large.

Proposition 4. The sequence of prices �pk�k�1 prescribed
by DP ∗ has a finite limit p∗ = limk→+� pk such that
j�p∗�= 0.

To understand Proposition 4, it is useful to recall the
interpretation for the second equation in (14): As the num-
ber of items becomes large, the marginal cost/salvage value
of the very first item to be sold goes to zero, because the
short-term profits to be derived from a postponed sale of
this item tend to be overshadowed by the resulting heavier
discounting of the (many) subsequent sales. Note that this
result is also consistent with the sale of an item with no
salvage value to a single potential buyer having a valua-
tion distribution with c.d.f. F �·�: The first-order condition
associated with maxp�p�1− F �p��	 is precisely equivalent
to j�p�= 0.

3. Numerical Study
The purpose of this numerical study is to compare under
different scenarios the performance of the optimal mech-
anism DP ∗ defined in the statement of Theorem 3 with
that of two other dynamic mechanisms widely used in
practice: fixed posted price and online auction. In the
remainder of this paper, a mechanism � characterized
by a vector of parameters 5 is referred to as ��5�, the
expected discounted revenue associated with this mecha-
nism as E���5�	, and the mechanism obtained when 5 is
chosen to maximize E���5�	 as �∗. In addition, the sub-
optimality of a mechanism � relative to DP ∗ is denoted
by S��	 ≡ �E�DP ∗	 − E��	�/E�DP ∗	. Finally, we define
for convenience the interest rate 7 through the relation
�= 1/�1+7�. We now turn to the precise definition of the
two mechanisms just mentioned:

Optimal Fixed Price (FP ∗). A fixed posted price p
is used for all K transactions, and this price is chosen
optimally. That is, p maximizes over V the expected dis-
counted revenue E�FP�p�	 = pE�

∑K
k=1�

# ′k 	 obtained with
this mechanism, where # ′k is the epoch at which the kth
transaction is concluded. Its distribution satisfies # ′k ∼
# ′k−1+

∑nk
i=nk−1+1 xi, where �xi�i�1 are i.i.d. with xi ∼ x and

nk−nk−1 � 1 is geometric with parameter F �p�. A straight-
forward calculation yields

E�FP�p�	

= ����

1−����
p�1−F �p��

(
1−

(
�����1−F �p��

1−����F �p�

)K)
� (15)

which we maximize over p using numerical methods to
obtain E�FP ∗	.

Optimal Online Auction (OA∗). At a specified closing
date T , a maximum of K items are awarded by decreas-
ing order of the bids submitted by then, provided they are
higher than the reserve price r , for a price equal to the max-
imum of the highest rejected bid and r . Known as Dutch or
open auction, this mechanism is the most common auction
format for selling multiple identical items on the Internet
(it is used in particular on the site eBay). Interestingly,
with an appropriate reserve price this mechanism is opti-
mal when time is not discounted and the number of bidders
is fixed (Maskin and Riley 1989). Also, this mechanism
supports a dominant equilibrium whereby bidders truthfully
bid their valuation; If �r �T �= �v′1� v

′
2�    � v

′
Nr �T �

� is the set
of valuations larger than or equal to r of the bidders who
arrived before T , the corresponding expected discounted
revenue is thus E�OA�T � r�	 = �T E�max�r� v′�K+1�� ×
min�Nr�T ��K�	, where v

′
�K+1� is the �K+1�th highest valu-

ation in �r �T � and by convention v
′
�K+1� = 0 if Nr�T ��K.

Note that the optimal value r∗ of r is independent of T
and is obtained by solving j�r� = 0 (Proposition 4 in
Maskin and Riley 1989). Consequently, for simplicity we
will assume from now on that the reserve price r is always
set to r∗, and omit the dependence on r when writing
OA�T �≡OA�T � r∗�.
We assume in the next two §§3.1 and 3.2 that the bid-

der arrival process is Poisson with rate 1 and that valu-
ations are uniformly distributed in �0�10	. A lengthy but
straightforward calculation shows that E�OA�T �	 special-
izes then to

10�T

[
;T

4

(
1− <

(
K�

;T

2

))
+K<

(
K+ 1�

;T

2

)

− K�K+ 1�
;T

<

(
K+ 2�

;T

2

)]
� (16)

where <�a� z� ≡ ∫ z

0 t
a−1e−t dt/

∫ �
0 ta−1e−t dt is the incom-

plete gamma function ratio; E�OA∗	 is then obtained using
numerical methods. In the following §3.3, we assume
instead that valuations follow more general c×Beta�a� b	
distributions, and that the arrival process is either Poisson
or deterministic with rate 1; E�OA∗	 is then computed
using a commercial simulation-based optimization search
software (OptQuest). Although this last method does not
provide any guarantee of optimality, in all validation runs
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we performed with uniform valuations and Poisson arrivals
its output was within 0.01% of the value of E�OA∗	 com-
puted through numerical optimization of (16). The next
three subsections, respectively, address the following ques-
tions: (i) What is the suboptimality of the mechanisms
FP ∗ and OA∗ with respect to DP ∗ for various values of
7 and K? (ii) How robust are the mechanisms FP ∗, OA∗,
and DP ∗ relative to the choice of the parameters p, T , and
�pk�1�k�K , respectively? (iii) What is the impact of the dis-
tributional assumptions made to represent valuations and
interarrival times?

3.1. Mechanism Suboptimality

Table 1 summarizes the results of this first set of exper-
iments (we defer the definition of the mechanism MA∗

appearing in the 5th, 9th, and last columns of this table to
the end of the present subsection). Our main observations
are the following:
• For a fixed value of K, the expected discounted rev-

enue associated with the three mechanisms considered
decreases with the interest rate 7—this is hardly surprising,
as an increase in the interest rate alone only amounts to a
higher time penalty through a lower value of the discount
factor �.
• Over the range of market environments considered,

the ranking of FP ∗ and OA∗ with respect to expected
discounted revenue is always the same, i.e., E�DP ∗	 �
E�FP ∗	�E�OA∗	. While the first inequality and E�DP ∗	�
E�OA∗	 follow from the theory developed in §2, the second
inequality is merely an empirical observation that may not
always apply. In the environments we did study, however,
the suboptimality of OA∗ observed is much higher than that
of FP ∗: The loss in discounted revenue resulting from a
restriction of the optimal dynamic pricing mechanism to
a single price seems to be considerably smaller than the
loss incurred when using instead an online auction, a more
drastic departure from that mechanism structure. In fact,
because the suboptimality S�FP ∗	 never exceeds a couple
of percentage points over the range of scenarios considered,

Table 1. E�DP ∗	, S�FP ∗	, S�OA∗	, and S�MA∗
K	 for 7 ∈ �01%�1%	 and K ∈ �1�10�50�.

K = 1 K = 10 K = 50

S�FP ∗	 S�OA∗	 S�MA∗
1	 S�FP ∗	 S�OA∗	 S�MA∗

10	 S�FP ∗	 S�OA∗	 S�MA∗
50	

7 (%) E�DP ∗	 (%) (%) (%) E�DP ∗	/K (%) (%) (%) E�DP ∗	/K (%) (%) (%)

0.1 9.39 0 2.68 2.68 8.66 0.6 689 689 7.31 1.4 1523 1523
0.2 9.15 0 3.83 3.83 8.15 0.8 980 980 6.39 1.8 2165 1896
0.3 8.96 0 4.73 4.73 7.78 0.9 1206 1206 5.75 2.0 2660 1834
0.4 8.81 0 5.49 5.49 7.47 1.0 1397 1397 5.25 2.1 3077 1694
0.5 8.68 0 6.17 6.17 7.21 1.1 1567 1567 4.85 2.2 3443 1544
0.6 8.57 0 6.79 6.78 6.99 1.2 1721 1721 4.50 2.2 3770 1402
0.7 8.46 0 7.36 7.35 6.78 1.3 1863 1837 4.21 2.2 4065 1271
0.8 8.37 0 7.90 7.88 6.60 1.3 1996 1904 3.95 2.2 4332 1154
0.9 8.28 0 8.41 8.38 6.43 1.4 2121 1940 3.73 2.2 4572 1048
1.0 8.19 0 8.89 8.85 6.28 1.4 2238 1957 3.52 2.1 4787 954

one may question in practice the benefit of using DP ∗ over
FP ∗, as a dynamic pricing mechanism is arguably harder
to implement and may not be as popular with buyers as a
fixed price one.
• The performances of FP ∗ and OA∗ relative to DP ∗

both deteriorate when time becomes more valuable, but this
effect is much more sensitive for OA∗ than it is for FP ∗.
In the limit where the value of time 7 goes to zero (or
equivalently �→ 1), the dispersion of the prices �pk�1�k�K

characterizing DP ∗ becomes negligible (as the second term
in the right-hand side of the recurrence equation satisfied by
�pk�1�k�K in (14) disappears), so that the mechanisms DP ∗

and FP ∗ become identical—note that this is also consistent
with the intuitive interpretation provided for Proposition 3
above. The data in Table 1 suggest that the suboptimality of
OA∗ also goes to zero with 7; although our model is non-
sensical when time has no value at all because the potential
number of bidders is infinite, its limit when the interest
rate goes to zero thus seems to be consistent with the opti-
mality of OA∗ for a static market environment proven in
Maskin and Riley (1989) (see also the discussion of Wang
1993 below). Note that this limit behavior is highly relevant
given the range of likely values for the interest rate in most
practical settings: For example, with an average arrival rate
of one bidder every four hours, an interest rate of 30% per
annum corresponds to 7= 0012% when the unit of time
is set, as in our experiments, such that ;= 1.
• Increasing the number of items for sale K amplifies

the suboptimality of FP ∗ and OA∗ relative to DP ∗. How-
ever, here again this phenomenon is more sensitive for OA∗

than it is for FP ∗; as a result, the performance of OA∗ rel-
ative to FP ∗ also deteriorates as more and more items are
put up for sale.
To summarize these experiments, DP ∗ always performs

the best (this is predicted by the theory developed in §2)
and FP ∗ is very close to optimal, always outperform-
ing OA∗. In addition, both the performance of FP ∗ and OA∗

relative to DP ∗ and that of OA∗ relative to FP ∗ deteriorate
when the value of time and/or the number of items for sale
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increases. However, for low values of the interest rate and
moderate numbers of items for sale, which should be the
norm in many applications, the suboptimality of the optimal
online auction mechanism for the criteria of expected dis-
counted revenue only amounts to a few percentage points.
These results should be interpreted in light of Wang

(1993), who compares the expected revenue derived from
a sequence of optimal auctions with that of an optimal
posted-price mechanism in a model with a single item for
sale, fixed display/storage cost rates, auction setup costs,
and Poisson bidder arrivals. Interestingly, when the cost
rates are the same and there are no auction setup costs,
the hypotheses enabling a meaningful comparison with our
model, he finds that the two mechanisms generate the same
expected revenue. Because there is no time discounting in
Wang’s model, this result is consistent with the limiting
behavior observed for S�OA∗	 when the interest rate goes
to zero.
This also points to a limitation of the comparison per-

formed so far between posted prices and online auction
mechanisms: In our model, a seller using an auction will
only run one single auction, regardless of how many items
are left unsold after the initial bidding period. In contrast,
Wang considers a sequence of however many auctions are
necessary to sell one item; this suggests more generally the
multiple-auctions mechanism MAK�T1�    � TK� consisting
of a sequence of however many online auctions it takes to
sell the K items, each with the same structure as OA�T �,
but where the bidding period Tk of each auction in the
sequence is chosen dynamically as a function of the num-
ber of items k still unsold at that point (Vulcano et al. 2002
treat a somewhat related problem). Note that the reserve
price rk of each auction starting with k items left is set
as before, such that j�r� = 0, independently of k, which
(in contrast to the single auction case) is not optimal. In
fact, setting �rk� Tk�= �pk�0� for each k, where �pk�1�k�K

are the prices characterizing DP ∗, precisely achieves the
optimal mechanism DP ∗—the only reason for introducing
the mechanism MAK here is to explore the hypothesis that
the better performance of DP ∗ and FP ∗ over OA∗ may be
explained by the “unfair” advantage of never leaving any
items unsold.
With uniform valuations and a Poisson bidder arrival

process with rate ;, the expression E�MA1�T1�	 =
E�OA�T1�	/�1−�T1e−;T1/2� is readily derived, and we can
maximize it over T1 > 0 using numerical methods to obtain
E�MA∗

1	. Introducing next the notations OAk�T � for the
(single) online auction mechanism with bidding period T
when k items are for sale and �T ∗

l �1�l�k for the values of
�Tl�1�l�k maximizing E�MAk�T1�    � Tk�	 , for k > 1,

E�MAk��T
∗
l �1�l�k−1� Tk�	

=E�OAk�Tk�	+�TkE�MAk��T
∗
l �1�l�k−1� Tk�	

·P�Nr∗�Tk�= 0�+�Tk

k−1∑
l=1

P�Nr∗�Tk�= l�E�MA∗
k−l	�

and we finally obtain E�MA∗
k	 for k > 1 through the

recursion

E�MA∗
k	

=max
Tk

[
E�OAk�Tk�	+�Tk

(∑k−1
l=1 P�Nr∗�Tk�= l�E�MA∗

k−l	
)

1−�TkP�Nr∗�Tk�=0�

]


(17)

The columns of Table 1 reporting S�MA∗
K	 show that in

situations with relatively low values of the interest rate 7
and the number of items for sale K, including some where
the suboptimality of OA∗ is larger than 17%, the perfor-
mances of OA∗ and MA∗

K are virtually identical. In con-
trast, when 7 and/or K increases, the advantage of MA∗

K

over OA∗ can become significant. However, an inspection
of the optimal bidding periods �T ∗

k �1�k�K of the auction
sequence MA∗

K (not shown here) reveals that in the cases
where E�MA∗

K	� E�OA∗	, there always exists a k0 such
that T ∗

k = 0 for k0 � k � K. In other words, the mecha-
nism MA∗

K then initially adopts a fixed-price strategy with
posted price r∗ such that j�r∗�= 0 (the right-hand side of
the second equation in (14) expressing the marginal cost
of selling in DP ∗ with k items left is close to zero when
7 and/or k are large; see Proposition 4). When fewer than
k0 items are left, MA∗

K switches to an auction strategy
(when the marginal cost of selling at r∗ becomes too high).
This switching behavior also explains the observation from
the last column of Table 1 that the suboptimality S�MA∗

K	
is a monotonic function of neither K nor 7� S�MA∗

K	 starts
increasing as a function of K or 7 precisely when the
impact of the initial fixed-price behavior mode begins to
shadow that of the final auction mode.
For a relatively low interest rate and number of items

for sale, the argument that the worse performance of auc-
tion mechanisms in this setting can be explained by their
potential failure to sell all the items may therefore be coun-
tered on experimental grounds. Rather, a bidding mecha-
nism inherently seems to not be as time-efficient a revenue
generator then. However, while the switching behavior of
MA∗

K may seem interesting, it unfortunately prevents us
from drawing a similar conclusion for the cases where 7
and/or K are high.

3.2. Parameter Robustness

To evaluate the robustness of DP ∗, FP ∗, and OA∗ with
respect to the choice of parameters, we plot E�FP�p�	,
E�OA�T �	, and E�DP��pk�1�k�K�	 in the same market
environments, using Equations (15), (16), and

E�DP��pk�1�k�K�	=
K∑
k=1

pk

k∏
l=1

�����1− F �pl��

1−����F �pl�
� (18)

respectively. To plot E�DP��pk�1�k�K�	 as a function of
a single variable for comparison purposes, we introduce
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the price p∗ maximizing E�FP�p�	, the prices �p∗
k�1�k�K

characterizing DP ∗, and define

pk�p�=



p

p∗p
∗
k for 0� p� p∗�

p∗
k + �10−p∗

k�
p−p∗

10−p∗ for p∗ <p� 10

(19)

Note that we thus consider the prices obtained by pro-
portionately scaling the optimal prices, so that the resulting
assessment of the robustness of DP ∗ may be somewhat
optimistic. Figures 1 and 2 contain graphs of E�FP�p�	,
E�DP��pk�p��1�k�K�	, and E�OA�T �	 for the two cases
7= 01% and 7= 10%, when K = 1 and K = 50, respec-
tively. Functions E�FP�p�	 and E�DP��pk�p��1�k�K�	 are
plotted over the range p ∈ �0�10	 (lower X-axis), while
E�OA�T �	 is plotted over T ∈ �0�2T ∗	 (upper X-axis).
In these graphs, the flatness of each curve around its

maxima provides a measure for the robustness of the cor-
responding mechanism: If a discounted revenue curve is
relatively flat around its maxima, a deviation from the opti-
mal parameter value is not likely to be very penalizing,
while a sharp curve indicates the contrary. Observe first that
according to this measure, OA∗ seems to be quite robust in
all cases, even if it becomes slightly less robust when the
number of items K is high and the interest rate 7 is low, or
when K is low and 7 is high. In contrast, the mechanisms
FP ∗ and DP ∗, which seem roughly equivalent from the
perspective of robustness, are significantly less robust than
OA∗ across the range of cases considered—this should not

Figure 1. E�FP�p�	 and E�OA�T �	 for K = 1 and 7 ∈ �01%�10%�.
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be underestimated as a potential reason for the popularity of
online auctions in practice. However, the robustness of FP ∗

and DP ∗ improves relatively significantly when the interest
rate and/or the number of items for sale increases. This last
observation is quite remarkable: The environments where
the dynamic and fixed pricing mechanisms DP ∗ and FP ∗

seem to most significantly outperform the auction mecha-
nism OA∗ in terms of expected discounted revenue (large
K and/or high 7, see §3.1) thus coincide with those where
OA∗ has only a reduced advantage over DP ∗ and FP ∗ in
terms of robustness. In that sense, this numerical study
suggests unambiguous guidelines for when to use a (pos-
sibly dynamic) posted-price mechanism versus an auction
mechanism.

3.3. Distributional Robustness

3.3.1. Distribution Shape. In this third set of exper-
iments, bidder valuations were assumed instead to follow
8 × Beta�05�03	 and 20 × Beta�2�6	 distributions. By
design, these distributions have the same first two moments
as the distribution U�0�10	 used in the previous subsection,
but a different support and shape (�0�8	 with a right-skewed
U shape and �0�20	 with a left-skewed bell shape, respec-
tively). Table 2 summarizes our results; it reports not only
E�DP ∗	/K, S�FP ∗	, and S�OA∗	 as before, but also (in
parentheses) the relative (respectively, absolute) variation
of each expected discounted revenue (respectively, subopti-
mality) value relative to the corresponding one from Table 1
obtained with uniform valuations.
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Figure 2. E�DP��pk�p��k�K�	, E�FP�p�	, and E�OA�T �	 for K = 50 and 7 ∈ �01%�10%�.
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Our main observations are the following:
• The previous finding that the suboptimality of OA∗

and FP ∗ increases with 7 and K and the inequalities
E�DP ∗	�E�FP ∗	�E�OA∗	 remain valid here.
• Although limited as before to a couple of percentage

points, S�FP ∗	 was relatively larger under 20×Beta�2�6	
and smaller under 8 × Beta�05�03	. Our explanation is
that a larger support and longer right tail of the valuation
distribution provide more leverage to the possibility of sell-
ing different items at different prices.
• For low values of 7 and K, the optimal discounted

revenue E�DP ∗	 is highest under 20 × Beta�2�6	, while
for high values of 7 and K it is highest under 8 ×
Beta�05�03	. Our interpretation is that setting a value for
the interest rate dictates how the trade-off between high
price and time to sell should be addressed; this in turn
effectively amounts to selecting which section of the valua-
tion distribution support is most attractive. Also, increasing
the number of items for sale K effectively increases the
time sensitivity for the sale of the initial items (see the
discussion after Proposition 3); thus, K also participates in
selecting which part of the valuation distribution matters
most. As a result, sale opportunities at prices larger than 10
provided by 20×Beta�2�6	 can be leveraged even though
they have a small probability when time sensitivity and/or
the number of items are low (cases K = 1 and K = 10,
7= 01%), while the much shorter time to sell at prices
between 5 and 8 under 8 × Beta�05�03	 becomes more
attractive when time sensitivity and the number of items are
high (case 7 = 1%, K = 10). Finally, the case 7= 05%,

K = 10 illustrates the intermediary situation where the
most relevant part of the support is �8�10�, providing an
advantage to U�0�10	—note that this interpretation is sup-
ported by the relative values of the density functions of
8×Beta�05�03	, U�0�10	, and 20×Beta�2�6	 on �0�20	.
• The performance of OA∗ relative to DP ∗ improved

under 8 × Beta�05�03	 and deteriorated under 20 ×
Beta�2�6	. Our interpretation for this is rooted in the obser-
vation that E�OA∗	 primarily depends on the distribution of
highest valuations, whereas E�DP ∗	 depends on the prob-
ability that valuations are higher than optimally chosen
prices. As a result, the relative concentration of likely val-
ues for the high-order statistics of 8×Beta�05�03	 result-
ing from the “�” shape of its right tail effectively reduces
the discrepancy between E�DP ∗	 and E�OA∗	. On the con-
trary, this discrepancy increases when the distribution of the
high-order statistics is more variable, as is the case under
20×Beta�2�6	.

3.3.2. Distribution Variability. Our last set of exper-
iments, with results reported in Table 3, was designed
to assess the impact of arrival and valuation variability
on the relative performance of DP ∗, FP ∗, and OA∗. While
the structure of Table 3 is the same as that of Table 2,
the valuation distributions considered were instead 10 ×
Beta�054�054	 and 10 × Beta�184�184	, which have
the same mean and support as the distribution U�0�10	
used earlier, but with standard deviations 20% larger and
20% smaller, respectively. In addition, the last three rows
of the table report the results of experiments conducted
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instead with deterministic arrivals. Our observations are the
following:
• Again, the previous finding that the suboptimality of

OA∗ and FP ∗ increases with 7 and K, the inequalities
E�DP ∗	� E�FP ∗	� E�OA∗	, and the small suboptimality
of FP ∗ all remain valid here.
• The marginal impact of switching to deterministic

interarrival times was barely detectable in the case of DP ∗

and FP ∗, and slightly higher but still very low in the case
of OA∗. Predictably, the impact of switching to determinis-
tic interarrival times on OA∗ was all the more sensitive as
the time sensitivity was high.
• Increasing (respectively, decreasing) the valuation

variability, however, did result in a significant increase
(respectively, decrease) of E�DP ∗	, E�FP ∗	, and E�OA∗	.
At least within the range of time discount rates considered,
all three mechanisms seem to benefit from a heavier right
tail of the valuation distribution, that is, from the occasional
appearance of a high-valuation bidder.
• The suboptimality S�FP ∗	 slightly improved under

10×Beta�054�054	 and slightly deteriorated under 10×
Beta�184�184	. We infer that this follows from the
U shape of 10×Beta�054�054	, which concentrates in a
smaller region the valuations targeted by the optimal prices
under DP ∗, and therefore offers a reduced advantage to
DP ∗ over FP ∗ compared to 10× Beta�184�184	 (which
exhibits a bell shape)—thus, this result may not hold under
different distributions.
• The suboptimality S�OA∗	 slightly improved under

10×Beta�054�054	 and slightly deteriorated under 10×
Beta�184�184	 for 7= 01%, but slightly improved under
both distributions when the interest rate was 0.5% or 1%.
We do not have any satisfactory explanation for this intrigu-
ing observation, and conjecture that it may be an arte-
fact of the particular shapes of the distributions considered.
However, note that, as for the previous point, the absolute
impact of this effect is very small.

4. Conclusion
In this paper, we formulate and solve a continuous-time
dynamic mechanism design problem for the sale of mul-
tiple identical items when participants are time sensitive.
Although some relatively restrictive assumptions about the
market environment are imposed, we still find it note-
worthy that the optimal mechanism, a dynamic pricing
scheme where the posted price increases after each sale,
can be fully characterized; this is achieved in particular
by Equation (9) and system (14), which gather in concise
forms all the basic problem data. Remarkably, this result
rationalizes somewhat the restriction to dynamic pricing
policies assumed a priori in many studies, as well as the
typical assumption that buyers are impatient. In addition,
the analysis presented relies on the study of two generic
dynamic mechanism properties, discreteness and stability,
which we hope to be of interest to others researching this
topic.

In our numerical study, we found the benefit of dynamic
pricing over a well-chosen fixed posted-price mechanism to
be relatively small in this environment. Simulation exper-
iments also suggested that, according to the criteria of
both expected discounted revenue and parameter robust-
ness, posted prices should be used over online auctions
when the number of items for sale is large and/or the mar-
ket is particularly time sensitive. With a small number of
items for sale and/or low time discounting, however, the
significantly better parameter robustness of online auctions
should in practice more than make up for their slightly
lower predicted performance in terms of expected dis-
counted revenue. Because we observed these findings to
hold under several different distributional assumptions, we
believe that they may suggest useful guidelines for practi-
tioners when selling goods online.
Future research will hopefully permit solving the same

mechanism design problem under a BNE formulation, pos-
sibly generalizing to our setting along the way the set
of conditions for dominant strategy implementation pro-
vided in Mookherjee and Reichelstein (1992). Other exten-
sions could include relaxing the unit-demand assumption
(perhaps using some of the techniques developed for a
static environment by Maskin and Riley 1989), and the
assumption that all market participants share the same time-
discount factor. Further work may also focus on an adaptive
mechanism design problem, where the valuation distribu-
tion is not known initially, but rather progressively inferred
by observing participants’ actions. Finally, the theoretical
question of which dynamic mechanisms are optimal in a
finite-horizon setting seems particularly important and is,
to the best of our knowledge, unanswered so far.

Appendix

A.1. Summary of Notation

We use the following vector notation throughout: When w
is any of the symbols in �q�·�� y�·�� (respectively, �v� t���),
wn refers to the vector with n components �wn

1 �    �w
n
n�

(respectively, �w1�    �wn�). Also, if � and �̇ are dynamic
mechanisms, their associated detailed variables follow the
same notational modification and will be refered to as (say)
qn, yn, sn and q̇n, ẏn, ṡn, respectively.

Market Environment

K number of identicals items
for sale

tn arrival time of bidder n
x∼ tn − tn−1 bidder interarrival time
;≡ 1/E�x	 bidder arrival rate

� time-discount factor
7≡ 1/�− 1 interest rate
��z�=E�zx	 transform of bidder interar-

rival time
h�t�≡E��x−t � x > t	 conditional discount function
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vn valuation of bidder n
V = �v� v̄	 support of valuation distribu-

tion
f �·�� F �·� p.d.f. and c.d.f. of valuation

distribution
j�v�≡ v− �1− F �v��/f �v� virtual value function

�n = �vn� tn� type of bidder n
�= ��v1� t1�� �v2� t2��   � bidder arrival stream

� set of possible values for �
�n = ��v1� t1��    � �vn� tn�� types of n first bidders

�n set of possible values for �n

�′n set of possible values for
��n� t� with t � tn

��n = ��vn+1� tn+1��   � types of bidders n + 1 and
above (tail)

un�v� random utility of bidder n
when vn = v

un�v� v
′� random utility of bidder n

when reporting v′ instead
of vn = v

U0�·� seller’s expected utility

Mechanism

� = �qn� yn�n�1 dynamic mechanism
�qn� yn� allocation and payment vectors after n

arrivals
�qni � y

n
i � allocation to and payment from of the

ith bidder after n arrivals
�qn� yn� final allocation to and payment from the

nth bidder
#n allocation epoch for the nth bidder

(possibly +�)
sn number of arrivals when the nth bidder

receives an item (possibly +�)
nk buyer to whom the kth item is sold

Miscellaneous

�+ nonnegative real numbers
�∗ positive integers
1A indicator function for set A

<�a� z� incomplete gamma function ratio (≡ ∫ z

0 t
a−1 ·

e−t dt/
∫ �
0 ta−1e−t dt)

A×B 2-cartesian product of sets A and B
An or �A�n n-cartesian product of set A

N�p� positive geometric r.v. with parameter F �p�

A.2. Proof of Proposition 1

Proof of Proposition 1. Define the r.v.s s′k and # ′k for
1� k�K as the number of arrived bidders and time epoch
at the kth item sale, respectively. Mathematically,

s′k≡ inf
{
n∈�∗� ∃t<tn+1 such that

n∑
i=1

qni ��
n�t��k

}
(20)

and # ′k ≡ inf�t ∈ �+�
∑s′k

i=1 q
s′k
i ��

s′k � t� � k�. Let nk be the
buyer to whom the kth item is sold, so that �snk � #nk � =

�s′k� #
′
k� and qnnk ��

n� t� = 1 ⇔ n � s′k and t � # ′k. Now
let � = �qn� yn�n�1 be an optimal mechanism, and
take 0 � k � K − 1. Consider now any n� 1 and
�n for which k�tn�≡ limt→t−n

∑n−1
i=1 q

n−1
i ��n−1� t�= k (the

number of items sold before time tn is equal to k),
define the set I�tn� = �nj � 1 � j � k�tn�� (bidders to
whom these k items have been sold), and consider the
tail ��n = ��vn+1� tn+1��   � of the stochastic process �.
From the principle of dynamic optimality, �qm� ym�m�n

maximizes E ��n�
∑K

j=k�tn�+1�
# ′j ynj � ��i��i�1�i�n�\I�tn�	 among

all sequences � �qm� �ym�m�n such that �qm� ym�1�m<n ×
� �qm� �ym�m�n is feasible. Now denote by J ��n−1��n� I�tn��
the optimal value of this expected partial objective value.
Because � is a renewal process, for all �t′� t� ∈ �0�+��2

the distribution of ��n given tn = t′ is equal to the distri-
bution of ��n given tn = t translated by t′ − t. Therefore,
J ��n−1� �vn� t′�� I�= �t′−tJ ��n−1� �vn� t�� I� for all �t′� t� ∈
�tn−1�+��2 and any set I ⊂ �i� 1� i� n− 1� such that
�I � � K: By definition, J ��n−1� �vn� t�� I� is the optimal
expected discounted revenue-to-go upon the nth arrival at
time t when the arrival process to date is ��n−1� �vn� t��
and the set of winning bidders immediately before time t is
given by I . Because of the seller’s time-sensitivity model,
translating by t′ − t a revenue stream exactly amounts
to multiplying its discounted value by �t′−t; otherwise,
the bidders already arrived that are available for a sale
from time t and t′ on (respectively) are exactly the same,
and the (translated) type distributions for all the bidders
not yet arrived are also the same. Therefore, E�t� ≡
J ��n−1� �vn� t�� I� satisfies for each �n−1, vn, and I the
functional equation �−tE�t�=M , where M is independent
of t, which proves the existence of a function M such that
J ��n−1� �vn� t�� I�= �tM��n−1� vn� I�.
Now applying the principle of dynamic optimality to the

case k = K − 1, it is optimal to sell the last item for a
payment of ynK = y at time # ′K = t between the nth and
�n + 1�th bidder arrivals, and after the K − 1 first items
have been sold to the bidders in set IK−1 if and only if
this maximizes discounted revenue among all feasible sales
alternatives available at this point and

�ty �E�n+1 �J ��
n��n+1� IK−1� � tn+1 > t	

=E�vn+1� tn+1���
tn+1V ��n� vn+1� IK−1� � tn+1 > t	

(from the result just proven)

=Etn+1 ��
tn+1 � tn+1 > t	Evn+1 �V ��

n� vn+1� IK−1�	

(from the independence of vn+1 and tn+1�
(21)

Because the resulting inequality holds for t � max�tn�
# ′K−1�, invoking now the hypothesis that Etn+1 ��

tn+1−t �
tn+1 > t	 is nondecreasing in t and the “if” part of the
equivalence stated above, we have proven so far that either
# ′K = ts′K or # ′K = # ′K−1. However, note that in the latter
case the same reasoning can be applied to y = ynK + ynK−1 ,
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t = # ′K = # ′K−1, and IK−2 (and so on), it therefore follows
that there exists k1, 1 � k1 � K, such that # ′k = ts′K if and
only if k1 � k � K. Assuming that k1 > 1 (otherwise the
result is proven), applying again the same reasoning to
ynk1−1

= y� # ′k1−1 = t, and Ik1−2 shows that there exists k2�
1� k2 < k1, such that #

′
k = ts′k1−1

if and only if k2 � k < k1.
Because the sequence k1� k2�    � kl is strictly decreasing
until the point where kl = 1, repeating this procedure iter-
atively shows that # ′k = ts′k for all k� 1� k�K, or, equiva-
lently, that � is discrete. �

A.3. Proof of Theorem 1

Proof of Theorem 1. Extending the definition of a stable
mechanism, a mechanism is said to be N -stable if its allo-
cations and payments are only independent of the arrival
epochs of the N first bidders for N � 1, that is, for all n� 1
and ��n� ��n� ∈�n such that vn = �vn,

�n��n�=�n� ��n� if n�N�

�n��n�=�n� ��n� if n>N and tl= t̂l for N <l�n
(22)

Note that the notions of stability and N -stability for
all N � 1 coincide. The proof begins with the following
lemma, then proceeds to show by induction that for all
N � 1, there exists a mechanism �� that is optimal and
N -stable.

Lemma 4. Let ��n�n�1 be an N -stable mechanism feasi-
ble for (3), and let �gn�n�1 be a family of mappings onto
��n�n�1 such that
(i) Gn�gn��n�� = Gn��n� for all n � 1 and �n ∈ �n,

where Gn��n�≡ vn;
(ii) Hn�gm��m�� = Hn�gn��n�� for all m � n � N + 1,

where Hn��m�≡ tn; and
(iii) �m�gm��m��v′n� n	� = �m�gm��m�v′n� n	�� for each

m� n� 1, �m ∈�n, and v′n ∈ V .
The mechanism ��̇n�n�1 ≡ ��n � gn�n�1 is then also

N -stable and feasible for (3).

Proof. It is immediate to check that �̇ is N -stable and that
it satisfies �AC� when (i) and (ii) hold. Denoting by g���
the event �gn��n��n�1, observe that

�qn�g����� yn�g����� sn�g�����= �q̇n���� ẏn���� ṡn����
(23)

Because � satisfies �IR� in particular on the events g��� for
� ∈�, �̇ satisfies �IR�. For all n� 1, � ∈�, and v′n ∈ V ,
�tsn�g���� �vnqn�g����− yn�g�����

� �tsn�g����v′n�n	� �vnqn�g����v
′
n� n	�− yn�g����v

′
n� n	���

�tṡn��� �vnq̇n���− ẏn����

� �tsn�g���v′n�n	�� �vnqn�g���v
′
n� n	��− yn�g���v

′
n� n	���

= �tṡn���v′n�n	� �vnq̇n���v
′
n� n	�− ẏn���v

′
n� n	���

(24)

where the first inequality holds because � satisfies in
particular �IC� on the events g��� for � ∈�, and the sec-
ond inequality follows from assumption (iii). This is just
the statement that �̇ satisfies �IC�, which concludes the
proof. �
Let N ∈ �0�1�   � and � = ��n�n�1 be a discrete,

N -stable solution to (3). All feasible mechanisms are
defined by extension to be 0-stable, so that the base of
the induction is included in what follows. Let k��n� ≡∑n

i=1 q
n
i ��

n� and �N ∈ �N such that k��N � < K—if such
a �N does not exist, then � is �N + 1�-stable. From
the principle of dynamic optimality, ��j�j>N maximizes
E�

∑K
l=k��N �+1�

ts′
l ynl � �N+1	 among all sequences ��̇j�j>N

such that ��j�1�j�N × ��̇j�j>N is feasible for (3). We
now prove that for any � ��N+1� ��N+1� ∈ �N+1 such that
�vN+1 = ṽN+1 and k� ��N �= k� ��N �= k <K,

�−t̂N+1E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]

= �−t̃N+1E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]
 (25)

By contradiction, assume instead that

�−t̂N+1E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]

<�−t̃N+1E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]
 (26)

Consider the family of applications �gn�n�1 defined by
gn��n�= �vn�In�tn�� and



In�tn�= tn for n�N�

In�tn�= �t̃N+1� tN+2 − tN+1 + t̃N+1�    �

tn − tN+1 + t̃N+1� for n�N + 1
(27)

From Lemma 4, the mechanism �̇ = � � g is feasible, yet

E

[ K∑
l=k+1

�
tṡ′
l ẏṅl

∣∣ ��N+1
]
= �t̂N+1−t̃N+1E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]

>E

[ K∑
l=k+1

�
ts′
l ynl

∣∣ ��N+1
]
 (28)

The first equality above follows because �tn� is assumed
to follow a renewal process, therefore by construction
of g, the distribution of �In�tn��n�N+1 conditional on
tN+1 = t̂N+1 is exactly the same as that of �t̃n�n�N+1 condi-
tional on t̃N+1. Therefore, by construction of �̇ = � �g and
because �vN+1 = ṽN+1, the distribution of the future alloca-
tion and payments resulting from mechanism �̇ conditional
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on ��N+1 is exactly the same as that resulting from � con-
ditional on ��N+1, except that their actual timing has been
translated by t̂N+1 − t̃N+1; the following inequality follows
from the contradiction hypothesis. However, this inequality
is strict and ��̇j�j�N = ��j�j�N , which contradicts the opti-
mality of ��j�j>N for max��j �j>N

E�
∑K

l=k� ��N �+1�
ts′
l ynl � ��N+1	

stated above, and proves (25).
Now define the family of applications �gn�n�1 on

��n�n�1 by g
n��n�= �vn�In�tn�� and




In�tn�= tn for n�N�

IN+1�tN+1�= �tN � t̂N+1�tN ���

where t̂N+1�tN �= tN +E�x	�

In�tn�= �tN � t̂N+1�tN �� tN+2 − tN+1 + t̂N+1�tN ��    �

tn − tN+1 + t̂N+1�tN ��

for n�N + 2

(29)

Note that the mechanism �� defined by ��n = �n � gn
is �N + 1�-stable, and it is easy to check that it satisfies
the conditions of Lemma 4, so that it is feasible for (3).
Besides, for any �N+1 ∈ �N+1 such that k��N �= k <K,
k̃��N � = k because � is N -stable from the induction
hypothesis and

E

[ K∑
l=1

�
ts̃′
l ỹñl

∣∣�N+1
]

=E

[ k∑
l=1

�
ts′
l ynl

∣∣�N+1
]
+E

[ K∑
l=k+1

�
ts̃′
l ỹñl

∣∣�N+1
]

=E

[ k∑
l=1

�
ts′
l ynl

∣∣�N+1
]

+�tN+1−t̂N+1�tN �E

[ K∑
l=k+1

�
ts̃′
l ỹñl

∣∣gN+1��N+1�
]

=E

[ k∑
l=1

�
ts′
l ynl

∣∣�N+1
]

+�tN+1−t̂N+1�tN �E

[ K∑
l=k+1

�
ts′
l ynl

∣∣gN+1��N+1�
]

=E

[ k∑
l=1

�
ts′
l ynl

∣∣�N+1
]
+E

[ K∑
l=k+1

�
ts′
l ynl

∣∣�N+1
]

=E

[ K∑
l=1

�
ts′
l ynl

∣∣�N+1
]
� (30)

where the first equality follows from the fact that �
ts′
l ynl is

�N -measurable for l � k and ��n = �n for n� N ; the sec-
ond because gn�gn��n��= gn��n� and ��n�n�1 is a renewal
process; the third from the construction of ��; and the fourth

from (25). Equation (30) and the fact that �� is N -stable
imply, finally, that

U0����=E

[
E

[ K∑
l=1

�
ts̃′
l ỹñl

∣∣�N+1
]]

=E

[
E

[ K∑
l=1

�
ts′
l ynl

∣∣�N+1
]]

=U0��� (31)

This last equality proves that �� is optimal, which concludes
the proof. �

A.4. Proof of Lemma 2

Proof of Lemma 2. Note that un�v
′� v� = un�v

′� +
�tsn�v′ 	−tn �v− v′�qn�v′	, so that �IC� is equivalent to

un�v�� un�v
′�+�tsn�v′ 	−tn �v− v′�qn�v

′	 (32)

This implies that

�tsn�v′ 	−tn �v− v′�qn�v
′	� un�v�− un�v

′�

� �tsn�v	−tn �v− v′�qn�v	� (33)

which in turn implies �IP1�. Thus, �tsn�v	−tnqn�v	 is increas-
ing in v for every realization of �; that function is therefore
Riemann integrable, and (33) also implies �IC1�. Finally,
note that �IR1� is a special case of �IR�. Conversely, the
integrand in the right-hand side of �IC1� is nonnegative
because qn�v	 ∈ �0�1�� so that un�vn� � un�v�, and �IR�
thus follows from �IR1�. Now take vn � v′ ∈ V 2; �IC1� and
�IP1� together imply that

un�vn�= un�v
′�+

∫ vn

v′
�tsn�v	−tnqn�v	dv

� un�v
′�+

∫ vn

v′
�tsn�v′ 	−tnqn�v

′	 dv (34)

= un�v
′�+�tsn�v′ 	−tn �vn − v′�qn�v

′	�

which has already been shown to be equivalent to �IC�.
The case vn < v′ follows analogously after writing instead

un�vn�= un�v
′�−

∫ v′

vn

�tsn�v	−tnqn�v	dv

� un�v
′�−

∫ v′

vn

�tsn�v′ 	−tnqn�v
′	 dv� (35)

which also implies �IC�, and concludes the proof. �

A.5. Proof of Proposition 2

Proof of Proposition 2. From the definition of un�vn�
and �IC1�, we have

�tsn−tnyn = �tsn−tnvnqn − un�vn�

= �tsn−tnvnqn−un�v�−
∫ vn
v
�tsn�v	−tnqn�v	dv (36)
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Taking expectations, using (4), and dividing by ����n

yields

E�����snyn	=E�����snvnqn	+����n

·E
[∫ vn

v
�tsn�v	−tnqn�v	dv

]
−����nE�un�v�	

(37)

The second term of the right-hand side of (37) can be
written as

����nE

[∫ vn

v
�tsn�v	−tnqn�v	dv

]

=����n
∫ v̄

v
E

[∫ vn

v
�tsn�v	−tnqn�v	dv

∣∣vn
]
f �vn�dvn

=����n
∫ v̄

v

(∫ vn

v
E��tsn�v	−tnqn�v		dv

)
f �vn�dvn

=
∫ v̄

v

(∫ vn

v
E
[
����sn�v	qn�v	

]
dv

)
f �vn�dvn

=
[(∫ vn

v
E
[
����sn�v	qn�v	

]
dv

)
F �vn�

]v̄
v

−
∫ v̄

v
E
[
����sn�vn	qn�vn	

]
F �vn�dvn

=
∫ v̄

v
E
[
����sn�v	qn�v	

]
�1− F �v��dv

=
∫ v̄

v
E

[
1− F �v�

f �v�
����sn�v	qn�v	

]
f �v�dv

=E

[
1− F �vn�

f �vn�
����snqn

]
� (38)

where the first equality above follows from the law of total
probability; the second from Fubini’s theorem; the third
from (4); the fourth from an integration by parts; the fifth
from the fact that F �v̄� = 1 and F �v� = 0; and the last
one from the law of total probability. A substitution in (37)
yields

E�����snyn	=E

[(
vn −

1− F �vn�

f �vn�

)
����snqn

]
−����nE�un�v�	 (39)

Substituting (39) into (5) and again applying the monotone
convergence theorem completes the proof. �

A.6. Proof of Proposition 3

Proof of Proposition 3. Using the previous remark
that Rk = E�����N�pk�	�pk + Rk−1�, we write pk =
argmaxp∈V � �p�Rk−1�, where � � V × �0�+�� → R is
defined by

� �p� y�= 1− F �p�

1−����F �p�
�p+ y�

Because � is twice differentiable and

J2� �p� y�

JpJy
= f �p�

�1−����F �p�	2
�����− 1�� 0�

this function has decreasing differences in �p� y� on
V × �0�+��; thus, Theorem 2.8.1 in Topkis (1998) applies,
so that argmaxp∈V � �p� y� is decreasing with y on �0�+��.
Because �Rk�k�1 is an increasing sequence (the discounted
revenue of any mechanism when k− 1 items are available
at time 0 can a fortiori be achieved when k items are avail-
able), it follows that �pk�1�k�K decreases with k. �

A.7. Proof of Proposition 4

Proof of Proposition 4. The existence of limk→+� pk
is immediate as the sequence �pk�k�1 is decreasing (from
Proposition 3) and it is bounded from below (by v). It
follows from the last equation in (14) that for k � 1,
Rk =

∑k
i=1 j�pi�. However, because �Rk�k�1 is an increas-

ing sequence, this implies j�pk�� 0 for all k� 1. Besides,
Rk =E�����N�pk�	�pk +Rk−1� and

N�pk�� 1

pk � v̄
implies Rk ������v̄+Rk−1�K

this implies, in turn, Rk � ����v̄/�1− ����� for all k �
1, thus �Rk�k�1 is both increasing and bounded from
above and therefore has a finite limit. Because �Rk�k�1

is the infinite sum with general term j�pk�, this entails
limk→+� j�pk�= 0 and, by continuity, j�p∗�= 0. �
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