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Abstract
This paper studies the problem of memory allocation and scheduling in a multiple query workload
with widely varying resource requirements. Several memory allocation and scheduling schemes
are presented and their performance is compared using a detailed simulation study. The results
demonstrate the inadequacies of static schemes with fixed scheduling and memory allocation
policies. A dynamic adaptive scheme which integrates scheduling and memory allocation is
developed and is shown to perform effectively under widely varying workloads.

1. Introduction

An important reason for the popularity of relational database systems is their ability to process ad-hoc queries

posed by the users. Past research on query processing has dealt with issues of query optimization, scheduling, and

resource allocation. Unfortunately, most of the work in this area has concentrated on processing single queries and

does not consider multi-user issues. A particularly important issue that has largely been ignored is memory

allocation for multiple-query workloads.

In the past, the majority of the memory allocation policies proposed have concentrated on allocating the

’proper amount’ of memory to a single operator or query and have ignored the presence of other concurrently

executing queries. Such ’localized’ allocation techniques, which ignore global system behavior, can lead to poor

performance and reduced throughput as the appropriate memory allocation for a query cannot be determined in

isolation. Another drawback is that the memory allocation policy is largely independent of the query scheduling

policy. To the best of our knowledge each of these schemes schedules queries in a first-come, first-served manner,

delaying the actual execution only until sufficient memory becomes available (e.g. DBMIN [Chou85]). As we will

demonstrate, this decoupling of query scheduling from memory allocation can have disastrous effects on the overall

performance of the system.

The problem of processing multiple-query workloads becomes even more complex when the workload

consists of different types of queries, each with widely varying memory requirements. As we will demonstrate,
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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each type of query has a different sensitivity to how memory is allocated, and an effective memory allocation policy

must carefully consider these differences if the overall performance of the system is to be maximized.

In this paper, we study the relative performance of various query scheduling and memory allocation policies.

We compare schemes that perform scheduling and memory allocation independently to a new dynamic algorithm

that integrates the two decisions. The performance of all the policies is compared using a detailed simulation model.

The rest of the paper is organized as follows. Section 2 discusses related work. The workloads studied in the

paper are presented in Section 3 followed by a discussion of the metric used to compare the various policies in

Section 4. Sections 5 and 6 describe the various scheduling and memory allocation policies, respectively. Section 7

presents the simulation model. The performance of the policies under various workloads is presented in Section 8

which is followed by our conclusions and future work in Section 9.

2. Related Work

The subject of memory allocation in database systems has been studied extensively. A significant portion of

this work is related to allocating buffers to queries in order to minimize the number of disk accesses. The hot set

model [Sacc86] defines the notion of a hot set for nested-loop join operations and tries to pre-allocate a join’s hot-

set prior to its execution. The DBMIN algorithm [Chou85] extends the idea of a hot-set by estimating the buffer

allocation per file based on the expected pattern of usage. The DBMIN algorithm was further extended in Marginal

Gains allocation [Ng91] and later it was employed to perform predictive load control based on disk utilization

[Falo91]. Each of these schemes, with the exception of [Falo91], ignore the effects of other concurrently executing

queries and thus make localized decisions for each query. In addition, none of these algorithms handle the

allocation of memory to hash joins.

The only work, to our knowledge, that directly handles memory allocation among concurrently executing

hash-join queries is [Corn89, Yu93]. The authors introduce the concepts of memory consumption and return on

consumption which are used to study the overall reduction in response times due to additional memory allocation.

A heuristic algorithm based on these ideas is proposed for memory allocation. The algorithm’s performance is

determined by three runtime parameters. The problem with the heuristic is that the performance of the algorithm is

very sensitive to the value of these parameters and the authors do not discuss how to set their parameter values.

Also, the performance is based on average response times which, as discussed in Section 4, is not an appropriate

metric for multiple class workloads.

All these schemes use a first-come first-served policy to service the arriving queries. As will be shown later,

this can lead to bad performance for a multi-query workload.
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Query scheduling algorithms proposed in [Chen92a, Schn90] handle scheduling of only single complex join

queries and do not consider multiple queries. The batch scheduling algorithms studied in [Meht93] cannot be

directly applied as batch scheduling algorithms attempt only to maximize overall throughput and do not consider the

impact on query response times.

Adaptive hash join algorithms, which can adapt to changing memory requirements have been proposed by

[Zell90]. The implications of adapting to memory changes have not been investigated in the context of a multiple

query workload. It is not very evident as to when taking memory from an executing query and giving it to some

other query benefits the overall performance of the system. The same drawback lies in other schemes which

dynamically change query plans at run-time [Grae89a].

3. Workload Description

In this study we consider only queries involving a single join and two selections. This simple workload

allowed us to study the effects of memory allocation and load control without considering other complex query

scheduling issues like pipelining and intra-query parallelism. For example, while there are several different

execution strategies for complex queries such as left-deep, right-deep, and bushy scheduling [Schn90], nothing is

known about their relative performance in a multiuser environment. Including queries with multiple joins would

have made it impossible to separate the effects of memory allocation from other query scheduling issues. In

addition most database systems (with the exception of Gamma [DeWi90] and Volcano [Grae89b]), execute

multiple-query joins as a series of binary joins and do not pipeline tuples between adjacent joins in the query tree.

Such simplified workloads have also been used previously in [Falo91, Ng91, Yu93].

Another simplification in the workload is that the selections were executed by scanning the data file and do

not use indices. Also, the same join selectivity is used for each query — the number of output tuples produced by

the join is one half of the number of the tuples in the outer relation. Inclusion of indices and varying join selectivity

changes only the overall response time of the query and not the memory requirements of the queries. As a result,

ignoring these simplifications does not affect the results qualitatively.

All joins were executed using the hybrid-hash join algorithm 2 [DeWi84, Shap86]. This algorithm operates in

two phases. In the first phase, called the build phase, the inner relation is partitioned into n buckets I1, I1, ... In.

The tuples that hash into bucket I1 are kept in an in-memory hash table. Tuples that hash to one of the remaining

buckets are written back to disk, with a separate file being used for each bucket. The number of buckets, n, is

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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selected to be the minimum value such that each bucket Ii will fit into the memory space allocated to it at run time.

In the second phase, called the probe phase, the outer relation is also partitioned into n buckets O1, O1, ... On.

Tuples that hash into bucket O1, are joined immediately with the tuples in I1. The other tuples are written to their

corresponding bucket file on disk. If n=1, the algorithm terminates. Otherwise, the algorithms proceeds to join Ii

and Oi for i=2,...,n. As the tuples from bucket Ii are read, an in-memory hash table is constructed. Then, Oi is

scanned and its tuples are used to probe the hash table constructed from Ii looking for matching join attribute values.

Results tuples are written back to disk. If the size of the inner relation is K pages, then the amount of memory

available for the join must be at least √ddK (also n is proportional to √ddK ).

In a multiquery environment (composed of join queries from a number of different users or even perhaps join

operations from a complex query composed of multiple joins), the memory requirements of each query can vary

widely. To facilitate our study, we decided to classify each join as one of three different types: small, medium, or

large. The idea is simple. Small queries are ones whose operands will fit in memory in most workloads. Medium

queries are those which could always run in one pass (i.e. n=1) if they are alone in the system. Large queries are

those whose execution always require multiple buckets. The workloads studied in this paper consist of mixes of

queries from these three classes. As we will show later, in order to maximize the throughput of a system executing

such a workload, it is necessary to carefully control the allocation of memory to queries from each of these different

classes of queries. The following sections describe the classes in more detail.

3.1. Small Query Class

The first query class represents join queries with minimal memory requirements. As such, this class of

queries can always be expected to execute in one pass of the hybrid hash algorithm (i.e. no disk buckets are created

during the build phase of the algorithm). For our experiments, we set the average memory requirement for this class

to be 5% of the size of main memory with the actual requirement varying from 1 to 10% of the memory.

3.2. Medium Query Class

The second class represents join queries whose operands are about the same size as main memory. For our

experiments we assumed that medium queries range from 10% to 95% of memory so an average of two such

queries can fit into memory simultaneously. Thus, the memory requirements of this class of queries are nearly an

order of magnitude larger than the small class. However, since the memory requirements of these queries are

substantial compared to the total amount of main memory available, in the presence of other concurrently executing

queries, medium queries will frequently require multiple join passes (depending on the actual scheduling and

memory allocation policy employed).
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3.3. Large Query Class

The last class represents queries whose operands are larger than the amount of physical memory available and

thus always require multiple buckets for their execution. The large query sizes varied from the size of the memory

upto four times the memory size.

4. Performance Objective and Metric

This section describes the performance metric used to compare the various memory allocation and scheduling

policies examined in this paper. The metric is presented here in order to simplify the presentation of the algorithms

described in the following section.

We spent a significant amount of time and effort trying to find a reasonable goal for a multi-class workload.

The performance goals that are typically used for single class workloads are not adequate as they are biased towards

one class or another. For example, combining the different query types into a single class and maximizing overall

throughput biases the metric towards the smaller queries which have a higher throughput; algorithms that maximize

the throughput of the smaller queries at the expense of the other classes will fare better. Similarly, minimizing the

average response time is inadequate as the value of the metric is determined mainly by the large queries with long

execution time and hence high response times.

In the absence of any universally accepted relative importance of the three workload classes (such as might be

defined by an organization like the TPC council), we wanted a performance goal that weights the relative priority of

the different classes equally. The performance goal chosen for this study is fairness.

The first step in measuring fairness is to obtain, for each class, the ratio of the observed average response time

to average response time of the class when instances of the class are executed alone in the system. This normalizes

the effect on the metric of the actual values of the response times of the different query types, which may differ by

orders of magnitude.3 Fairness is then defined as the standard deviation in the ratios obtained for each of the three

classes in the first step. A higher standard deviation means a larger difference in the response time changes. This

implies that the performance of some class was disproportionately worse when compared to other classes in the

system and that the system was unfair towards that class.

In addition, we also measured the mean percentage change in response time across all three classes; a lower

mean implies that, overall, the classes had better performance and that their observed response times were closer to
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 Normalization can also be done using expected response times (as in [Ferg93]) or the optimizer estimate of the query
response time. Since we did not want to invent arbitrary expected response times for the queries we did not choose the first ap-
proach and the absence of a real optimizer prevented us from using the second.
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their stand-alone response times. Whenever necessary, the response times for each individual class are shown along

with the Fairness metric.

5. Memory Allocation Policies

We begin this section by describing three different ways of allocating memory to a hash join operation:

minimum, maximum, and available. Next, we discuss how these alternatives can be applied to each of the three

query classes: small, medium, and large. The resulting combinations provide a wide range of alternatives for

controlling the allocation of memory to queries in a multiuser environment.

5.1. Join Memory Allocation

The amount of memory allocated to a hybrid hash join can range from the square root of the size of the inner

relation to the actual size of the relation [DeWi84]. In a multi-query environment, allocating more memory to a join

reduces not only the execution time of the operation but also disk and CPU contention as the query performs fewer

I/O operations. The drawback of allocating more memory is that it may cause other queries to wait longer for

memory to become available. Allocating less memory has the opposite effect. It increases execution time and disk

contention but it may reduce the waiting time of other queries. Also, the overall multi-programming level in the

system may be higher as the memory requirement of each individual query is reduced and more of them can be

executed in parallel. We studied the effect of three allocation schemes on query performance.

Minimum

In this scheme, the join is always allocated the minimum memory required to process the join (i.e. the square

root of the size of the inner relation). Hence a partitioning phase and a joining phase are always required. In

effect, except for buckets I1 and O1, both relations get read twice and written once. This scheme is the least

memory intensive but causes the most disk/CPU contention.

Maximum

In the maximum scheme (which only works for small and medium queries), each join is allocated enough

memory so that its inner relation (i.e. the temporary relation resulting from the selection) will fit in memory.

No tuples from the inner or outer relations get written back to bucket files on disk and the join is processed by

reading each relation once. This allocation scheme minimizes the response time of the query but is also the

most memory intensive. Also, since enough memory may not be available when the query enters the system,

it may have to wait longer to begin execution. Large queries cannot use this scheme as the size of their inner

relations is much greater than the amount of main memory available.
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Available

The previous two schemes ignore how much memory is actually available at run-time. The Available scheme

determines a query’s allocation at run-time by examining available memory when the query is ready for

execution. The query is given whatever memory is available subject to the constraint that the amount of

memory allocated is at least the minimum required by the query (i.e. the square root of the size of the inner

relation) and no more than the maximum. An allocation between two these extremes is interesting because it

increases the number of tuples in bucket I1 and O1 and hence reduces the number of tuples that have to be

read twice from disk (and written back once).

5.2. Impact of Memory Allocation on Each Class

Combining these schemes in all possible ways for each of the three query classes gives us 18 possible

allocation schemes (3 small schemes * 3 medium schemes * 2 large schemes). As studying all possible

combinations was not feasible, the number of combinations was reduced by removing some schemes for the small

and large queries that are either redundant or that we expected to perform badly.

Queries in the small class require small amounts of memory to execute. From some preliminary experiments,

we observed that in most cases the queries always got the maximum memory required. Also, as the memory needed

by these queries is quite small (on the average 1/20th the size of physical memory), the queries did not wait long for

memory to become available. As a result, the Maximum allocation scheme was always superior to the other

schemes for this class of queries. Hence, we elected to only use this scheme for small queries.

Similarly, using Available for queries in the large class is a very bad idea as these queries can consume all of

the memory, blocking out all other queries. Thus, only Minimum was used for these queries.

6. Scheduling Policies

The response time of a single query is determined not only by the execution time of the query but also by how

queries are scheduled for execution. The scheduling decision gains added significance if the response times of the

queries vary significantly. We considered three schedule policies, FCFS, Responsible, and Adaptive, which are

described below.

6.1. FCFS

This simple scheduling policy is illustrated in Figure 1. Queries from all classes are directly sent to the

memory queue as they arrive into the system. The memory queue is served in first-come first-served (FCFS) order

and queries execute whenever sufficient memory is available. We present results for this scheduling policy in
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combination with all three medium-query memory allocation schemes - Maximum, Available and Minimum. The

FCFS-Maximum combination can be particularly bad for small queries as they may need to wait behind large

queries with much higher response times. The medium queries also suffer as the policy tends to restrict the multi-

programming level (MPL) of medium queries. On the other hand, the FCFS-Minimum combination may cause very

high system contention as a lot of queries can fit into the system if minimum memory is allocated to each.

Moreover, all three schemes are inherently biased towards larger queries. The larger queries take up more memory

and block out the smaller queries. In addition, the larger queries take longer to execute and thus are present in the

system longer. This means that the average MPL of the larger queries could become disproportionately higher

compared to the smaller queries as time progresses and larger queries tend to consume an increasing fraction of the

system resources.

6.2. Responsible

We term the second scheduling policy Responsible as it is biased in favor of the smaller queries. As shown in

Figure 2, small queries are sent directly to the Memory queue as in the FCFS scheduling policy. Medium and large

queries on the other hand are queued in separate queues to prevent them from blocking small queries. These

scheduler calculates the average amount of memory consumed by the small queries and leave that amount of

memory for use by the small queries. The leftover memory is divided among the medium and large queries

according to their memory allocation policy (e.g. minimum for the large queries and available for the medium

queries). In order to prevent starvation, each class has a minimum MPL of one. The amount of memory being used

by small queries is calculated by multiplying the average MPL of the small queries by their average memory

requirement. Responsible is thus biased towards the small queries as the small queries are sent directly to the

memory queue while the medium and large queries wait in separate queues for execution.

SMALL MEDIUM LARGE

MEMORY   QUEUE

SMALL

MEDIUM LARGE

MEMORY   QUEUE

Figure 1. - FCFS Scheduling Figure 2. - Responsible Scheduling

-8-



6.2.1. Adaptive

FCFS scheduling lets the scheduling decision be determined by memory availability and is biased towards

larger queries. Responsible is biased in favor of small queries. As we will demonstrate later, both schemes can

exhibit very poor performance. The Adaptive scheduling scheme, on the other hand, tries to allocate resources such

that the overall goal of fairness is achieved to the maximum extent possible. The basic mechanism used by

Adaptive is the control of the MPL of each class of queries. For each class, an MPL queue is maintained in which

incoming queries wait if the current MPL of the class is above a dynamically determined level (this level will

fluctuate over time under the control of the Fairness Metric). Each MPL queue is serviced independently in FIFO

order. When a query belonging to a particular class completes, the next waiting query in the queue is moved from

the class’s MPL queue to the memory queue. Figure 3 illustrates the various queues managed by the Adaptive

scheduling algorithm.

As mentioned before, small queries always execute at maximum memory and large queries always execute at

their minimum. Using these two properties, the algorithm calculates the average amount of memory consumed by

queries from both classes. The remainder is then distributed among the medium queries. As an example, assume

that there is 32 MB of memory available, that maximum MPL of the small class is 10 and that the small queries

consume, on the average, 0.5 MB of memory. Similarly, assume that the large query MPL is 2 and that they require

3 MB on the average. Thus, the memory available to the medium queries is 21 MB (32 - 10*0.5 - 2*3). If the

current maximum medium MPL is 5, then each medium query receives 4.2 MB of memory. Dividing the memory

in this manner ensures that the smaller queries are not blocked out by the medium and large queries. Also, note that

the memory allocated to a query is related directly to the MPL of its class. The adaptive algorithm thus integrates

query scheduling and memory allocation.

SMALL MEDIUM LARGE

MEMORY   QUEUE

MPL
QUEUES

Figure 3 - Adaptive Scheduling

-9-



The adaptiveness of the algorithm arises from the fact that the MPLs of the query classes are determined

dynamically based on system parameters. Periodically, the algorithm checks the average response times for each of

the query classes and evaluates the Fairness Metric (Section 4). If the variance is high, implying that some class is

doing much better than the other two, the algorithm takes a compensating action so that the offending class is

throttled back. The decision may mean increasing the MPL of the class that is doing worst so that it receives more

resources or decreasing the MPL of the offending class to reduce its resource consumption. The actual algorithm is

presented in more detail in Figure 4.

We followed a few general principles in deciding the action to be taken in response to the state the system is

in. The increase and decrease of MPLs was done under the constraints that the MPL for a class can never be zero

and that the corresponding memory associated with the class cannot exceed the total memory size. Also, when the

algorithm must decide what class should have its maximum MPL adjusted, the algorithm always tries to change the

if (Activate)
{

calculate the average response times for each class

calculate Fairness Metric (Dev) and mean Response Time change (MRT)

calculate difference of percentage change from the mean
SP = difference in percentage change for small class
MP = difference in percentage change for medium class
LP = difference in percentage change for large class

if (Dev > DevThreshold)
{

sort SP, MP and LP (a higher value means the corresponding
class has poorer performance)

switch
{

SP > MP > LP — > increase small MPL ||decrease large MPL ||decrease medium MPL

MP > SP > LP — > increase medium MPL ||decrease large MPL ||decrease small MPL

LP > SP > MP — > decrease medium MPL || increase large MPL ||decrease small MPL

LP > MP > SP — > decrease small MPL || increase large MPL ||decrease medium MPL

SP > LP > MP — > increase small MPL ||decrease medium MPL ||decrease large MPL

MP > LP > SP — > decrease small MPL || increase medium MPL ||decrease large MPL
}

}
}

Figure 4: Pseudo Code of the Adaptive Algorithm
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MPL of the smaller query class first. This is because the smaller queries have shorter response times and changing

their MPL makes the system respond to the change faster.

As can be seen in Figure 4, there are two parameters that control how often the adaptive algorithm adjusts the

query workload. The algorithm is invoked every time the variable, Activate, is set to TRUE. If invoked too

frequently, the algorithm is susceptible to transients in the workload; on the other hand infrequent activation makes

the algorithm slow to respond to workload changes. For the purposes of this paper, Activate was set to TRUE at the

completion of each medium query.

The second parameter, DevThreshold, controls how much of a deviation the algorithm tolerates before

making a compensating action. A low threshold means that the system will respond to even very low changes in the

deviation and thus may react too quickly to a transient change. A very high threshold means that the algorithm does

not change the runtime parameters even if the deviation is very high and some class is performing relatively worse.

The threshold value was set to 0.75 for the purposes of the performance study. A sensitivity analysis of the

algorithm towards these two parameters can be found in Section 8.5.

During execution, the adaptive algorithm needs to compute the average observed response times for each of

the three query classes in order to calculate the percentage change from the ideal case. This requires that the

algorithm be provided with the response time of a representative query from each class, run with the MPL set to 1.

Also, if the activation frequency of the algorithm is such that an activation can occur before a single query of some

class has completed execution, the algorithm needs a way of calculating the expected response time of the class.

The solution used in this study is to require as input two numbers for each class when the queries are run in a multi-

user mode: Response Time and the observed Disk Read Response Time. If the system is I/O bound, the response

time is in most cases proportional to the disk response time so that we can compare the current Disk Read Response

Time to the above number and estimate the expected response time accordingly. This technique could be replaced

by another estimation technique without changing the algorithm. Even if the estimate is quite inaccurate, the

penalty is not severe as the estimate is no longer needed once a single query from the class has completed.

7. Simulation Model

The simulator used for this work was derived from a simulation model of the Gamma parallel database

machine which had been validated against the actual Gamma implementation. The simulator is written in the

CSIM/C++ process-oriented simulation language [Schw90].

The simulator models a centralized database system as shown in Figure 5. The system consists of a single

processing node, composed of one CPU, memory, one or more disk drives, and a set of external terminals from
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which queries are submitted. As queries arrive in the system they are first routed to a special scheduler task that

controls the scheduling and execution of all transactions present in the system. The database is modeled as a set of

relations that are declustered [Ries78, Livn87] over all the disk drives. The simulator models the database system as

a closed queueing system [Reis80].

7.1. Terminals

The terminals model the external workload source for the system. Each terminal sequentially submits a

stream of queries of a particular class. After each query is formulated, the terminal sends it to the scheduler task for

execution and then waits for a response before submitting another query.

7.2. Processing Node

The processing node in the system is modeled as a single CPU, four disk drives, and a buffer pool. The CPU

uses a round-robin process scheduling policy. The buffer pool models a set of main memory page frames. Page

replacement in the buffer pool is controlled via the LRU policy extended with "love/hate" hints (like those used in

the Starburst buffer manager [Haas90]). These hints are provided by the various relational operators when fixed

pages are unpinned. For example, "love" hints are given by the index scan operator to keep index pages in memory;

"hate" hints are used by the sequential scan operator to prevent buffer pool flooding. In addition, a memory

reservation system under the control of the scheduler task allows memory to be reserved in the buffer pool for a

particular operator. This memory reservation mechanism is used by the join operators to ensure that enough

memory is available to prevent their hash table frames from being stolen by other operators.

...

Memory

CPU

Disks

Terminals

Scheduler Processing   Node

Query  Scheduling

Memory Allocation

Figure 5: Simulator Architecture.
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The simulated disk models a Fujitsu Model M2266 (1 GB, 5.25") disk drive. This disk provides a 256 KB

cache that is divided into eight 32 KB cache contexts for use in prefetching pages for sequential scans. In the disk

model, which slightly simplifies the actual operation of the disk, the cache is managed as follows: each I/O request,

along with the required page number, specifies whether or not prefetching is desired. If so, one context’s worth of

disk pages (4 blocks) are read into a cache context as part of transferring the page originally requested from the disk

into memory. Subsequent requests to one of the prefetched blocks can then be satisfied without incurring an I/O

operation. A simple round-robin replacement policy is used to allocate cache contexts if the number of concurrent

prefetch requests exceeds the number of available cache contexts. The disk queue is managed using an elevator

algorithm.

The key parameters of the processing nodes, along with other configuration parameters, are listed in Table 1.

The system memory which is 4MB is obviously small but was chosen only to keep the simulation time low. The

crucial factor for performance is not the actual size of the memory but the relative size of the queries to the the

system memory which was scaled accordingly. The software parameters are based on actual instruction counts

taken from the Gamma prototype. The disk characteristics approximate those of the Fujitsu Model M2266 disk

drive described earlier.

7.3. Scheduler

The scheduler task accepts queries from terminals and implements the scheduling and memory allocation

algorithms discussed in Sections 5 & 6. A query may wait either in it’s MPL queue if the MPL is too high or for

memory in the Memory queue. The scheduling policy determines the order in which these queues are serviced.

Once the query is scheduled for operation, the scheduler also coordinates the startup and termination of all the

operators in the query.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Configuration/Node Parameter Value CPU Cost Parameter No. Instructionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Disks 4 disks Initiate Join 40000
CPU Speed 20 MIPS Terminate Join 10000
Memory 4 MB (varied) Terminate Select 5000
Page Size 8 KB Apply a Predicate 100
Disk Seek Factor 0.617 Read Tuple 300
Disk Rotation Time 16.667 msec Write Tuple into Output Buffer 100
Disk Settle Time 2.0 msec Probe Hash Table 200
Disk Transfer Rate 3.09 MB/sec Insert Tuple in Hash Table 100
Disk Cache Context Size 4 pages Start an I/O 1000
Disk Cache Size 8 contexts Copy a Byte in Memory 1
Disk Cylinder Size 83 pages
Tuple Size 200 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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c
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c
c
c
c
c
c
c
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Table 1: Simulator Parameters and Values
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7.4. Operators

The queries in the work reported here use only two basic relational operators: select and join. Results tuples

are stored back in the database after the queries complete. Each select process also spawns an additional scan

process that reads pages from the disk and passes them on to the select process. The select process then applies the

filtering predicate(s) on the scanned pages and passes the qualifying tuples on to the join process. The simulator

models the actual execution in detail with accurate modelling down to tuple-level operations.

8. Performance Results

8.1. Introduction

This section presents the results of our performance evaluation of the different scheduling and memory

allocation policies. First, we describe the characteristics of the base workload and the results obtained. Then a

variety of other workloads are examined.

8.2. Base Workload

The workload parameters used for all the experiments are shown in the Table 2. The think times for the query

classes were chosen arbitrarily except that the larger classes have larger think times to keep their MPL relatively

low. The number of terminals for each class was varied such that the system moved from a lightly loaded state to a

heavily loaded state. In addition, results are also presented where the ratio of the terminals of different classes was

varied to change the mix of the workload.

The terminal ratio for the first experiment was set at 10:8:1 (small:medium:large). However, this does not

represent the ratio of the MPLs; due to differences in think times and execution times, the actual ratio is closer to

5:2:1. Furthermore, the MPL per class varies with the different algorithms. Figures 6-8 show the response times of

the different classes as the number of small terminals is varied from 10 to 50; the medium class terminals change

accordingly from 8 to 40 and the large class terminals range from 1 to 5.

As discussed in Section 6, each FCFS scheme (solid lines) is biased towards larger queries. Thus, the small

queries show very high response times as they get blocked behind the larger queries as the load increases. FCFS-

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Small Query Terminals 0-100 Think time 20 sec
Number of Medium Query Terminals 0-80 Think time 150 sec
Number of Large Query Terminals 0-10 Think time 450 seciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c

cc
c
c

cc
c
c

cc
c
c

cc
c
c

Table 2: Experimental Parameters
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Maximum, which gives most memory to the medium queries blocks the most small queries and performs the worst.

FCFS-Minimum, which gives the least memory to the medium queries, blocks the small queries the least and

performs better while FCFS-Available performs in between the two schemes. The medium queries fare similarly

under each of the FCFS policies. The response times increase as the load increases in each case. The effect on the

large queries is very different; FCFS-Maximum, which minimizes disk contention (by limiting the number of small

and medium queries in the system), has the best response time among the three FCFS schemes followed by FCFS-

Available and FCFS-Minimum.
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The Responsible schemes (dashed lines) all do a very good job handling the small queries while making the

medium queries suffer. The reason is that these schemes leave memory for the smaller queries. This leaves less

memory for medium queries which get queued up. The large queries also get queued up but the response times do

not increase correspondingly because of two reasons. Firstly, there are fewer large queries in the system and

secondly, the low medium query MPL reduces disk contention significantly. Consequently, the large queries have

low execution times leading to smaller response times.

The Adaptive scheme behaves responsibly towards the small queries and prevents excessive blocking behind

larger queries. Also, unlike the Responsible schemes, the algorithm is able to keep the medium queries from being

penalized by carefully controlling class MPLs. Adaptive leads to highest response times for the large queries.

Since large queries have much higher base response times compared to the small and medium queries, a high

response time for large queries is desirable for fairness.

The performance of the various schemes with regard to the fairness metric is shown in Figure 9. The FCFS

schemes do poorly as they are unfair towards the small query class while the Responsible schemes are bad because

of their unfairness towards queries from the medium query class. The adaptive algorithm is the fairest among all the

schemes across the entire load range as it prevents the smaller queries from being blocked and at the same time does

not penalize the larger classes.

We now present a series of six other workloads and compare the performance of the algorithms for each.

8.3. Doubling the Terminals

In this section we examine the performance of the algorithms for three workloads in which the number of

terminals for a particular query class is doubled compared to the base case above. These workloads vary the ratio of

the various queries in the workload and test how well the algorithms adapt to various workloads. Only the fairness

metric numbers are presented for these three workloads. Most of the response time numbers were qualitatively

similar to the base case; any differences are explicitly mentioned in the discussion of each workload.

8.3.1. Doubling Small Terminals

In this workload, we increased the ratio of small to the medium terminals from 10:8 to 20:8 (the reader should

keep in mind that due to the difference in think times of the two classes the actual MPLs are more in the range of

10:2). Figures 10 shows the performance of the various schemes on this workload. The FCFS schemes, which are

unfair towards the smaller queries, perform relatively worse for this workload compared to the base case because

this workload has more small queries, so the penalty of blocking smaller queries is even higher. Since the

Responsible schemes are biased towards small queries, this workload makes them even more unfair to the medium
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queries and their performance also worsens. The Adaptive algorithm, which is able to do a fair job of distributing

memory among among the classes, shows the best overall performance.

8.3.2. Doubling the Medium Terminals

In this workload we doubled the number of terminals for the medium class. The performance of the various

schemes is shown in Figure 11. As in the two previous workloads, compared to the Adaptive algorithm, the FCFS

and the Responsible schemes perform much worse. The FCFS schemes block more small queries because the

workload has a larger number of medium queries. The Responsible schemes, which exhibited poor performance for

the medium queries in the base case above, just get worse as the number of medium queries increases. The adaptive

algorithm adapts to the increased medium workload and is thus able to do a better job at reducing the variance

among the different query classes.

8.3.3. Doubling the Large Terminals

Figure 12 shows the performance of the different schemes for a workload in which the number of large

terminals has been doubled. The numbers show that the FCFS and Responsible schemes are much worse than the

Adaptive scheme. The FCFS schemes do not explicitly control the MPL of the large query class and large queries

are always able to execute with very little waiting for memory. The Responsible schemes perform badly for the

medium queries and also for the large queries. Since the number of large terminals is now doubled, the large

queries also get queued up leading to much higher response times. Adaptive is again the fairest algorithm as

0 20 40 60 80 100

System Load

0

100

200

300

Fa
ir

ne
ss

 M
et

ri
c

FCFS-Maximum

FCFS-Available

FCFS-Minimum

Adaptive

Responsible-Maximum

Responsible-Available

Responsible-Minimum

0 10 20 30 40 50

System Load

0

100

200

300

Fa
ir

ne
ss

 M
et

ri
c

FCFS-Maximum

FCFS-Available

FCFS-Minimum

Adaptive

Responsible-Maximum

Responsible-Available

Responsible-Minimum

Figure 10: Fairness Metric: Small Terminals Doubled Figure 11: Fairness metric: Medium Terminals Doubled

-17-



restricts the larger queries from dominating the system and prevents excessive queueing at the same time.
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Figure 12: Fairness Metric: Large Terminals Doubled

8.4. Reduced Number of Query Types

The previous three experiments varied the ratio of terminals among the different query classes, but the

workload always contained queries from all three classes. We next tried workloads in which only two of the three

classes were present. The performance of the algorithms on these workloads is presented next. The Responsible

schemes, which have been shown to perform quite badly in the previous workloads, have been omitted so that the

differences between the other algorithms can be shown and discussed in more detail.

8.4.1. Small and Medium Queries Only

This workload consists only of small and medium queries. Figures 13 and 14 show the response times of the

small and medium classes, respectively. The performance of the algorithms for the small class is the same as before.

The Adaptive algorithm shows the best response time followed by FCFS-Minimum, FCFS-Available and FCFS-

Maximum. The performance of these schemes on queries from the medium class is quite different though. FCFS-

Maximum has the best response times for the medium queries. This is quite surprising because FCFS-Maximum

makes the medium queries wait the longest for memory yet it has the best response time for the class. The reason is

that making the medium queries wait for memory lets the queries execute in only one pass, reducing the disk

contention significantly. The reduction in disk contention more than compensates for the time spent waiting for

memory to become available. While FCFS-Available and FCFS-Minimum induce fewer memory waits for queries
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from the medium query class, they may cause the medium queries to execute with multiple join passes. As the

system is already loaded with other small queries, the added disk contention causes the schemes to perform worse.

Adaptive performs similar to FCFS-Minimum except at high loads where it penalizes the medium queries in order to

achieve lower response times for small queries.

The fairness metric for all the algorithms is shown in Figure 15. In addition, we also present the mean

percentage change obtained for the two classes of queries in Figure 16. Not only does the adaptive scheme achieve
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the best fairness but it also provides the best mean percentage change compared to all the FCFS algorithms.

8.4.2. Medium and Large Queries Only

The response times of Adaptive and FCFS schemes for this workload are shown in Figure 17 and 18. Figure

19 presents the fairness achieved by the algorithms while the mean percentage change is shown in Figure 20. The

graphs demonstrate that FCFS-Maximum performs well for medium queries at low loads since the execution times

and queueing times are small due to a low number of queries in the system. However, at high loads, queueing times

increase substantially as queries wait for memory leading to high response times. FCFS-Minimum, on the other

hand, is the worst scheme for medium queries at low loads due to high execution times. As the load increases,

FCFS-Minimum performs well because the queueing times remain low as more queries can be executed

concurrently compared to other schemes. FCFS-Available performs similar to FCFS-Maximum for low loads and

FCFS-Minimum for higher loads. The Adaptive algorithm also shows good performance throughout the range and

behaves like FCFS-Maximum for low loads and like FCFS-Minimum for high loads.

FCFS-Maximum is the best algorithm for large queries because low disk contention due to low medium MPLs

leads to low response times for large queries. FCFS-Minimum causes the most disk contention and is the worst

scheme for large queries while FCFS-Available performs in between. The response times of the large queries for

Adaptive algorithm increase rapidly as load increases and the algorithm performs the worst at high loads. The

reason for this degradation is a drawback of the manner in which memory gets allocated to medium queries in
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Adaptive. Adaptive makes the large queries wait in order to improve the performance of the medium queries.

However, due to the manner in which medium queries are allocated memory, the extra memory is not utilized fully

and the performance of the medium queries does not improve much. Medium query memory is divided equally

among concurrent medium queries and ,in several cases, there is not much of an improvement in allocating memory

between the minimum and maximum needed by the query. We plan to investigate the performance of the heuristic

proposed in [Yu93] where a query gets either the maximum or the minimum memory required in the future. Even

though it leads to high mean percentage changes at high loads (Fig. 20), Adaptive is the best algorithm for fairness

followed by FCFS-Minimum, FCFS-Available and FCFS-Maximum as shown in Fig 19.

8.4.3. Small and Large Queries Only

If there are no medium queries, all the FCFS policies are the same as these schemes differ only in the way

medium queries are handled. Consequently, we will compare the performance of only the Adaptive and FCFS-

available algorithms. As can be seen from Figures 21-24, the performance of FCFS-Available is similar to the

Adaptive algorithm. This workload has no medium queries and minimum memory allocation for large queries does

not cause the small queries to block. This causes the FCFS scheme to perform well for the small class also.

Therefore, there is not much of a difference between the performance of the two algorithms.
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8.5. Sensitivity Analysis

The performance of the Adaptive algorithm is controlled by the values of two parameters — DevThreshold

and Activate. Activate determines the frequency with which the Adaptive algorithm is executed and DevThreshold

determines the variance in response times tolerated by the Adaptive algorithm. The algorithm makes a change in

MPLs only if the current fairness value is above the DevThreshold. The sensitivity of the algorithm to the values of

these parameters is investigated in the next two experiments. The performance of the algorithm was studied for two
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workloads containing queries from all three classes. The first workload containing 20 small, 16 medium and 1 large

terminal represents a lightly loaded system, while the second workload which has 50 small, 40 medium and 1 large

terminal represents a heavily loaded system.

8.5.1. Sensitivity to Activate

Figure 25 shows the sensitivity of the Adaptive algorithm to the frequency with which the algorithm is

executed. The graphs show the performance of the algorithm as the execution interval is varied from 5 to 640

seconds (simulated execution time) for the two workloads described before. Increasing the activation period implies

that Adaptive is executed less often and reacts much more slowly to the workload. The algorithm does not fare

badly for the lightly loaded system because the system load is so low that performance does not deteriorate even

with the Adaptive scheme being activated less often. On the other hand, for the heavily loaded system, the

performance is more sensitive to the activation period. If the activation period is low (less than 100), the algorithm

is over-reactive to the system state and the performance degrades. As the activation period increases the

performance becomes less reactive and the performance improves. Further increase beyond 400 again causes the

algorithm to degrade as the algorithm is now under-reactive. The region of good performance corresponds to about

the completion time of a medium query. Hence activating the algorithm on every medium query completion seems

to be a good heuristic.
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8.5.2. Sensitivity to DevThreshold

Figure 26 shows the performance of Adaptive as the DevThreshold is varied from 0.5 to 16. As the

DevThreshold increases, Adaptive changes the MPLs of the classes less frequently and performance degrades. In

the lightly loaded case, fairness decreases as DevThreshold is increased to 8. As DevThreshold is increased further,

Adaptive cannot perform any worse and the fairness value stablizes at 3.65. As expected, Adaptive performs much

worse for the heavily loaded system. For a threshold values below 1.0 the algorithm takes actions very frequently

and fairness deteriorates as the algorithm is unstable. As the threshold value is increased further the performance

improves with the lowest value achieved at 2.0. However, the algorithm degrades fast as the threshold value is

increased beyond 3. This shows that Adaptive is most sensitive to the value of DevThreshold and reasonable

performance can be achieved if the value is between 1 and 3.

8.5.3. Workload Sensitivity

The workloads for the previous experiments contained queries from one of three classes - Small, Medium or

Large. While large queries were easily defined as all queries which need more than system memory, the division

between small and medium queries was not so obvious. All queries needing less than 10% of system memory were

defined as small while queries needing more memory were termed medium queries. The next experiment is

designed to test the sensitivity of Adaptive to the value of the boundary between small and medium queries. The

performance of Adaptive and the FCFS algorithms is presented as the boundary between small and medium queries

is varied from 5% to 95% of the system memory. As a reminder, a boundary value of 0.5 means that all queries

requiring less than 50% of memory are classified as small queries and are allocated maximum memory. All queries

with a memory requirement of 51-100% of memory are medium queries and their memory is allocated according to

the scheduling algorithm. Queries that require more than the system memory are termed as large and allocated

minimum memory. Figure 27-29 show the response times for each class and figure 30 presents the fairness

achieved by the algorithms for this experiment.

When the boundary between small and medium queries is low (< 0.5), the performance of the algorithms is

similar to the previous experiments. Adaptive performs the best for the small class followed by FCFS-Minimum,

FCFS-Available and FCFS-Maximum. The order is reversed for the large class. Adaptive has the highest response

time for the medium class and the FCFS schemes are quite similar in performance. The order in terms of fairness is

also the same as before - Adaptive, FCFS-Minimum, FCFS-Available and FCFS-Maximum.

As the boundary is increased, more and more of the queries get classified as small queries. Since the three

FCFS schemes differ only in the way medium queries are allocated memory, the performance of the schemes
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becomes more and more similar. In fact, the performance of the three schemes becomes nearly identical when the

boundary is above 0.75. The only difference is that FCFS-Minimum performs worse for the medium query

compared to the other two schemes. When there are lots of medium queries in the system, allocating minimum

memory helps increase the MPL and hence reduces queueing time. However, when the boundary between small

and medium query is high there are few medium queries because most queries are classified as small. Hence, there

is no advantage in allocating minimum memory to the medium queries and FCFS-Minimum performs worse. The

fairness achieved by the algorithms also follows the same pattern; the three schemes converge at higher boundaries.
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The performance of Adaptive worsens with an increase in the boundary because of the restriction that the

MPL of any class cannot be reduced below 1. When the small/medium boundary is high, there are very few

medium/large queries in the system and MPL is below 1. However, Adaptive still reserves memory for one medium

and large query. The reserved memory improves performance of the medium and large queries but the memory is

also underutilized. The underutilization causes the performance of the small class to degrade which get queued up

unnecessarily. The worsening of small class performance and improved response times for the small and medium

classes causes the algorithm to become more and more unfair.

Figure 30 shows that Adaptive becomes more and more unfair as the boundary is increased. The algorithm

performs better than the FCFS schemes as long as the boundary between small and medium queries is below 0.5.

The experiment shows that once the boundary increases the restriction of having an MPL greater than 1 causes the

performance to degrade. The results also show that the queries should not be termed small if their memory

requirement is too high. Small queries get maximum memory allocated and if their requirement is high the queries

will get queued up leading to high response times. A boundary of less than 0.25 seems desirable for reasonable

performance.

9. Conclusions and Future Work

This paper has investigated the problem of memory allocation for a multiple query workload consisting of

queries belonging to different classes with very different resource requirements. The results obtained demonstrate

that the performance of the memory allocation policy is closely linked to the scheduling policy used to service

arriving queries. Three memory allocation policies and two scheduling policies were described. The three memory

allocation and two scheduling policies can be combined to produce six different schemes, each of which makes

separate allocation and scheduling decisions. Their performance was compared to that of a new adaptive algorithm

that combines the two decisions. A simulation study demonstrated that the adaptive algorithm provides excellent

performance under a wide variety of workloads and, in several cases, performs much better than any of the other

schemes. We also demonstrated that an intelligent combination of allocation and scheduling decisions can give

substantial gains in performance.

There are several possible extensions to the adaptive algorithm presented in this paper. In several cases,

fairness is not the only criteria when executing a multi-class workload. Often workloads consist of queries of

different types with each type having a fixed response time or throughput goal. We want to investigate how the

present scheme can be extended to handle such performance objectives. All the queries in our workloads were hash

join queries. However, the adaptive algorithm can also be applied to queries using other join methods. The

Adaptive algorithm uses observed response time estimates to control the MPL of each of the classes. This could be
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used even with other join methods like nested-loop and sort-merge. The division of queries into the three classes

would also be valid for Sort-Merge and Nested Loop join. In the case of sort-merge joins, queries could be divided

into small, medium and large classes based on the size of the memory needed for sorting the relations. The size of

the inner relation could be used to make the division for Nested-Loop join queries.

We also want to investigate whether the policies that we have developed can be adapted to processing mixes

of transactions and queries. Finally, an important future objective is to actually implement the adaptive scheme

described in this paper and to measure its performance on some real database workloads.
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