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Abstract
Virtualization essentially enables multiple operating systems and
applications to run on one physical computer by multiplexing hard-
ware resources. A key motivation for applying virtualization is to
improve hardware resource utilization while maintaining reason-
able quality of service. However, such a goal cannot be achieved
without efficient resource management. Though most physical re-
sources, such as processor cores and I/O devices, are shared among
virtual machines using time slicing and can be scheduled flexi-
bly based on priority, allocating an appropriate amount of main
memory to virtual machines is more challenging. Different appli-
cations have different memory requirements. Even a single appli-
cation shows varied working set sizes during its execution. An opti-
mal memory management strategy under a virtualized environment
thus needs to dynamically adjust memory allocation for each virtual
machine, which further requires a prediction model that forecasts
its host physical memory needs on the fly. This paper introduces
MEmory Balancer (MEB) which dynamically monitors the mem-
ory usage of each virtual machine, accurately predicts its memory
needs, and periodically reallocates host memory. MEB uses two ef-
fective memory predictors which, respectively, estimate the amount
of memory available for reclaiming without a notable performance
drop, and additional memory required for reducing the virtual ma-
chine paging penalty. Our experimental results show that our pre-
diction schemes yield high accuracy and low overhead. Further-
more, the overall system throughput can be significantly improved
with MEB.

Categories and Subject Descriptors D.4.8 [OPERATING SYS-
TEMS]: Performance; D.4.8 [OPERATING SYSTEMS]: Storage
Management

General Terms Design, Experimentation, Management, Mea-
surement, Performance

Keywords Virtual Machine, Memory Balancing, LRU Histogram

1. Introduction
Recently, virtualization technologies, whose roots can be traced
back to the mainframe days, are drawing renewed attention from
a variety of application domains such as data centers, web hosting,
or even desktop computing, by offering the benefits on security,
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power-saving, and resource-efficiency. Virtual machines (VMs) run
on top of the hypervisor or the virtual machine monitor (VMM)1,
which multiplexes the hardware resources. The VMM has the ul-
timate control on all hardware resources while offering each guest
OS an illusion of a raw machine by virtualizing the hardware. No
matter if we use a virtualized system for security or hardware multi-
plexing, we usually boot several virtual machines on a single com-
puter. Those machines eventually share or compete for the hard-
ware resources.

In a typical virtualized system, resources, like processors and
network interfaces, can be assigned to a virtual machine when
needed and given up when there is no demand. The host mem-
ory allocation is mostly static–each virtual machine is assigned a
fixed amount of host memory in the beginning. Although Xen and
VMware provide a ballooning driver to dynamically adjust host
memory allocation, existing studies are insufficient to tell when to
reallocate and how much memory a virtual machine needs or is
willing to give up to maintain the performance of the applications
running on it (Barham et al. 2003; Waldspurger 2002). This pa-
per proposes MEmory Balancer (MEB) which dynamically mon-
itors the memory usage of each virtual machine, accurately pre-
dicts its memory needs, and periodically reallocates host memory
to achieve high performance.

The VMware ESX server (Waldspurger 2002) uses a share-
based allocation scheme. The share of a virtual machine is deter-
mined by its memory utilization and a maximum and minimum
memory quota predefined by the system administrator. VMware
uses a sampling method to determine memory utilization. The sys-
tem periodically samples a random set of pages and the utilization
is the ratio of the pages actively in use. A virtual machine with low
memory utilization has a lower share and thus is more likely to get
its memory reclaimed. One drawback of the sampling approach is
that it can only predict the memory requirement of a virtual ma-
chine when there is free memory. Furthermore, it cannot tell the
potential performance loss if more memory than what is currently
idle is reclaimed.

Recent studies have used Mattson et al.’s LRU stack distance-
based profiling (Mattson et al. 1970) to calculate page miss ratio
of a process with respect to memory allocation (Zhou et al. 2004;
Yang et al. 2006). These studies either require tracking virtual ad-
dresses or need interaction between processes and the OS, and thus
cannot be directly applied to virtual machines where we need to
estimate memory needs of each virtual machine. In a virtualized
environment, execution of a memory access instruction is usually
handled by the hardware directly, bypassing the hypervisor unless
it results in a page fault. On the other hand, page tables are con-
sidered as privileged data and all updates to page tables will be
captured by the VMM, which provides us a chance to manipulate
the page table entry for each page table update request. Inspired

1 The terms hypervisor and VMM are used interchangeably in our paper



by previous process-level memory predictor, our predictor, which
is located in VMM, tracks normal memory accesses by revoking
user access permission and trapping them into VMM as minor page
faults (Zhou et al. 2004). Note that it is prohibitive to track virtual
addresses for each process in a VM. We instead build an LRU his-
togram based on host physical addresses (or machine addresses).
As a consequence, this estimator cannot provide the relationship
between page miss and memory size beyond the size of machine
memory allocation. When a VM’s memory is under-allocated, the
miss ratio curve is unable to predict how much extra memory is
needed. MEB uses a simple predictor to monitor the swap space
usage and uses it as a guide to increase the memory allocation for
a virtual machine.

We have implemented MEB in Xen (Barham et al. 2003). Ex-
perimental results show that it is able to automatically balance
the memory load and significantly increase the performance of
the VMs which suffers from insufficient memory allocation with
a slight overhead to the initially over-allocated VMs.

The remainder of this paper is organized as follows. Section
2 presents the background and related work. Section 3 describes
the dynamic balancing system in detail. Section 4 discusses experi-
mental results, comparing with previous approaches, and Section 5
concludes.

2. Background and Related Work
2.1 LRU Histogram
The LRU histogram has been widely used to estimate cache and
page miss rate with respect to cache size or memory size (Mattson
et al. 1970; Chandra et al. 2005; Zhou et al. 2004; Yang et al.
2006; Jones et al. 2006; Sugumar and Abraham 1993). As the
LRU (or its approximation) replacement policy is mostly used for
page or cache replacement, one can generate an LRU histogram
to track the hit/miss frequency of each LRU location. Assuming a
system with only four pages of physical memory, Figure 1 shows
an example LRU histogram in the top half of the figure for an
application with a total of 200 memory accesses. The histogram
indicates that 100 accesses hit the MRU page, 50 accesses hit
the second MRU slot, and so on. Apparently the page hit rate is
(100 + 50 + 20 + 10)/200 = 90%. We can tell that if we reduce
the system memory size by a half, the hits to the first two LRU
slots are still there while the hits to the next two LRU slots now
become misses. The hit rate becomes (100 + 50)/200 = 75%.
The LRU histogram thus can accurately predict miss rate with
respect to the LRU list size. The bottom part of Figure 1 is the
miss ratio curve corresponding to the histogram on the top. Zhou
et al. (Zhou et al. 2004) use virtual page addresses to organize
the LRU list and thus can predict the miss rate with respect to
any physical memory size for a process. We instead implement an
LRU histogram in the hypervisor and track host physical (machine)
addresses. Therefore the scale of the memory size cannot be greater
than the host memory size allocated to a virtual machine.

2.2 Memory Management
Typically, when a VM starts, the hypervisor assigns a fixed amount
of memory to the VM and passes a nominal value of memory size to
the guest OS. This value serves as the maximum memory size that
the guest OS can manage. When a VM is scheduled to run, most
memory accesses are directly handled by the hardware without
involving of the hypervisor. It is the guest OS’s responsibility to
effectively utilize the allocated memory. However, page tables are
usually considered as privilege data. The related operations, for
example, installing a new page table or updating a page table entry,
should be validated by the hypervisor first. Typically, the page table
area will be protected by setting a higher access permission. Page
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Figure 1. LRU histogram example

table updates should be requested via an explicit service call as
in paravirtualization or handled implicitly as page faults as in full
virtualization.

To dynamically change the memory allocation of a VM, a
ballooning (Waldspurger 2002) mechanism is proposed by Wald-
spurger. Conceptually, as a kernel space driver, the balloon driver
gives the OS an illusion that this driver needs more memory to run
while actually this memory is returned to the hypervisor, which
essentially reduces memory allocation of the VM. Similarly, re-
leasing memory from the ballooning driver increases the memory
allocation for a VM. The ballooning mechanism takes advantage
of a guest OS’s knowledge about which pages to reclaim.

2.3 Related Work
As discussed in Section 1, in (Waldspurger 2002), a page sampling
strategy is presented to infer the memory utilization and thus the
memory needs of a VM. During a sampling interval, accesses to a
set of random pages are monitored. By the end of the sampling pe-
riod, the page utilization of the set is used as an approximation of
global memory utilization. Reclaimed memory is reallocated to the
VMs based on their utilization. Our experiments in Section 4 show
that the accuracy of this sampling-based scheme is lower than our
LRU histogram based estimation. And since the performance of a
virtual machine is not usually proportional to the size of allocated
memory, it is hard to evaluate the performance impact of various
amount of memory allocation to a VM. In particular, it cannot give
the performance impact if some actively used memory is reclaimed
for usage in another virtual machine for a more important appli-
cation. Therefore it may miss an opportunity to minimize system-
wide page misses. Magenheimer (Magenheimer 2008) uses the op-
erating system’s own performance statistics to guide the memory
resource management. However, the memory usage reported by
most modern operating systems includes the infrequently used ar-
eas, which can be reclaimed without a notable performance penalty.

Zhou et. al (Zhou et al. 2004) propose the page miss ratio
curve to dynamically track working set size. They suggest two
approaches: hardware based and OS based. The former one tracks
the miss ratio curve for the entire system by monitoring physical
memory accesses. The latter one maintains a per-application miss
ratio curve based on applications’ virtual addresses. Unfortunately,
neither of them fits in the domain of virtualization well:

1. The hardware solution requires an extra circuit, which is un-
available on commodity processors.

2. The hardware solution monitors physical memory, which can-
not estimate the effect of a memory increment beyond the allo-
cated size.

3. The virtual address based LRU does solve the problem in (2),
but it works on the per-process level. To track the memory



usage at the system scope, it has to maintain an LRU list and a
histogram for every process, resulting in prohibitive space and
management cost.

Nonetheless, the page miss ratio curve and memory access in-
tercepting are extensively used in recent studies with extensions.
CRAMM (Yang et al. 2006) is an LRU histogram based virtual
memory manager, which maintains an LRU histogram for each pro-
cess. A modified JVM communicates with CRAMM to acquire in-
telligence about its own working set size (WSS) and the OS’s avail-
able memory, and adjusts the heap size to minimize the occurrence
of garbage collection without incurring an unacceptable number of
major page faults. CRAMM builds a model that correlates the WSS
of a Java application and its heap size. Hence, by detecting WSS
changes, the heap size can be adjusted accordingly. However, there
is no such correlation between a virtual machine’s WSS and its al-
located memory size. In addition, CRAMM requires modifications
to the OS, which we manage to avoid.

Geiger (Jones et al. 2006), on the other hand, detects memory
pressure and calculates the amount of extra memory needed by
monitoring disk I/O and inferring major page faults. However,
when a guest is over-allocated, it is unable to tell how to shrink
the memory allocation, which prevents the resource manager from
reclaiming the idle memory for use in other guests. The Black-box
and Gray-box strategies (Wood et al.) migrate hot-spot guests to the
physical machines with enough resources. Its memory monitoring
function is a simplified version of Geiger and therefore inherits its
drawbacks.

Hypervisor exclusive cache (Lu and Shen 2007) is most relevant
to our research. The VMM uses an LRU based miss ratio curve to
estimate WSS for each virtual machine. In this design, each VM
gets a small amount of machine memory, called direct memory,
and the rest of the memory is managed by the VMM in the form
of exclusive cache. By allocating a different amount of cache to a
VM, it achieves the same effect as changing its memory allocation.
Since this approach can track all memory accesses above the mini-
mum memory allocation, both WSS increases and decreases can be
deduced, although the maximum increment is still bounded by the
cache size. This design introduces an additional layer of memory
management. Moreover, since the cache is exclusive, system states
spread across a VM’s direct memory and the VMM, which breaks
the semantics of the VMM. It is therefore hard to migrate VMs.
Our solution uses ballooning which keeps the VMs migrate-able.
The hypervisor exclusive cache requires modification to the guest
OS to notify the VMM of page eviction or release. Our approach
only needs to trace page table changes and the whole balancing is
transparent to guest OSes.

3. Memory Monitoring and Automatic Resizing
3.1 System Overview
MEB consists of two parts: an estimator and a balancer. The esti-
mator builds up an LRU histogram for each virtual machine and
monitors the swap space usage of each guest OS. The balancer pe-
riodically adjusts memory allocation based on the information pro-
vided by the estimator. Figure 2 illustrates the system architecture
of MEB.

1. Memory accesses from the VMs, denoted by dashed arrows, are
intercepted by the VMM and then used to update the histogram
for each virtual machine.

2. Optionally, each VM may have a background process, Mon,
which gets the swap usage from the OS performance statistics
and posts the swap usage statistics to the central data storage.

Figure 2. System overview

3. The estimator reads the histograms and collects information
from the central store periodically. It computes the expected
memory size for each VM.

4. The balancer arbitrates memory contention, if it exists, and sets
the target memory size for each VM via ballooning.

3.2 The LRU-based Predictor
Although operating systems keep track of memory usage, most of
them reclaim inactive memory lazily. For example, in the Linux
kernel, when there is no memory pressure, inactive pages may
not be reclaimed. As discussed in Section 2.1, if we can build an
LRU histogram that tracks memory accesses for each guest OS,
the histogram can indicate how inactive those frames near LRU
locations are. A page miss ratio curve, which derives from the
LRU histogram, indicates the relationship between memory size
and page miss rate. We define the Working Set Size (WSS) of a guest
OS as the amount of machine memory needed without causing
significant page swapping. More specifically, let δ be a small page
miss rate we can tolerate, the WSS can be selected as the minimum
memory size that yields page miss rate no larger than δ, which can
be derived from the miss rate curve. By dynamically monitoring
memory accesses and constructing the LRU histogram, we thus
can predict the WSS of a guest OS. If the WSS is smaller than
the actual host memory size, the guest OS can give up some host
memory accordingly.

3.2.1 Intercepting Memory Accesses
Constructing the LRU histogram requires the knowledge of target
addresses of memory accesses which are usually transparent to
the VMM. We follow a widely used technique to trap memory
accesses as minor page faults by setting a higher access privilege
to the pages of concern. For example, on x86 processors, bit 2
of page table entry (PTE) toggles the user or supervisor privilege
level (Application 2006). Changing the bit from user to supervisor
removes guest’s permission and makes normal accesses trap into
the VMM as minor page faults.

Trapping all memory accesses would incur prohibitive cost.
Instead, we logically divide host pages into two sets, a hot page
set H and a cold page set C. Only accesses to cold pages are
trapped. Initially, all pages are marked as cold when a new page
table is populated (e.g. when creating a new process) and the VMM
removes permissions from all entries. Later, when an access to a
cold page causes a minor page fault, it traps into the VMM. In the



Figure 3. Hot set management
(Suppose an access to machine page pa is trapped. Then the permission
in the corresponding PTE in page table PT1 is restored and the address
of the PTE is added to the PTE table. Next, pa is enqueued and pb is
dequeued. Use pb to index the PTE table and locate the PTE of page pb.
The permission in the PTE of page pb is revoked and page pb becomes
cold.)

fault handling routine, the context information provides the virtual
address and the location of the associated page table, from which
the PTE and the machine address can be located in O(1) time.
The routine further restores the permission for future non-trapping
guest accesses. As a result, the recently accessed page turns hot.
Since any subsequent accesses to the hot page will not be trapped,
those accesses will not incur any overhead. To maintain reasonable
accuracy, the number of hot pages should be limited. Though the
concept of hot/cold pages is similar to the active/inactive lists in
(Yang et al. 2006), our design decouples the page-level hot/cold
control from the LRU list management. The LRU list can work on
a coarser tracking granularity to save space and time, which will be
elaborated in Section 3.2.2.

We implement the hot page set, H , as an FIFO queue. Once a
page is marked as hot, its page frame number is appended to the
tail of the queue. When the queue is full, the page referred to by the
head entry is degenerated to the cold set and protected by turning
off user permission. A subsequent reference to this page will trigger
a minor fault. We only store the machine page frame number in
H . To quickly change the permission in the corresponding PTE of
the page, we need a map from machine frame numbers to PTEs.
We introduce a PTE table, which stores the PTE address for every
machine page during the page fault handling. When a page is
dequeued from H and transited from hot to cold, we look up its
PTE address in the PTE table which is indexed by frame number.
Occasionally, the PTE table may contain a stale entry (e.g. the
PTE is updated), which can be easily detected by comparing the
requested page frame number and the actual page frame number in
the PTE. Figure 3 explains the whole process with an example.

The intuition behind our design stems from the program lo-
cality. Typically, accesses to a small set of pages account for a
large portion of overall accesses. These pages are hot pages and
the working set size can never be smaller than the total size of the
hot pages. We thus only need to track page miss ratio with respect
to the cold set. Furthermore, due to locality, the number of accesses
to the cold set is small even with a small hot set. The overhead
caused by the minor faults is thus significantly reduced.

3.2.2 The LRU List and Histogram
The LRU histogram is built with respect to the cold pages. Main-
taining the LRU list at the page level requires a large amount of

Figure 4. The LRU lists in VMM
(All nodes are organized as an array, A. The solid line links the LRU list of
vm1: node1, node4 and node0; the dotted line represents the list of vm2:
node3, node2 and node5. For simplicity, a singly linked list is drawn.)

memory as each page needs a node in the list and each node re-
quires a counter in the histogram. To reduce the space cost, we in-
stead group every G consecutive pages as a unit. Every node in the
LRU list corresponds to G pages. Let M be the number of machine
memory pages and G be the granularity of tracking. N = M

G
is

the maximum number of nodes in the LRU list. A smaller G means
a larger memory requirement and higher prediction accuracy. The
choice of G is determined experimentally (see Section 4.1.1) .

Whenever a memory reference is trapped, three operations will
be performed on the list: locating the corresponding node in the
LRU list, deleting it from the list, and inserting the node to the
list head. The latter two are apparently constant time operations,
given that we organize the LRU list as a doubly linked list where
each node has two pointer fields – prev and next. To expedite the
first operation, all LRU nodes of all VMs are stored in a single
global array A indexed by page frame number divided by G. Given
a machine page frame number PFN , the corresponding node can
be located in O(1) time: A[PFN

G
]. For each guest OS, there is a

head pointer that points to the first node in its own LRU list. With
this data structure, the costs of all three operations are all constant.
Figure 4 gives an example when two VMs are monitored.

Updating the LRU histogram takes more time. The key point
is to locate the LRU position of a node in the linked list. When a
node at position i is accessed, the counter of the bar i in the LRU
histogram is incremented by one. A simple solution to locate the
position is to visit the linked list sequentially from the head. Al-
though it takes worst-case linear time, for a program with good
locality, most searches will hit within the first several nodes. More-
over, a large tracking granularity will reduce the overall size of the
LRU list and thus improve average search time. Our experimen-
tal results show that when G is 32, the overhead is negligible and
the precision is enough for automatic memory resizing (see Section
4.1.1).

A program with poor locality can exhibit large overhead caused
by histogram updating as many LRU position searches would be
close to the worst case. Yang et al. adaptively change the size of
hot pages by monitoring the overhead (Yang et al. 2006). The size
of hot pages is increased when the overhead is large. We instead
directly predict the overhead using the miss rate curve generated
based on the LRU histogram. We increase the hot set size when we
find the locality is poor and thus the overhead is high. Let m(x) be
the function of the miss ratio curve, where x is the miss ratio and
m(x) is the corresponding memory size. A case of bad locality
occurs when all accesses are uniformly distributed, resulting in
m(50%) = WSS

2
. We use α = m(50%)/WSS

2
to quantify the

locality. The smaller the value of α is, the better the locality. In our



Figure 5. Transitions of PTE state

system, we use α ≥ 0.5 as an indicator of poor locality. When such
a situation is detected, we incrementally increase the size of hot set
until α is lower than 0.5 or the hot set reaches a preset upper bound.

The LRU histogram is sensitive to WSS increase but responds
slowly to the decrease of memory usage in some cases. For in-
stance, when a memory intensive application exits, the LRU his-
togram may still show high memory usage because no updates are
made to it. Though the decay (Yang et al. 2004) algorithm was pro-
posed to alleviate this problem, responses to memory decreases are
still not as rapid as to memory increases. However, when there is
no severe memory resource contention, slow responses of the LRU
histogram will not affect the performance much.

3.3 Dynamic Memory Growth
The LRU-based WSS prediction in Section 3.2 can estimate WSS
no larger than the current memory reservation. To detect memory
insufficiency, this section describes two approaches. One approach
resembles the eviction-based LRU histogram as proposed in (Jones
et al. 2006) and the other is simply based on OS statistics. We turn
on memory insufficiency prediction only when the number of major
page faults is above a threshold during an interval.

To figure out how much extra memory is needed, a natural solu-
tion is to treat the disk as memory and construct an LRU histogram
to estimate the WSS on disk. By monitoring page table changes,
the page swapping activities can be inferred. Figure 5 illustrates
the changes in a page table entry under different scenarios. When
an OS dumps the content of a page to disk (swapping-out), the
Presence bit of the PTE will be flipped and the index field will be
changed from the machine frame number to the location on disk.
Later, when the page is needed, a major page fault happens and the
reverse operations will be applied on the PTE (swapping-in). As all
page table updates are visible to VMM, the pattern of swap space
usage can be inferred. By tracking the page swapping-in, an LRU
histogram based on disk locations can be established and its WSS
can be used to guide memory growth.

A more straightforward approach is to use swap usage as the
growth amount. On most modern OSes, swap usage is a common
performance statistic and is available for user-level access. A sim-
ple background process which runs on each VM can be designed to
retrieve the value periodically and pass it to the estimator. Though,
intuitively, it may overestimate the WSS, it is actually close to the
histogram based estimation because the accesses to disk are filtered
by in-memory references and therefore show weak locality. More-
over, it causes less overhead and reflects the swap usage decrease
more rapidly than the LRU based solution. Both approaches are im-
plemented in MEB and the results are compared in Section 4.1.2.

3.4 Automatic Memory Resizing
Once the estimator computes the work set sizes for all VMs,
the balancer determines the target allocation sizes for them. As-
sume P is the size of all available host machine memory when
no guest is running, V is the set of all VMs. For QoS purposes,
each VMi ∈ V is given a lower bound of memory size Li. Let
Ei = max(Li, WSSi) be the expected memory size of VMi.

When P ≥PEi, all VMs can be satisfied. We call the residue of
allocation (P−PEi) as bonus. The bonus can be spent flexibly. In
our implementation, we aggressively allocate the bonus to each VM
proportionally according to Ei. That is Ti = Ei + bonus× EiP

Ei
,

where Ti is the eventual target memory allocation size.
When P <

P
Ei, at least one VM cannot be satisfied. Here

we assume all VMs have the same priority and the goal is to
minimize system wide page misses. Let mrci(x) be the miss ratio
curve and nri be number of memory accesses in a recent epoch
of VMi. Given a memory size m, the number of page misses
is missi(m) = mcri(m) × nri. The balancer tries to find an
allocation {Ti} such that

P
i∈V missi(Ti), the total penalty, is a

minimum.
Since ballooning adjusts memory size on a page unit, a brute

force search takes O(M |V |) time, where M is the maximum
number of pages a VM can get. We propose a quick approxi-
mation algorithm. For simplicity of discussion, we assume that
there are two VMs, VM1 and VM2, to balance. Choosing an in-
crement/decrement unit size S (S ≥ G), the algorithm tentatively
reduces the memory allocation of VM1 by S, increases the allo-
cation of VM2 by S, and calculates the total page misses of the
two VMs based on the miss rate curves. We continue this step
with increment/decrement strides of 2S, 3S, and so on, until the
total page misses reach a local minimum. The algorithm repeats
the above process but now reducing allocation of VM1 while in-
creasing allocation for VM2. It stops when it detects the other local
minimum. The algorithm returns the allocation plan based on the
lower of the two minima. This algorithm can run recursively when
there are more than two VMs.

Sometimes, the two minima are close to each other in terms
of page misses but the allocation plans can be quite different.
For example, when two VMs are both eager for memory, one
minimum suggests 〈V M1 = 50MB, V M2 = 100MB〉 with
total page misses of 1000, while the other one returns 〈V M1 =
100MB, V M2 = 50MB〉 with total page misses of 1001. The
first solution wins slightly, but the next time, the second one wins
with a slightly lower number of page misses and this phenomenon
repeats. The memory adjustment will cause the system to thrash
and degrade the performance substantially. To prevent this, when
the total page misses of both minima are close (e.g. the difference
is less than 10%), the allocation plan closer to the current allocation
is adopted.

It is also necessary to limit the extent of memory reclaiming.
Reclaiming a significant amount of memory may disturb the target
VM because the inactive pages may not be ready to be reclaimed
instantly. So during each balancing, we limit the maximum reduc-
tion to 20% of its current memory size to let it shrink gradually.

4. Implementation and Evaluation
MEB is implemented on Xen 3.2 on an Intel server. The balancer
is written in Python and runs on Domain-0. Paravirtualized 64-bit
Linux 2.6.18 runs on VMs as the guest OS. The server has 8 cores
(two Intel Xeon 5345 2.33 GHz Quad-Core processors) and 4 GB
667 MHZ Dual Ranked memory. To exclude the impact of CPU
resource contention when multiple VMs are running, each VM is
assigned a dedicated CPU core.

To evaluate the effect of MEB, various benchmarks are mea-
sured. We run two micro kernel benchmarks, DaCapo (Blackburn
et al. 2006), SPEC CPU 2000 (spe a) and SPEC Web 2005 (spe b).
Two micro kernel benchmarks, random and mono, are designed to
test the accuracy of WSS estimation. Given a range [low, high],
during each phase, random first allocates a random amount of
memory of size r ∈ [low, high] and then randomly visit the al-
located space for a fixed number of iterations. When the iterations



are finished, the memory is freed and a new phase starts. Mono is
similar to random except that the memory amount allocated in each
phase first increases monotonically from low to high and then de-
creases monotonically from high to low.

DaCapo is a Java benchmark suite, which includes 10 real world
applications with non-trivial memory requirements for some of
them. We use JikesRVM 2.9.2 with the production configuration
as the Java virtual machine (Alpern et al. 1999, 2000; Arnold
et al. 2000; jik). By default, the initial heap size is 50 MB and the
maximum is 100 MB.

In our experiments, MEB monitors memory accessing behavior
for each VM and balances memory allocation 5 times per minute.
For WSS estimation, we select the cutoff point at 5% (i.e. 5% page
miss ratio is acceptable). By default, all VMs are allocated with
214 MB of memory initially. The baseline statistics are measured
on VMs without monitoring and balancing turned on.

4.1 Key Parameters and Options
4.1.1 LRU Tracking Unit
In Section 3.2.2, we use a tracking unit consisting of G pages to
construct the LRU histogram. The choice of tracking unit size is a
trade-off between estimation accuracy and monitoring overhead. To
find out the appropriate tracking unit size, we measured the execu-
tion time and estimation accuracy for various tracking granularity
from 1 page to 210 pages. We run a program which constantly vis-
its 100 MB of memory space (no swap space is used). During the
program execution, estimations are reported periodically and the
highest and lowest values are recorded. As illustrated by Figure 6,
when G increases from 1 to 16, the overhead drops dramatically.
However,when G grows from 32 to 1024, there is no significant
reduction in execution time and overhead while the estimation er-
ror begins to rise dramatically. Hence, we use 32 pages as the LRU
tracking unit.
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Figure 6. Relationships between tracking unit, accuracy and over-
head

4.1.2 OS-based vs. LRU-based Memory Growth Estimation
We have implemented both of the memory growth predictors dis-
cussed in Section 3.3: the OS statistics based and the LRU-based.
We run random and mono with a range of [40, 350] MB. Figure 7
shows the extra memory estimated by the two predictors. The OS
statistics based predictor follows the memory usage change well.
In both benchmarks, it tracks the memory allocation and free in
each phase as the curves go up and down in both benchmarks. The
LRU-based estimation changes slowly especially when swap usage
drops. In the environments with rapid memory usage changes like

our benchmarks, the former one is more suitable. The following
experiments all use the OS statistics based predictor.

4.2 Working Set Size Estimation
First, we run mono and random with a range of [40, 170] MB. In
this setting, no page swapping occurs, so WSS can be derived from
the physical memory LRU histogram directly. For comparison pur-
pose, we also implement sampling based estimation as used in the
VMware ESX server (sample size is 100 pages, interval is 30 sec-
onds2). As Figures 8(a) and 8(b) show, when memory usage in-
creases, our predictor follows closely. Due to the nature of the LRU
histogram, it responds slowly to memory usage decrease as dis-
cussed before. The average error of the LRU-based and sampling-
based estimations is 13.46% and 74.36%, respectively, in random,
and 5.78% and 99.16%, respectively, in mono. The LRU-based pre-
diction is a clear winner.

Figure 8(c) and 8(d) show the results when the WSS of both
benchmarks varies from 40 MB to 350 MB. Now the WSS can be
larger than the actual memory. In this case, swap usage is involved
in calculating the WSS. The sampling scheme cannot predict WSS
beyond the current host memory allocation, while combining LRU-
histogram and OS swap usage tracks the WSS well.

4.3 System Overhead
The memory overhead of MEB mainly comes from four data struc-
tures: the hot sets, the PTE table, the LRU list array, and the LRU
histograms. The PTE table and the LRU list array are global, while
one hot set and one histogram are local to each VM. The total size
of the PTE table is M×sizeof(void∗), where M is the number of
physical memory frames on the host machine. The number of nodes
in the LRU list array and the number of entries in each histogram is
equal to M

G
, where G is tracking unit. Each LRU list node has two

pointers, prev and next. Each slot of the histogram is a long inte-
ger. The number of entries in the hot set is configurable and each
entry uses four bytes to store the page number.

On our experimental platform, M = 220, given the total ma-
chine memory of 4 GB and the page size of 4 KB. A pointer and
a long integer are 8 bytes each. The number of hot set entries is
configured as 8K by default with a maximum of 16K. Therefore,
when G = 32, the total memory needed is: 8 MB for the PTE ta-
ble, 0.5 MB for the LRU list array, 0.25 MB for each histogram
and 64 KB maximum for each hot set, which is quite scalable to
the physical memory size and the number of virtual machines.

To evaluate the runtime overhead of MEB, we measure the
execution times of the selected benchmarks with MEB turned on
but not adjusting memory allocation. Thus MEB only monitors the
WSS. As shown in Figure 9, the average overhead is small. For
the DaCapo suite and SPEC INT, the mean overhead is merely
2.64% and 3%, respectively. For SPEC Web, the mean throughput
loss is as low as 1%. Among the benchmark programs, 181.mcf is
the most sensitive to the hot set size. The adaptive hot set growth
reduces its overhead by 70%, but there is a still 24% performance
loss.

4.4 Performance
To evaluate the effect of automatic memory balancing, we first
assign different tasks on two VMs, then experiments are performed
on four VMs. Each VM is started with 214 MB initial memory and
configured with 80 MB as its lowest possible memory allocation.
Hence, a VM’s memory may vary from 80 MB to 214+ (N − 1) ∗
(214− 80) MB where N is the number of VMs.

2 the same parameters as used in (Waldspurger 2002)
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Figure 8. WSS estimation

4.4.1 CPU Intensive + Memory Intensive Workloads
Our evaluation starts with a simple scenario where memory re-
source contention is rare. The workloads include the DaCapo

benchmark suite and 186.crafty, a program with intensive CPU
usage but low memory load. On VM1, 186.crafty runs 12 it-
erations followed by the DaCapo benchmark suite. Meanwhile,
on VM2, the DaCapo suite runs first, followed by the same num-
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Figure 9. Overhead

Baseline Balancing Best
Major PF. 18,532 948 718
Exec. Time (DaCapo) 310.097 200.385 144.838
Exec. Time (186) 42.1 43.9 42.1

Table 1. Major Page faults and Total Execution Time

ber of iterations of 186.crafty. Figure 10(a) displays the actual
allocated memory size and expected memory size on both VMs
respectively. Note that the VM running 186.crafty gradually
gives up its memory to the other VM. When both VMs are running
186.crafty, bonus is generously allocated and the allocations to
the two VMs meet.

To show the performance that an ideal memory balancer could
deliver, we measure the best case performance on two VMs, each
with 428 MB fixed memory. In other words, it resembles the sce-
nario that one VM uses up all available host memory. Figure 10(b)
shows the normalized average execution time of each benchmark in
the three settings respectively: baseline, best case, and balancing.
As indicated by Table 1, with memory balancing, the number of
total major page faults is reduced by a factor of 19.5, getting very
close to the best case. Though there is 4% performance loss for
186.crafty because of the monitoring overhead, DaCapo gains a
1.55 speedup. Most notable improvements are from eclipse and
xalan, whose execution times are cut in half. Both benchmarks
require around 300 MB memory, resulting in a large number of
page faults without MEB. Memory balancing leads to a 98.85%
and 99.88% page fault reduction, respectively for eclipse and
xalan.

Figure 11 shows the results when one VM runs DaCapo and
the other one runs SPEC Web. For DaCapo, we report normalized
speeds. For SPEC Web, the throughput is normalized with the base-
line. With balancing, though the performance of Bank degrades by
2%, DaCapo on VM1 gains a 1.36 speedup and the throughput of
E-commerce and Support on VM2 is increased by 1% and 57%,
respectively.

4.4.2 Memory Intensive + Memory Intensive Workloads
More challenging cases for memory balancing are the ones with
frequent memory contention. We run the DaCapo benchmark suite
on two VMs at the same time but in different orders: VM1 runs
each benchmark in alphabetical order while VM2 runs them in the
reverse order (denoted as DaCapo’). Note that eclipse and xalan
require about 300 MB memory and eclipse takes about half of

the total execution time. When the execution of two occurrences of
eclipse overlaps, memory resource contention happens.

Figure 12(a) shows the memory allocation during the execution,
and Figures12(b) and 12(c) compare the execution times with and
without memory balancing. The goal of memory balancing is to
improve the overall performance. Some benchmarks on one VM
may sacrifice their performance to benefit the other ones. Specifi-
cally, the execution times of eclipse and xalan are significantly
reduced. Slowdown can be eminent for short-running benchmarks
such as luindex on VM1. Even a small number of page faults can
significantly increase the execution time of a short-running bench-
mark with few page faults initially. After applying balancing, the
total number of major page faults is decreased by 4.08% and 40.3%
respectively and the total execution time is shortened by 7.34% and
30.27% accordingly.

4.4.3 Mixed Workloads with Four VMs
To simulate a more realistic setting in which multiple VMs are
hosted and diverse applications are deployed, four VMs are created
and different workloads are assigned to each of them. VM1 runs
the DaCapo suite, VM2 runs the DaCapo suite in reverse order
(as in 4.4.2), VM3 runs 186.crafty for 12 iterations, and VM4

runs SPEC Web. As shown in Figure 13, with memory balancing,
the performance of DaCapo and DaCapo’ are boosted by a factor
of 3.75 and 3.54 respectively with a cost of a 28% slowdown
for Support on VM4. Compared with the two-VM scenarios, the
performance of DaCapo in the four-VM setting is significantly
enhanced due to larger memory resource pool which allows the
arbitrator to allocate more memory to these memory-hog programs.

Although the results are impressive in terms of the overall per-
formance metric, QoS might be desirable in real applications for a
performance-critical VM. A naive solution to guarantee the perfor-
mance is to increase its lower bound on memory size. Alternatively,
by assigning more weight or higher priority to the VM during arbi-
tration, similar effects should be acquired. In this case, to improve
the quality of SPEC Web HTTP services on VM4, we set the weight
of the miss penalty of VM4 as 20 times of the rest of the VMs. As
displayed in Figure 13, after priority adjustment, the slowdown for
Support is reduced to less than 9% while the performance im-
provement of DaCapo is still maintained.

5. Conclusion and Future Work
As virtualization technology gains more ground in both academics
and industry, resource management in a virtualized system remains
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Figure 10. DaCapo + 186.crafty
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a key problem. Memory contention among virtual machines can
significantly drop the overall system throughput. In this paper, we
present MEB, a memory balancer that estimates the working set

size of a VM and automatically adjusts the memory allocation to
improve memory resource utilization. An evaluation of our Xen-
based implementation shows that MEB is capable of boosting the
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overall performance through automatic memory balancing. In fu-
ture work, we plan to extend MEB to support adaptive parameter
selection to further reduce overhead while improving prediction ac-
curacy.
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fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Languages, and Appli-
cations, pages 169–190, New York, NY, USA, October 2006. ACM
Press. doi: http://doi.acm.org/10.1145/1167473.1167488.

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting
inter-thread cache contention on a chip multi-processor architecture.
In HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages 340–351, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2275-0. doi:
http://dx.doi.org/10.1109/HPCA.2005.27.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Geiger: monitoring the buffer cache in a virtual machine envi-
ronment. SIGOPS Oper. Syst. Rev., 40(5):14–24, 2006. ISSN 0163-5980.
doi: http://doi.acm.org/10.1145/1168917.1168861.

Pin Lu and Kai Shen. Virtual machine memory access tracing with hypervi-
sor exclusive cache. In ATC’07: 2007 USENIX Annual Technical Con-
ference on Proceedings of the USENIX Annual Technical Conference,
pages 1–15, Berkeley, CA, USA, 2007. USENIX Association. ISBN
999-8888-77-6.

Dan Magenheimer. Memory overcommit. . . without the commitment, 2008.
R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques

for storage hierarchies. IBM System Journal, 9(2):78–117, 1970.
R. A. Sugumar and S. G. Abraham. Efficient simulation of caches un-

der optimal replacement with applications to miss characterization. In
SIGMETRICS ’93: Proceedings of the 1993 ACM SIGMETRICS Con-
ference on Measurement & Modeling Computer Systems, pages 24–35,
May 1993.

Carl A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/844128.844146.

Timothy Wood, Prashant Shenoy, and Arun. Black-box and gray-box
strategies for virtual machine migration. pages 229–242. URL http:
//www.usenix.org/events/nsdi07/tech/wood.html.

T. Yang, E. Berger, M. Hertz, S. Kaplan, and J. Moss. Automatic heap
sizing: Taking real memory into account, 2004. URL citeseer.ist.
psu.edu/article/yang04automatic.html.

Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss.
CRAMM: virtual memory support for garbage-collected applications.
In OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, pages 103–116, Berkeley, CA, USA, 2006.
USENIX Association. ISBN 1-931971-47-1.

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss
ratio curve for memory management. In ASPLOS-XI: Proceedings of
the 11th international conference on Architectural support for program-
ming languages and operating systems, pages 177–188, New York, NY,
USA, 2004. ACM. ISBN 1-58113-804-0. doi: http://doi.acm.org/10.
1145/1024393.1024415.

http://www.jikesrvm.org/
http://www.spec.org/cpu2000
http://www.spec.org/web2005
citeseer.ist.psu.edu/484264.html
http://www.usenix.org/events/nsdi07/tech/wood.html
http://www.usenix.org/events/nsdi07/tech/wood.html
citeseer.ist.psu.edu/article/yang04automatic.html
citeseer.ist.psu.edu/article/yang04automatic.html

	Introduction
	Background and Related Work
	LRU Histogram
	Memory Management
	Related Work

	Memory Monitoring and Automatic Resizing
	System Overview
	The LRU-based Predictor
	Intercepting Memory Accesses
	The LRU List and Histogram

	Dynamic Memory Growth
	Automatic Memory Resizing

	Implementation and Evaluation
	Key Parameters and Options
	LRU Tracking Unit
	OS-based vs. LRU-based Memory Growth Estimation

	Working Set Size Estimation
	System Overhead
	Performance
	CPU Intensive + Memory Intensive Workloads
	Memory Intensive + Memory Intensive Workloads
	Mixed Workloads with Four VMs


	Conclusion and Future Work

