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Abstract

Neural network architectures with memory and

attention mechanisms exhibit certain reason-

ing capabilities required for question answering.

One such architecture, the dynamic memory net-

work (DMN), obtained high accuracy on a vari-

ety of language tasks. However, it was not shown

whether the architecture achieves strong results

for question answering when supporting facts are

not marked during training or whether it could

be applied to other modalities such as images.

Based on an analysis of the DMN, we propose

several improvements to its memory and input

modules. Together with these changes we intro-

duce a novel input module for images in order

to be able to answer visual questions. Our new

DMN+ model improves the state of the art on

both the Visual Question Answering dataset and

the bAbI-10k text question-answering dataset

without supporting fact supervision.

1. Introduction

Neural network based methods have made tremendous

progress in image and text classification (Krizhevsky et al.,

2012; Socher et al., 2013b). However, only recently has

progress been made on more complex tasks that require

logical reasoning. This success is based in part on the

addition of memory and attention components to complex

neural networks. For instance, memory networks (Weston

et al., 2015b) are able to reason over several facts written in

natural language or (subject, relation, object) triplets. At-

tention mechanisms have been successful components in

both machine translation (Bahdanau et al., 2015; Luong

et al., 2015) and image captioning models (Xu et al., 2015).

The dynamic memory network (Kumar et al., 2015)

(DMN) is one example of a neural network model that has

both a memory component and an attention mechanism.
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Figure 1. Question Answering over text and images using a Dy-

namic Memory Network.

The DMN yields state of the art results on question answer-

ing with supporting facts marked during training, sentiment

analysis, and part-of-speech tagging.

We analyze the DMN components, specifically the input

module and memory module, to improve question answer-

ing. We propose a new input module which uses a two

level encoder with a sentence reader and input fusion layer

to allow for information flow between sentences. For the

memory, we propose a modification to gated recurrent units

(GRU) (Chung et al., 2014). The new GRU formulation in-

corporates attention gates that are computed using global

knowledge over the facts. Unlike before, the new DMN+

model does not require that supporting facts (i.e. the facts

that are relevant for answering a particular question) are

labeled during training. The model learns to select the im-

portant facts from a larger set.

In addition, we introduce a new input module to represent

images. This module is compatible with the rest of the

DMN architecture and its output is fed into the memory

module. We show that the changes in the memory module

that improved textual question answering also improve vi-

sual question answering. Both tasks are illustrated in Fig. 1.

2. Dynamic Memory Networks

We begin by outlining the DMN for question answering

and the modules as presented in Kumar et al. (2015).

The DMN is a general architecture for question answering
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(QA). It is composed of modules that allow different as-

pects such as input representations or memory components

to be analyzed and improved independently. The modules,

depicted in Fig. 1, are as follows:

Input Module: This module processes the input data about

which a question is being asked into a set of vectors termed

facts, represented as F = [f1, . . . , fN ], where N is the total

number of facts. These vectors are ordered, resulting in ad-

ditional information that can be used by later components.

For text QA in Kumar et al. (2015), the module consists of

a GRU over the input words.

As the GRU is used in many components of the DMN, it

is useful to provide the full definition. For each time step i
with input xi and previous hidden state hi−1, we compute

the updated hidden state hi = GRU(xi, hi−1) by

ui = σ
(

W (u)xi + U (u)hi−1 + b(u)
)

(1)

ri = σ
(

W (r)xi + U (r)hi−1 + b(r)
)

(2)

h̃i = tanh
(

Wxi + ri ◦ Uhi−1 + b(h)
)

(3)

hi = ui ◦ h̃i + (1− ui) ◦ hi−1 (4)

where σ is the sigmoid activation function, ◦ is an element-

wise product, W (z),W (r),W ∈ R
nH×nI , U (z), U (r), U ∈

R
nH×nH , nH is the hidden size, and nI is the input size.

Question Module: This module computes a vector repre-

sentation q of the question, where q ∈ R
nH is the final

hidden state of a GRU over the words in the question.

Episodic Memory Module: Episode memory aims to re-

trieve the information required to answer the question q
from the input facts. To improve our understanding of

both the question and input, especially if questions require

transitive reasoning, the episode memory module may pass

over the input multiple times, updating episode memory af-

ter each pass. We refer to the episode memory on the tth

pass over the inputs as mt, where mt ∈ R
nH , the initial

memory vector is set to the question vector: m0 = q.

The episodic memory module consists of two separate

components: the attention mechanism and the memory up-

date mechanism. The attention mechanism is responsible

for producing a contextual vector ct, where ct ∈ R
nH

is a summary of relevant input for pass t, with relevance

inferred by the question q and previous episode memory

mt−1. The memory update mechanism is responsible for

generating the episode memory mt based upon the contex-

tual vector ct and previous episode memory mt−1. By the

final pass T , the episodic memory mT should contain all

the information required to answer the question q.

Answer Module: The answer module receives both q and

mT to generate the model’s predicted answer. For simple

answers, such as a single word, a linear layer with softmax

activation may be used. For tasks requiring a sequence out-

put, an RNN may be used to decode a = [q;mT ], the con-

catenation of vectors q and mT , to an ordered set of tokens.

The cross entropy error on the answers is used for training

and backpropagated through the entire network.

3. Improved Dynamic Memory Networks:

DMN+

We propose and compare several modeling choices for two

crucial components: input representation, attention mecha-

nism and memory update. The final DMN+ model obtains

the highest accuracy on the bAbI-10k dataset without sup-

porting facts and the VQA dataset (Antol et al., 2015). Sev-

eral design choices are motivated by intuition and accuracy

improvements on that dataset.

3.1. Input Module for Text QA

In the DMN specified in Kumar et al. (2015), a single GRU

is used to process all the words in the story, extracting sen-

tence representations by storing the hidden states produced

at the end of sentence markers. The GRU also provides a

temporal component by allowing a sentence to know the

content of the sentences that came before them. Whilst

this input module worked well for bAbI-1k with supporting

facts, as reported in Kumar et al. (2015), it did not perform

well on bAbI-10k without supporting facts (Sec. 6.1).

We speculate that there are two main reasons for this per-

formance disparity, all exacerbated by the removal of sup-

porting facts. First, the GRU only allows sentences to

have context from sentences before them, but not after

them. This prevents information propagation from future

sentences. Second, the supporting sentences may be too

far away from each other on a word level to allow for these

distant sentences to interact through the word level GRU.

Input Fusion Layer

For the DMN+, we propose replacing this single GRU with

two different components. The first component is a sen-

tence reader, responsible only for encoding the words into

a sentence embedding. The second component is the input

fusion layer, allowing for interactions between sentences.

This resembles the hierarchical neural auto-encoder archi-

tecture of Li et al. (2015) and allows content interaction

between sentences. We adopt the bi-directional GRU for

this input fusion layer because it allows information from

both past and future sentences to be used. As gradients

do not need to propagate through the words between sen-

tences, the fusion layer also allows for distant supporting

sentences to have a more direct interaction.

Fig. 2 shows an illustration of an input module, where a
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Figure 2. The input module with a “fusion layer”, where the sen-

tence reader encodes the sentence and the bi-directional GRU al-

lows information to flow between sentences.

positional encoder is used for the sentence reader and a

bi-directional GRU is adopted for the input fusion layer.

Each sentence encoding fi is the output of an encoding

scheme taking the word tokens [wi
1, . . . , w

i
Mi

], where Mi

is the length of the sentence.

The sentence reader could be based on any variety of

encoding schemes. We selected positional encoding de-

scribed in Sukhbaatar et al. (2015) to allow for a compari-

son to their work. GRUs and LSTMs were also considered

but required more computational resources and were prone

to overfitting if auxiliary tasks, such as reconstructing the

original sentence, were not used.

For the positional encoding scheme, the sentence repre-

sentation is produced by fi =
∑j=1

M lj ◦ wi
j , where ◦ is

element-wise multiplication and lj is a column vector with

structure ljd = (1 − j/M) − (d/D)(1 − 2j/M), where

d is the embedding index and D is the dimension of the

embedding.

The input fusion layer takes these input facts and enables

an information exchange between them by applying a bi-

directional GRU.

−→
fi = GRUfwd(fi,

−−→
fi−1) (5)

←−
fi = GRUbwd(fi,

←−−
fi+1) (6)

←→
fi =

←−
fi +

−→
fi (7)

where fi is the input fact at timestep i,
−→
fi is the hidden state

of the forward GRU at timestep i, and
←−
fi is the hidden state

of the backward GRU at timestep i. This allows contextual

information from both future and past facts to impact
←→
fi .

We explored a variety of encoding schemes for the sen-

tence reader, including GRUs, LSTMs, and the positional
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Figure 3. VQA input module to represent images for the DMN.

encoding scheme described in Sukhbaatar et al. (2015).

For simplicity and speed, we selected the positional en-

coding scheme. GRUs and LSTMs were also considered

but required more computational resources and were prone

to overfitting if auxiliary tasks, such as reconstructing the

original sentence, were not used.

3.2. Input Module for VQA

To apply the DMN to visual question answering, we intro-

duce a new input module for images. The module splits

an image into small local regions and considers each re-

gion equivalent to a sentence in the input module for text.

The input module for VQA is composed of three parts, il-

lustrated in Fig. 3: local region feature extraction, visual

feature embedding, and the input fusion layer introduced

in Sec. 3.1.

Local region feature extraction: To extract features

from the image, we use a convolutional neural network

(Krizhevsky et al., 2012) based upon the VGG-19 model

(Simonyan & Zisserman, 2014). We first rescale the input

image to 448× 448 and take the output from the last pool-

ing layer which has dimensionality d = 512 × 14 × 14.

The pooling layer divides the image into a grid of 14× 14,

resulting in 196 local regional vectors of d = 512.

Visual feature embedding: As the VQA task involves

both image features and text features, we add a linear layer

with tanh activation to project the local regional vectors to

the textual feature space used by the question vector q.

Input fusion layer: The local regional vectors extracted

from above do not yet have global information available

to them. Without global information, their representational

power is quite limited, with simple issues like object scal-

ing or locational variance causing accuracy problems.
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Figure 4. The episodic memory module of the DMN+ when using

two passes. The
←→

F is the output of the input module.

To solve this, we add an input fusion layer similar to that

of the textual input module described in Sec. 3.1. First,

to produce the input facts F , we traverse the image in a

snake like fashion, as seen in Figure 3. We then apply a

bi-directional GRU over these input facts F to produce the

globally aware input facts
←→
F . The bi-directional GRU al-

lows for information propagation from neighboring image

patches, capturing spatial information.

3.3. The Episodic Memory Module

The episodic memory module, as depicted in Fig. 4, re-

trieves information from the input facts
←→
F = [

←→
f1 , . . . ,

←→
fN ]

provided to it by focusing attention on a subset of these

facts. We implement this attention by associating a sin-

gle scalar value, the attention gate gti , with each fact
←→
f i

during pass t. This is computed by allowing interactions

between the fact and both the question representation and

the episode memory state.

zti=[
←→
fi ◦ q;

←→
fi ◦mt−1; |←→fi − q|; |←→fi −mt−1|] (8)

Zt
i =W (2) tanh

(

W (1)zti + b(1)
)

+ b(2) (9)

gti=
exp(Zt

i )
∑Mi

k=1 exp(Z
t
k)

(10)

where
←→
fi is the ith fact, mt−1 is the previous episode

memory, q is the original question, ◦ is the element-wise

product, | · | is the element-wise absolute value, and ; rep-

resents concatenation of the vectors.

The DMN implemented in Kumar et al. (2015) involved

a more complex set of interactions within z, containing

the additional terms [f ;mt−1; q; fTW (b)q; fTW (b)mt−1].
After an initial analysis, we found these additional terms

were not required.

Attention Mechanism

Once we have the attention gate gti we use an attention

hi h̃iri

ui

IN

OUT

hi h̃iri
IN

OUT

gti

(a) (b) 

Figure 5. (a) The traditional GRU model, and (b) the proposed

attention-based GRU model

mechanism to extract a contextual vector ct based upon the

current focus. We focus on two types of attention: soft at-

tention and a new attention based GRU. The latter improves

performance and is hence the final modeling choice for the

DMN+.

Soft attention: Soft attention produces a contextual vec-

tor ct through a weighted summation of the sorted list of

vectors
←→
F and corresponding attention gates gti : ct =

∑N

i=1 g
t
i

←→
f i This method has two advantages. First, it is

easy to compute. Second, if the softmax activation is spiky

it can approximate a hard attention function by selecting

only a single fact for the contextual vector whilst still being

differentiable. However the main disadvantage to soft at-

tention is that the summation process loses both positional

and ordering information. Whilst multiple attention passes

can retrieve some of this information, this is inefficient.

Attention based GRU: For more complex queries, we

would like for the attention mechanism to be sensitive to

both the position and ordering of the input facts
←→
F . An

RNN would be advantageous in this situation except they

cannot make use of the attention gate from Equation 10.

We propose a modification to the GRU architecture by em-

bedding information from the attention mechanism. The

update gate ui in Equation 1 decides how much of each di-

mension of the hidden state to retain and how much should

be updated with the transformed input xi from the current

timestep. As ui is computed using only the current input

and the hidden state from previous timesteps, it lacks any

knowledge from the question or previous episode memory.

By replacing the update gate ui in the GRU (Equation 1)

with the output of the attention gate gti (Equation 10) in

Equation 4, the GRU can now use the attention gate for

updating its internal state. This change is depicted in Fig 5.

hi=gti ◦ h̃i + (1− gti) ◦ hi−1 (11)

An important consideration is that gti is a scalar, generated

using a softmax activation, as opposed to the vector ui ∈
R

nH , generated using a sigmoid activation. This allows

us to easily visualize how the attention gates activate over

the input, later shown for visual QA in Fig. 6. Though

not explored, replacing the softmax activation in Equation

10 with a sigmoid activation would result in gti ∈ R
nH .

To produce the contextual vector ct used for updating the



Dynamic Memory Networks for Visual and Textual Question Answering

episodic memory state mt, we use the final hidden state of

the attention based GRU.

Episode Memory Updates

After each pass through the attention mechanism, we wish

to update the episode memory mt−1 with the newly con-

structed contextual vector ct, producing mt. In the DMN,

a GRU with the initial hidden state set to the question vec-

tor q is used for this purpose. The episodic memory for

pass t is computed by

mt = GRU(ct,mt−1) (12)

The work of Sukhbaatar et al. (2015) suggests that using

different weights for each pass through the episodic mem-

ory may be advantageous. When the model contains only

one set of weights for all episodic passes over the input, it

is referred to as a tied model, as in the “Mem Weights” row

in Table 1.

Following the memory update component used in

Sukhbaatar et al. (2015) and Peng et al. (2015) we experi-

ment with using a ReLU layer for the memory update, cal-

culating the new episode memory state by

mt = ReLU
(

W t[mt−1; ct; q] + b
)

(13)

where ; is the concatenation operator, W t ∈ R
nH×nH , b ∈

R
nH , and nH is the hidden size. The untying of weights

and using this ReLU formulation for the memory update

improves accuracy by another 0.5% as shown in Table 1 in

the last column. The final output of the memory network is

passed to the answer module as in the original DMN.

4. Related Work

The DMN is related to two major lines of recent work:

memory and attention mechanisms. We work on both vi-

sual and textual question answering which have, until now,

been developed in separate communities.

Neural Memory Models The earliest recent work with a

memory component that is applied to language processing

is that of memory networks (Weston et al., 2015b) which

adds a memory component for question answering over

simple facts. They are similar to DMNs in that they also

have input, scoring, attention and response mechanisms.

However, unlike the DMN their input module computes

sentence representations independently and hence cannot

easily be used for other tasks such as sequence labeling.

Like the original DMN, this memory network requires that

supporting facts are labeled during QA training. End-to-

end memory networks (Sukhbaatar et al., 2015) do not have

this limitation. In contrast to previous memory models

with a variety of different functions for memory attention

retrieval and representations, DMNs (Kumar et al., 2015)

have shown that neural sequence models can be used for

input representation, attention and response mechanisms.

Sequence models naturally capture position and temporal-

ity of both the inputs and transitive reasoning steps.

Neural Attention Mechanisms Attention mechanisms al-

low neural network models to use a question to selectively

pay attention to specific inputs. They can benefit image

classification (Stollenga et al., 2014), generating captions

for images (Xu et al., 2015), among others mentioned be-

low, and machine translation (Cho et al., 2014; Bahdanau

et al., 2015; Luong et al., 2015). Other recent neural ar-

chitectures with memory or attention which have proposed

include neural Turing machines (Graves et al., 2014), neu-

ral GPUs (Kaiser & Sutskever, 2015) and stack-augmented

RNNs (Joulin & Mikolov, 2015).

Question Answering in NLP Question answering involv-

ing natural language can be solved in a variety of ways to

which we cannot all do justice. If the potential input is a

large text corpus, QA becomes a combination of informa-

tion retrieval and extraction (Yates et al., 2007). Neural

approaches can include reasoning over knowledge bases,

(Bordes et al., 2012; Socher et al., 2013a) or directly via

sentences for trivia competitions (Iyyer et al., 2014).

Visual Question Answering (VQA) In comparison to QA

in NLP, VQA is still a relatively young task that is feasible

only now that objects can be identified with high accuracy.

The first large scale database with unconstrained questions

about images was introduced by Antol et al. (2015). While

VQA datasets existed before they did not include open-

ended, free-form questions about general images (Geman

et al., 2014). Others are were too small to be viable for a

deep learning approach (Malinowski & Fritz, 2014). The

only VQA model which also has an attention component

is the stacked attention network (Yang et al., 2015). Their

work also uses CNN based features. However, unlike our

input fusion layer, they use a single layer neural network

to map the features of each patch to the dimensionality of

the question vector. Hence, the model cannot easily incor-

porate adjacency of local information in its hidden state.

A model that also uses neural modules, albeit logically in-

spired ones, is that by Andreas et al. (2016) who evaluate

on knowledgebase reasoning and visual question answer-

ing. We compare directly to their method on the latter task.

Related to visual question answering is the task of describ-

ing images with sentences (Kulkarni et al., 2011). Socher

et al. (2014) used deep learning methods to map images

and sentences into the same space to describe images with

sentences and find images that best visualize a sentence.

This was the first work to map both modalities into a joint

space using deep learning, but it could only select an exist-

ing sentence to describe an image. Shortly thereafter, recur-

rent neural networks were used to generate often novel sen-
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tences based on images (Karpathy & Fei-Fei, 2015; Chen

& Zitnick, 2014; Fang et al., 2015; Xu et al., 2015).

5. Datasets

To analyze our proposed model changes and compare with

other architectures, we use three datasets.

5.1. bAbI-10k

For evaluating the DMN on textual question answering, we

use bAbI-10k English (Weston et al., 2015a; Sukhbaatar

et al., 2015), a synthetic dataset which features 20 differ-

ent tasks. Each example is composed of a set of facts, a

question, the answer, and the supporting facts that lead to

the answer. The dataset comes in two sizes, referring to the

number of training examples each task has: bAbI-1k and

bAbI-10k.

5.2. DAQUAR-ALL visual dataset

The DAtaset for QUestion Answering on Real-world im-

ages (DAQUAR) (Malinowski & Fritz, 2014) consists of

795 training images and 654 test images. Based upon these

images, 6,795 training questions and 5,673 test questions

were generated. Following the previously defined experi-

mental method, we exclude multiple word answers (Mali-

nowski et al., 2015; Ma et al., 2015). The resulting dataset

covers 90% of the original data. The evaluation method

uses classification accuracy over the single words. We use

this as a development dataset for model analysis (Sec. 6.1).

5.3. Visual Question Answering

The Visual Question Answering (VQA) dataset was con-

structed using the Microsoft COCO dataset (Lin et al.,

2014) which contained 123,287 training/validation images

and 81,434 test images. Each image has several related

questions with each question answered by multiple people.

This dataset contains 248,349 training questions, 121,512

validation questions, and 244,302 for testing. Evaluation

on both test-standard and test-challenge are implemented

via a submission system. test-standard may only be evalu-

ated 5 times and test-challenge is only evaluated at the end

of the competition. To the best of our knowledge, VQA is

the largest and most complex image dataset for the visual

question answering task.

6. Experiments

6.1. Model Analysis

To understand the impact of the proposed module changes,

we analyze the performance of a variety of DMN models

on textual and visual question answering datasets.

The original DMN (ODMN) is the architecture presented

in Kumar et al. (2015) without any modifications. DMN2

only replaces the input module with the input fusion layer

(Sec. 3.1). DMN3, based upon DMN2, replaces the soft at-

tention mechanism with the attention based GRU proposed

in Sec. 3.3. Finally, DMN+, based upon DMN3, is an un-

tied model, using a unique set of weights for each pass and

a linear layer with a ReLU activation to compute the mem-

ory update. We report the performance of the model varia-

tions in Table 1.

A large improvement to accuracy on both the bAbI-10k tex-

tual and DAQUAR visual datasets results from updating the

input module, seen when comparing ODMN to DMN2. On

both datasets, the input fusion layer improves interaction

between distant facts. In the visual dataset, this improve-

ment is purely from providing contextual information from

neighboring image patches, allowing it to handle objects

of varying scale or questions with a locality aspect. For the

textual dataset, the improved interaction between sentences

likely helps the path finding required for logical reasoning

when multiple transitive steps are required.

The addition of the attention GRU in DMN3 helps answer

questions where complex positional or ordering informa-

tion may be required. This change impacts the textual

dataset the most as few questions in the visual dataset are

likely to require this form of logical reasoning. Finally, the

untied model in the DMN+ overfits on some tasks com-

pared to DMN3, but on average the error rate decreases.

From these experimental results, we find that the combina-

tion of all the proposed model changes results, culminating

in DMN+, achieves the highest performance across both

the visual and textual datasets.

6.2. Comparison to state of the art using bAbI-10k

We trained our models using the Adam optimizer (Kingma

& Ba, 2014) with a learning rate of 0.001 and batch size of

128. Training runs for up to 256 epochs with early stopping

if the validation loss had not improved within the last 20

epochs. The model from the epoch with the lowest valida-

tion loss was then selected. Xavier initialization was used

for all weights except for the word embeddings, which used

random uniform initialization with range [−
√
3,
√
3]. Both

the embedding and hidden dimensions were of size d = 80.

We used ℓ2 regularization on all weights except bias and

used dropout on the initial sentence encodings and the an-

swer module, keeping the input with probability p = 0.9.

The last 10% of the training data on each task was chosen

as the validation set. For all tasks, three passes were used

for the episodic memory module, allowing direct compari-

son to other state of the art methods. Finally, we limited the

input to the last 70 sentences for all tasks except QA3 for

which we limited input to the last 130 sentences, similar to
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Model ODMN DMN2 DMN3 DMN+

Input module GRU Fusion Fusion Fusion
Attention

∑
gifi

∑
gifi AttnGRU AttnGRU

Mem update GRU GRU GRU ReLU
Mem Weights Tied Tied Tied Untied

bAbI English 10k dataset

QA2 36.0 0.1 0.7 0.3
QA3 42.2 19.0 9.2 1.1
QA5 0.1 0.5 0.8 0.5
QA6 35.7 0.0 0.6 0.0
QA7 8.0 2.5 1.6 2.4
QA8 1.6 0.1 0.2 0.0
QA9 3.3 0.0 0.0 0.0
QA10 0.6 0.0 0.2 0.0
QA14 3.6 0.7 0.0 0.2
QA16 55.1 45.7 47.9 45.3
QA17 39.6 5.9 5.0 4.2
QA18 9.3 3.8 0.1 2.1
QA20 1.9 0.0 0.0 0.0

Mean error 11.8 3.9 3.3 2.8

DAQUAR-ALL visual dataset

Accuracy 27.54 28.43 28.62 28.79

Table 1. Test error rates of various model architectures on

the bAbI-10k dataset, and accuracy performance on the

DAQUAR-ALL visual dataset. The skipped bAbI questions

(1,4,11,12,13,15,19) achieved 0 error across all models.

Sukhbaatar et al. (2015).

On some tasks, the accuracy was not stable across multiple

runs. This was particularly problematic on QA3, QA17,

and QA18. To solve this, we repeated training 10 times

using random initializations and evaluated the model that

achieved the lowest validation set loss.

Text QA Results

We compare our best performing approach, DMN+, to two

state of the art question answering architectures: the end to

end memory network (E2E) (Sukhbaatar et al., 2015) and

the neural reasoner framework (NR) (Peng et al., 2015).

Neither approach use supporting facts for training.

The end-to-end memory network is a form of memory net-

work (Weston et al., 2015b) tested on both textual ques-

tion answering and language modeling. The model features

both explicit memory and a recurrent attention mechanism.

We select the model from the paper that achieves the low-

est mean error over the bAbI-10k dataset. This model uti-

lizes positional encoding for input, RNN-style tied weights

for the episode module, and a ReLU non-linearity for the

memory update component.

The neural reasoner framework is an end-to-end trainable

model which features a deep architecture for logical rea-

soning and an interaction-pooling mechanism for allowing

interaction over multiple facts. While the neural reasoner

framework was only tested on QA17 and QA19, these were

Task DMN+ E2E NR

2: 2 supporting facts 0.3 0.3 -

3: 3 supporting facts 1.1 2.1 -

5: 3 argument relations 0.5 0.8 -

6: yes/no questions 0.0 0.1 -

7: counting 2.4 2.0 -

8: lists/sets 0.0 0.9 -

9: simple negation 0.0 0.3 -

11: basic coreference 0.0 0.1 -

14: time reasoning 0.2 0.1 -

16: basic induction 45.3 51.8 -

17: positional reasoning 4.2 18.6 0.9

18: size reasoning 2.1 5.3 -

19: path finding 0.0 2.3 1.6

Mean error (%) 2.8 4.2 -

Failed tasks (err >5%) 1 3 -

Table 2. Test error rates of various model architectures on tasks

from the the bAbI English 10k dataset. E2E = End-To-End Mem-

ory Network results from Sukhbaatar et al. (2015). NR = Neu-

ral Reasoner with original auxiliary task from Peng et al. (2015).

DMN+ and E2E achieve an error of 0 on bAbI question sets

(1,4,10,12,13,15,20).

two of the most challenging question types at the time.

In Table 2 we compare the accuracy of these question an-

swering architectures, both as mean error and error on in-

dividual tasks. The DMN+ model reduces mean error by

1.4% compared to the the end-to-end memory network,

achieving a new state of the art for the bAbI-10k dataset.

One notable deficiency in our model is that of QA16: Ba-

sic Induction. In Sukhbaatar et al. (2015), an untied model

using only summation for memory updates was able to

achieve a near perfect error rate of 0.4. When the memory

update was replaced with a linear layer with ReLU activa-

tion, the end-to-end memory network’s overall mean error

decreased but the error for QA16 rose sharply. Our model

experiences the same difficulties, suggesting that the more

complex memory update component may prevent conver-

gence on certain simpler tasks.

The neural reasoner model outperforms both the DMN and

end-to-end memory network on QA17: Positional Reason-

ing. This is likely as the positional reasoning task only

involves minimal supervision - two sentences for input,

yes/no answers for supervision, and only 5,812 unique ex-

amples after removing duplicates from the initial 10,000

training examples. Peng et al. (2015) add an auxiliary task

of reconstructing both the original sentences and question

from their representations. This auxiliary task likely im-

proves performance by preventing overfitting.
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test-dev test-std

Method All Y/N Other Num All

Baseline 50.5 77.6 31.1 34.3 50.6

VQA

Image 28.1 64.0 3.8 0.4 -

Question 48.1 75.7 27.1 36.7 -

Q+I 52.6 75.6 37.4 33.7 -

LSTM Q+I 53.7 78.9 36.4 35.2 54.1

ACK 55.7 79.2 40.1 36.1 56.0

iBOWIMG 55.7 76.5 42.6 35.0 55.9

DPPnet 57.2 80.7 41.7 37.2 57.4

D-NMN 57.9 80.5 43.1 37.4 58.0

SMem-VQA 58.0 80.8 43.1 37.3 58.2

SAN 58.7 79.3 46.1 36.6 58.9

DMN+ 60.3 80.5 48.3 36.8 60.4

Table 3. Performance of various architectures and approaches on

VQA test-dev and test-standard data. Baseline only uses the

spatial mean of the last pooling layer without input fusion and

episoidic memory; VQA numbers are from Antol et al. (2015);

ACK Wu et al. (2015); iBOWIMG -Zhou et al. (2015); DPPnet -

Noh et al. (2015); D-NMN - Andreas et al. (2016); SMem-VQA

-Xu & Saenko (2015); SAN -Yang et al. (2015)

6.3. Comparison to state of the art using VQA

For the VQA dataset, each question is answered by mul-

tiple people and the answers may not be the same, the

generated answers are evaluated using human consensus.

For each predicted answer ai for the ith question with

target answer set T i, the accuracy of VQA: AccV QA =
1
N

∑N

i=1 min(
∑

t∈Ti 1(ai==t)

3 , 1) where 1(·) is the indica-

tor function. Simply put, the answer ai is only 100% accu-

rate if at least 3 people provide that exact answer.

Training Details We use the Adam optimizer (Kingma &

Ba, 2014) with a learning rate of 0.003 and batch size of

100. Training runs for up to 256 epochs with early stop-

ping if the validation loss has not improved in the last 10

epochs. For weight initialization, we sampled from a ran-

dom uniform distribution with range [−0.08, 0.08]. Both

the word embedding and hidden layers were vectors of size

d = 512. We apply dropout on the initial image output

from the VGG convolutional neural network (Simonyan &

Zisserman, 2014) as well as the input to the answer module,

keeping input with probability p = 0.5.

Results and Analysis

The VQA dataset is composed of three question domains:

Yes/No, Number, and Other. This enables us to analyze

the performance of the models on various tasks that require

different reasoning abilities.

The comparison models are separated into two broad

classes: those that utilize a full connected image feature

What is this sculpture 

made out of ?

Answer: metal What color are 

the bananas ?

Answer: green

What is the main color on 

the bus ?

Answer: blue

How many pink flags

are there ?

Answer: 2

What type of trees are in 

the background ?

Answer: pine

Is this in the wild ? Answer: no

Figure 6. Examples of qualitative results of attention for VQA.

The original images are shown on the left. On the right we show

how the attention gate gti activates given one pass over the image

and query. White regions are the most active. Answers are given

by the DMN+.

for classification and those that perform reasoning over

multiple small image patches. Only the SAN and DMN

approach use small image patches, while the rest use the

fully-connected whole image feature approach.

Here, we show the quantitative and qualitative results in Ta-

ble 3 and Fig. 6, respectively. The images in Fig. 6 illustrate

how the attention gate gti selectively activates over relevant

portions of the image according to the query. In Table 3,

our method outperforms baseline and other state-of-the-art

methods across all question domains (All) in both test-dev

and test-std, and especially for Other questions, achieves a

wide margin compared to the other architectures, which is

likely as the small image patches allow for finely detailed

reasoning over the image.

However, the granularity offered by small image patches

does not always offer an advantage. The Number questions

may be not solvable for both the SAN and DMN architec-

tures, potentially as counting objects is not a simple task

when an object crosses image patch boundaries.

7. Conclusion

We have proposed new modules for the DMN framework

to achieve strong results without supervision of supporting

facts. These improvements include the input fusion layer

to allow interactions between input facts and a novel at-

tention based GRU that allows for logical reasoning over

ordered inputs. Our resulting model obtains state of the

art results on both the VQA dataset and the bAbI-10k text

question-answering dataset, proving the framework can be

generalized across input domains.
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