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Dynamic memristor-based reservoir computing for
high-efficiency temporal signal processing
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Reservoir computing is a highly efficient network for processing temporal signals due to its

low training cost compared to standard recurrent neural networks, and generating rich

reservoir states is critical in the hardware implementation. In this work, we report a parallel

dynamic memristor-based reservoir computing system by applying a controllable mask

process, in which the critical parameters, including state richness, feedback strength and

input scaling, can be tuned by changing the mask length and the range of input signal. Our

system achieves a low word error rate of 0.4% in the spoken-digit recognition and low

normalized root mean square error of 0.046 in the time-series prediction of the Hénon map,

which outperforms most existing hardware-based reservoir computing systems and also

software-based one in the Hénon map prediction task. Our work could pave the road towards

high-efficiency memristor-based reservoir computing systems to handle more complex

temporal tasks in the future.
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I
n recent years, artificial neural networks (ANNs) have devel-
oped rapidly and played an important role in many different
fields, such as object detection1,2, natural language proces-

sing3, autonomous driving4, security5, etc. Generally, ANNs can
be loosely divided into two main categories depending on the
network structure. One is feedforward neural networks in which
the neurons are separated into layers and the signal only goes
forward. There are many kinds of feedforward neural networks,
including the well-known convolutional neural network6, which
are widely used to process static spatial patterns such as image
recognition and object detection. However, this type of network
may not be suitable for processing temporal signals because of the
feedforward structure. The other kind of ANNs is recurrent
neural network (RNN)7,8 in which the neurons have recurrent
connections. As a result, the history information of the input
signal can be encoded into the internal states of the network so
that short-term memory can be realized in this way. Therefore,
RNN is capable of dealing with temporal tasks. Unlike feedfor-
ward neural networks, the training of RNN is usually very diffi-
cult and requires extensive computational power, mainly due to
the problem of exploding or vanishing gradients in recurrent
structures. In order to solve this problem, the concept of reservoir
computing (RC) was proposed9,10. The main difference between
RC and RNN is that in a RC network only the weights connected
to the output layer need to be trained and the rest of the network
remain fixed. As a result, the training process becomes linear and
many simple training algorithms can be used, such as linear
regression. At the software level, it has been shown that RC
systems can achieve satisfactory performance in speech recogni-
tion11, adaptive filtering12, time series prediction13,14, and many
other fields15. For high system efficiency, many new materials
and devices, such as spintronic oscillators16,17, photonic mod-
ules18–20, or memristors21–24, have been studied for the hardware
implementation of RC systems. Among them, remarkable pro-
gress has been made on memristors for the implementation of
ANNs by taking advantage of their analog resistive switching
properties25–30. Meanwhile, the inherent dynamic properties and
nonlinear behavior of memristors also make them very suitable
for the implementation of RC systems31,32. In a RC system, there
are several key properties of the reservoir that largely affect the
system performance, of which the richness of the reservoir states
is one of the most important parameters. In the previous works,
different reservoir states were usually generated using the inher-
ent device-to-device variations21,22. Although this method can
generate many reservoir states33, the state richness is fixed after
the devices are prepared and cannot be further adjusted in order
to optimize the system performance. Besides, in these demon-
strations, the memristor conductance was regarded as the reser-
voir state21–23, so after each input signal, a read signal must be
followed to read out the device conductance. This additional read
operation would limit the speed of such RC systems.

In this report, we demonstrate a dynamic memristor-based RC
system that uses a controllable mask process to generate rich
reservoir states. By controlling the parameters in the mask pro-
cess, we can adjust not only the state richness of the reservoir but
also the feedback strength, both of which are critical properties
that affect the RC system performance34. Besides, we directly use
the memristor response to the input signal as the reservoir state,
which can take advantage of the device nonlinearity and does not
require additional read operations. Moreover, the nonlinear
region of the system can be adjusted by simply changing the
range of the input signal. By adjusting these system parameters,
the implemented RC system can process temporal signal effi-
ciently. Different temporal classification tasks of waveform clas-
sification and spoken-digit recognition are demonstrated in our
RC system, where an extremely low normalized root mean square

error (NRMSE) of 0.14 and word error rate of 0.4% are achieved,
respectively. Meanwhile, a time-series prediction task of the
Hénon map is also performed in our system, and a low prediction
error (NRMSE) of 0.046 is obtained, which is only half of the
value obtained with a standard echo state network (ESN).

Results
Dynamic memristor-based RC system. The dynamic memristor
used in this work has a vertically stacked cross-point structure of
Ti/TiOx/TaOy/Pt (50 nm/16 nm/30 nm/50 nm), as schematically
illustrated in Fig. 1a. The cross-sectional transmission electron
microscope (TEM) image of the device is shown in Fig. 1b, and
the corresponding elements distribution profile from energy-
dispersive spectroscopy is shown in Fig. 1c. The details of device
fabrication are described in the “Methods” section. The standard
memristive I–V hysteresis curves over multiple cycles are shown
in Fig. 1d. The repeatable I–V loops indicate a high stability and
reliability of the device. Also, the I–V curve is highly asymmetric
under positive and negative voltage sweeps, which can be
attributed to the Schottky barrier at the TaOy/Pt interface35. Such
a strong nonlinearity of the dynamic memristor can be directly
used to realize the activation function commonly used in ANNs.
The dynamic characteristics of the device are also explored as
shown in Fig. 1e. A write voltage pulse (amplitude of 3.0 V and
pulse width of 1 ms) followed by several read voltage pulses
(1.9 V, 10 μs) is applied on the device and the responding current
is recorded for subsequent analysis. It can be seen from Fig. 1e
that the current is integrated under the large write pulse (see
Supplementary Fig. 1 for more detailed analysis) and then decays
under the small read pulses, as the migration and diffusion of
oxygen ions modulate the barrier height at the electrode/oxide
interfaces35. The behavior of current decay over time is further
analyzed in Fig. 1f, where a simple exponential relationship is
used to fit the curve and the characteristic time t0 obtained by
fitting is about 400 μs. These experimental results imply that the
output of the dynamic memristor is not only dependent on the
current input but also relies on the history of the input signal36,37.
Such short-term memory of the dynamic memristor gives it
the ability to equivalently implement the neural network with
recursive connections34. Combining the I–V nonlinearity and
short-term memory of the device, we realized a dynamic
memristor-based RC system. As a comparison, Fig. 2a shows a
conventional RC system that consists of three parts: input layer,
reservoir, and output layer. The reservoir is the core of the RC
system, which produces a large number of reservoir states that are
very important for classification. Traditional approaches of
making a reservoir use a network consisting of random connec-
tions of nonlinear neuron nodes. The interactions among neurons
can remember the history information of the input signals and
produce rich reservoir states. However, such RC architecture
needs the random connections between multiple devices, which is
very difficult for hardware implementation. In order to solve this
problem, we incorporate the concept of time multiplexing and use
a mask process to generate virtual nodes in time domain34.
Through the dynamic and nonlinear response of the memristor,
these virtual nodes are nonlinearly coupled to each other (see
Supplementary Fig. 2). Figure 2b shows the schematic diagram of
a dynamic memristor-based RC system based on this new
architecture. First, the input signal is pre-processed through a
time multiplexing procedure during which the input signal is
multiplied by a mask matrix and then converted to a train of
voltage pulses through a signal generation system. Every frame of
the input signal can generate a pulse train with total length τ and
pulse width δ. Second, the pre-processed input is fed to the
reservoir, which consists of a memristor connected in series with
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a load resistor of RL= 4.7 kΩ. The RL is used to convert the
memristor output current to a voltage signal, which is then
sampled as the reservoir states (that are the output of virtual
nodes as shown in Fig. 1d). Finally, the output vector is a linear
combination of the reservoir states and the weights are trained
through linear regression. The details of the measurement set-up
are described in the “Methods” section.

Waveform classification. In the above discussion, we proposed
that a simple system connecting a dynamic memristor with a
resistor can be regarded as a reservoir, which can generate a large
amount of reservoir states for subsequent signal processing. In
order to improve the system performance in practice, several
single memristor-based reservoirs are connected in parallel to
build a large parallel RC system as shown in Fig. 2c. A simple
waveform classification task is used to test the temporal signal
processing capability of our RC system38,39. As shown in Fig. 2d,
the input sequence is a random combination of sine and square
waveforms, and the desired output is the binary sequence that
consists of 0 and 1 representing sine and square waveforms,
respectively. To achieve the optimal classification results, we use
ten reservoirs in parallel, where the mask (a one-dimensional

sequence with a length of four in this case) is different from each
other. At the same time, the I–V nonlinearity of dynamic mem-
ristor is directly used as the activation function as shown in
Supplementary Fig. 3. In every time interval τ, the output of RC
system is the linear combination of all the reservoir states, where
the weights are trained through simple linear regression method.
NRMSE is used to measure the classification error40, which is
described as:

NRMSE ¼
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where y(t) is the output of RC system, ytarget(t) is the desired
output, ||·|| denotes the Euclidean norm, and <·> denotes the
empirical mean. During the test, the lowest NRMSE we obtained
is 0.14 and a typical result is also shown in Fig. 2d. In addition, we
find that the length of the mask sequence has a critical influence
on the performance of the RC system. As shown in Fig. 2e, the
NRMSE of classification changes with the mask length M when
keeping the reservoir size the same M ×N= 40 (N is the number
of reservoirs in parallel). We can see that NRMSE becomes very
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Fig. 1 Device characteristics of dynamic memristor. a Device structure and b cross-sectional transmission electron microscope (TEM) image of the

fabricated dynamic memristor, consisting of a vertically stacked structure of Ti/TiOx/TaOy/Pt (50 nm/16 nm/30 nm/50 nm). c Corresponding elements

distribution profile from energy-dispersive spectroscopy. d Device I–V hysteresis curves. Three scans were repeated, and the arrows indicate the direction

of the voltage scan. e The experiment exploring the dynamic characteristics of device. Here the input sequence is a periodic signal composed of a write

voltage pulse (3.0 V, 1 ms) followed by several read voltage pulses (1.9 V, 10 μs) in one period. The responding current is recorded for subsequent analysis.

f The current decay with time follows a simple exponential relationship and the characteristic time t0 obtained by fitting is 400 μs.
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large when the mask length is either too long or too short and
reaches the minimum value as the mask length is about 4. To
explain such dependence on the mask length, let us consider two
extreme cases with mask lengths of 40 and 1. When the mask
length is as long as 40, the overall change of memristor con-
ductance over duration τ would be large, which could easily drive
the reservoir states to reach the upper or lower limit, thereby
losing the ability to further process signals in the subsequent
durations. In other words, the feedback strength between the two
time durations decreases as the mask length increases, leading to
a larger classification error. On the other hand, when the mask
length is as short as 1, the binary combination of the mask
sequence would be very limited, which limits the types of the
mask sequence. In this case, the richness of the reservoir states in
the parallel RC system is very low and the effective reservoir states
could not support successful classification, leading to a large
classification error as well. So in order to achieve the best clas-
sification result, the mask length needs to be carefully adjusted to
make a trade-off between the feedback strength and the state

richness. In experiment, we find the optimal mask length to be
around 4 that yields the lowest NRMSE of 0.14, which is lower
than the previous value of 0.2 obtained with spintronic oscilla-
tor16. Further analysis of the effect of mask length on the feedback
strength and state richness is discussed in Supplementary Figs. 4
and 5, where a method of using the peaks of the reservoir states in
response to different input waveforms is developed to quantita-
tively analyze these two parameters. The test on cycle-to-cycle
variation is shown in Supplementary Fig. 6. Another point worth
mentioning is that the RC system is based on a single memristor
(i.e., N= 1) when the mask length is 40. It can be seen from the
experimental results that the parallel RC system has a better
performance than the single memristor-based RC system by
adjusting the mask length (e.g., N= 10 when M= 4), which not
only increases the system speed but also reduces the error rate.

Spoken-digit recognition. To further evaluate the performance of
dynamic memristor-based RC system on temporal classification
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is composed by a large number of nonlinear nodes. The internal connections among these nodes are random and fixed. The correct output learns from the

states of nodes by training the output weights. b Schematic of the dynamic memristor-based RC system. For a given input, the input vector is transformed

into a temporal signal through a mask (that is the time multiplexing process) and then fed to the reservoir, which consists of a dynamic memristor and a

load resistor in series. The memristor responses within a duration time τ are selected as the virtual nodes with a fixed time step δ. The output vector is a

linear combination of the values in the virtual nodes and the weights (Wout) can be trained through linear regression. c Schematic of a dynamic memristor-

based parallel RC system, where the mask sequences are different for every single memristor RC unit. The output is the linear combination of all reservoir

states. In our experiment, this parallel RC system is realized by testing single memristor in multiple cycles. d The input and classification result of sine and

square waves. The input sequence is a random combination of sine and square waveforms, where the sampling points for each waveform are set to 8. The

optimal classification results are achieved when the length of mask sequence and the number of reservoirs in parallel are set to 4 and 10, respectively, and

the lowest NRMSE we get is 0.14. e NRMSE changes with the mask length when keeping the reservoir size (that is the product of mask length M and

number of reservoirs N) the same. Ten different devices are tested and the average of NRMSE reaches the minimum value as the mask length reaches 4.

The error bar shows the variation between devices.
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tasks, the benchmark test of spoken-digit recognition is carried out
using NIST TI-46 database. The input data are audio waveforms
of isolated spoken digits (0–9 in English) pronounced by five
different female speakers. The goal of spoken-digit recognition is
to distinguish each digit independent of speakers. Therefore, fea-
ture extraction of audio signals is very important. Figure 3a–c
illustrates the procedure of feature extraction of digit 9 based on
the RC method. According to a standard procedure in speech
recognition, the original audio waveform (resampled at 8 kHz) in
Fig. 3a (left panel) is first filtered into a spectrum with 64 fre-
quency channels per frame by using Lyon’s passive ear model41.
The channel values that represent the amplitude of the corre-
sponding frequency for each frame are then transferred to the
time domain with a duration of τ as shown in Fig. 3a (right panel).
Figure 3b shows the pre-processed input signal after the mask
process. Different from the previous waveform classification task,
the mask here is a two-dimensional (2-D) matrix composed of
randomly assigned binary values (−1 and 1). In each interval of
duration τ, the spectrum signal is multiplied by a 64 ×M mask
matrix to generate the input voltage sequence with a time step δ

equal to 1/M of τ, where M is the mask length. The pre-processed
input signal is then applied to the dynamic memristor, and the
corresponding current is first converted to a voltage signal through
the series resistor RL and then amplified and collected by the
amplifier and analog-to-digital converter (ADC). The recorded
memristor response is shown in Fig. 3c and the number of sam-
pling points is set to be equal to M per interval τ. The time step is
chosen as δ= 120 μs, which must be shorter than the relaxation
time t0 (400 μs) of dynamic memristor. The mask and recording

processes are repeated N times with different mask matrices in
order to mimic N-parallel RC system. After that, the N times
memristor responses in each duration τ are combined into the
reservoir states for subsequent classification.

The classification process contains two steps: training and
testing. The 500 audio samples from TI-46 database are divided
into two groups: 450 randomly selected samples for training and
the rest 50 samples for testing. We use a ten-dimensional vector
(target vector) to represent the classification result for the ten
digits. For example, if the target digit is 9, the tenth number in the
target vector will be 1 while the others should be 0. After feature
extraction, the spoken digits are transformed into the reservoir
states in each time interval τ. The classification procedure is
performed once at each interval and the final classification result
is obtained from majority voting of the results at all intervals of
one digit11,16. In an ideal situation, a correct classification can be
given at each interval. We assume a weight matrix (Wout) that can
transform the reservoir states, which can be treated as an (M ×
N)-dimensional vector, in each interval τ to the target vector.
Therefore, the goal of the training process is to find a properWout

for all the training samples to generate output vectors close to the
corresponding target vectors. Here the linear regression method is
used to calculate Wout. We generate a target matrix Ytarget by
combining the target vectors at all the time intervals used for
training. In the same way, we can also generate a response matrix
X by combining the response vectors at all of the time intervals
used for training. Subsequently, the weight matrix Wout is given
by Wout= YtargetXT(XXT)†42, where the symbol † represents
Moore–Penrose pseudo-inverse.
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Fig. 3 Spoken-digit recognition demonstration. a Left: typical audio waveform of digit 9 pronounced by a female speaker. Right: cochlear spectrum (64

channels per frame) of the corresponding audio waveform. The channel values for each frame are transferred to the time domain with a duration of τ.

b Time multiplexing process. In each interval of duration τ, the spectrum signal is multiplied by a mask matrix (64 ×M) containing randomly assigned

binary values (−1 and 1) to generate the input voltage sequence with a fixed time step δ (δ= 120 μs) equal to 1/M of τ, where M is the mask length. The

similar process repeats by N times with different mask matrices in order to mimic N-parallel RC system. c During each time duration, the dynamic

memristor response is recorded. The device current is first converted into voltage through the load resistor and then amplified and collected by the

amplifier and ADC. After that, the N times memristor responses in each duration of τ are combined into the reservoir states for subsequent classification.

d Predicted results obtained from the memristor-based RC system versus the correct outputs, where the word error rate is as low as 0.4%. The two

parametersM and N of the RC system are set to be 10 and 40, respectively. Color bar represents the normalized probability of each predicted result under

the correct output. e Word error rate as a function of the mask length M, where the total reservoir size (M × N) remains constant at 400. Similar to the

waveform classification task, the average of word error rate reaches the lowest value whenM= 10. The error bar represents the variation between devices.
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During the testing process, the output vectors at all intervals of
one digit are summed up. To obtain the final classification result,
the element with the maximum value in the summed output
vector predicts the corresponding digit (a winner-take-all
method)34. To evaluate the accuracy, the recognition rate is
defined as the percentage of correctly identified digits in all the
testing digits. Furthermore, a tenfold cross-validation is used to
ensure the reliability of the obtained recognition rate. To do that,
the training and testing processes are repeated ten times and the
data are randomly selected for training and testing for each time.
The final recognition rate is the average of all the test results
during tenfold cross-validation. Figure 3d shows the predicted
digits obtained from the memristor-based RC system versus the
correct digits, where the color depth is proportional to the
number of correctly classified digits. The word error rate is as low
as 0.4% (i.e., recognition rate of 99.6%) when M and N are set to
be 10 and 40, respectively, which is lower than the value of 0.8%
obtained by the memristor-based RC system in the previous
work22. In Fig. 3e, the dependence of the word error rate on the
mask length is investigated, where the total reservoir size (M ×N)
remains constant at 400. Similar to the previous waveform
classification task, the word error rate increases when the mask
length is too long or too short. It can be seen from the
experimental data that the lowest average word error rate is
achieved when the mask length is about ten. In addition, the
effect of the reservoir size on the RC system has also been studied,
and the experimental result is shown in Supplementary Fig. 7. It
is found that the word error rate decreases with the reservoir size,
because a larger reservoir can create more reservoir states and
hence retain more features of the input signals.

Time-series prediction. In addition to the classification of tem-
poral signals in the above two demonstrations, we also perform
another benchmark task to demonstrate the prediction of tem-
poral signals. Hénon map has been established as a typical
discrete-time dynamic system with chaotic behavior43. It
describes a nonlinear 2-D mapping that transforms a point (x(n),
y(n)) on the plane into a new point (x(n+ 1), y(n+ 1)), defined
as follows:

x nþ 1ð Þ ¼ y nð Þ � 1:4x nð Þ2 ð2Þ

y nþ 1ð Þ ¼ 0:3x nð Þ þ wðnÞ ð3Þ

where w(n) is a Gaussian noise with a mean value of 0 and a
standard deviation of 0.05. The task is to predict the system
position at time step n+ 1, given the values up to time step n. The
system can be described as an equation containing only x if
we combine Eqs. (3) and (2), so the input of the task is x(n) and
the target output is x(n+ 1). Using these equations, we generate
the Hénon map dataset with a sequence length of 2000, in which
the first 1000 data points is used for training and the rest is used
for testing. To execute this task in our memristor-based parallel
RC system, the input time series x(n) is linearly mapped to the
voltage range of [Vmin, Vmax]. The mask process is similar to the
one used in the previous waveform classification task. During
each time interval τ, the pre-processed signal is multiplied by a
special mask with a length of M to generate the input voltage
sequence with a time step δ (δ= 120 μs). An N-parallel RC sys-
tem is realized by using different mask sequences. The training
and testing processes are similar to the previous tasks and the
only difference is that a bias is added to the output layer to
neutralize the influence of input signal offset on the output. Both
bias and weights are trained with linear regression. After finding
the suitable parameters, our RC system can achieve excellent

performance on the time-series prediction. For example, Fig. 4a
shows the predicted time series versus the ideal target during the
testing process for the first 200 time steps, where a very low
NRMSE of 0.046 is achieved by the dynamic memristor-based RC
system. Here the parameters are set to be M= 4, N= 25, Vmax=

2.5 V, and Vmin=−0.8 V. In order to show the predicted results
more intuitively, Fig. 4b is a 2-D display of the Hénon map in
Fig. 4a, which demonstrates that the strange attractor of the
Hénon map can be well reconstructed.

As mentioned above, the parameter setting has a big impact on
the performance of the memristor-based RC system. As shown in
Fig. 4c, the output of our RC system has a relatively large
prediction error with an NRMSE of 0.14, when changing M and
Vmax to 25 and 2.0 V, respectively, while keeping Vmin and the
total reservoir size (M ×N) the same. Furthermore, a systematic
experiment is conducted and the results are shown in Fig. 4d,
where the system performance varies with the two parameters of
M and Vmax. Here the parameter Vmax is related to the input
scaling, which has been proven to be an important parameter that
affects the performance of RC system34. Different input scalings
are realized by simply changing Vmax while setting Vmin to be a
fixed value close to 0. In the experiment, Vmin is empirically set to
be a small negative value (−0.8 V) in order to balance the resistive
state of the dynamic memristor. It can be seen from Fig. 4d that
the prediction error (NRMSE) varies with not only M but also
Vmax obviously. The best performance is achieved when M= 4
and Vmax= 2.5 V, as too large or too small M and Vmax would
cause relatively poor prediction results. Similar experimental
results are obtained by testing on different devices as shown in
Supplementary Fig. 8. The effect of mask length has been
analyzed in the previous sections. Here we further study the
influence of Vmax on the performance of the memristor-based RC
system. The value of Vmax determines the nonlinear region of the
device in response to the input signal. As shown in Supplemen-
tary Fig. 9a, the response of the dynamic memristor to the input
voltage has an apparent threshold. The region around the
threshold has a strong nonlinearity, while the region far away
from the threshold has a weaker nonlinearity. If Vmax is too small,
the resistance state of the device is difficult to be changed (see
Supplementary Fig. 9b), which would lead to poor system
performance. However, if Vmax is too large, the overall
nonlinearity in the entire input region would be reduced, which
also degrades the RC system performance. Therefore, in order to
achieve the best system performance, the value of Vmax needs to
be carefully adjusted.

In addition, a comparison of the prediction error versus
reservoir size between the software- and memristor-based RC
systems is shown in Fig. 4e. The lowest prediction error achieved
by our dynamic memristor-based RC system (NRMSE= 0.046) is
only half of the value achieved by a standard ESN system
(NRMSE= 0.091) as reported in previous work40, and the total
reservoir size used in our RC system is also half of that in the
standard ESN system. It is worth mentioning that the prediction
error of ESN used for comparison here is the state-of-the-art
value that a single-layer RC system can achieve, and lower error
can be obtained when using multi-layer RC systems with more
complex training process44. For comparison, the simulation result
using a simple dynamic memristor model is also shown in Fig. 4e,
where the prediction error achieved by simulation is much lower
than that achieved by experiment and is close to the values
achieved by multi-layer RC systems. The simulation details are
described in Supplementary Fig. 10 and Supplementary Table 1.
These results suggest that the dynamic memristor-based parallel
RC system that we proposed in this work still has room for
performance optimization.
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Discussion
In summary, a high-performance parallel RC system has been
realized using a novel Ti/TiOx/TaOy/Pt dynamic memristor. By
applying a simple mask process, we show that even a single
dynamic memristor can be treated as a reservoir, which is sub-
sequently used to build a parallel RC system. By choosing the
appropriate mask length and the range of input voltage, our RC
system can process temporal signals efficiently. Low NRMSE and
word error rate of 0.14 and 0.4% have been achieved for the
waveform classification and spoken-digit recognition, respec-
tively, and meanwhile the prediction error of the Hénon map task
is as low as 0.046, which is almost 50% less than the value
obtained by a standard ESN system. Furthermore, the spatial
signal processing task of handwritten-digit recognition is also
demonstrated by our RC system as shown in Supplementary
Fig. 11, where a high recognition accuracy of 97.6% is achieved
and the accuracy loss is just 0.4% compared to the software
baseline. Compared with the previous work22, the operating

power of our memristor-based RC system is much lower owing to
the mask process (see Supplementary Table 2), and the energy
consumption can be further reduced by reducing the input vol-
tage pulse width. The parallel RC system in this work is imple-
mented on a single memristor running in serial mode, which is
very compact and efficient, proving the feasibility and high effi-
ciency of memristor-based RC system. To further enable parallel
processing of input signals and increase the complexity of the RC
system, a more sophisticated RC system based on multiple
memristors with inner connections (see Supplementary Fig. 12
for the diagram of a conceived multi-layer memristor-based RC
system) will be constructed in the future.

Methods
Device fabrication. The dynamic memristor device was fabricated as a cross-point
structure on a silicon substrate with 200 nm thermally grown silicon oxide on it.
First, inert metal Pt was deposited and patterned on the substrate as the bottom
electrode. The thickness and width of the bottom electrode are 50 nm and 10 μm,
respectively. Then the functional 30 nm-thick TaOy and 16 nm-thick TiOx oxide
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layers were deposited by the reactive sputtering method with Ar and O2 mixed
atmosphere45. Finally, the top electrode Ti was deposited and patterned with the
same thickness and width as the bottom electrode.

Measurement set-up. The basic electrical behaviors of the dynamic memristor
were characterized at room temperature in a probe station connecting to a semi-
conductor parameter analyzer (Agilent B1500). The thickness of each layer of the
device was verified by TEM. The experimental RC system is realized with the
cooperation of personal computer (PC), microcontroller unit (MCU) with per-
ipheral circuits, and memristor device. The PC is used to run the basic loop of RC
algorithm, which is realized by MATLAB code. The MCU used in our experiment
is STM32 with 12-bit digital-to-analog converter (DAC) and ADC modules. The
peripheral circuits consist of input and output amplifiers. The function of STM32
and amplifier is to connect the PC with the memristor device. Take the spoken-
digit recognition task for example. The PC pre-processes the spoken signal into a
discrete sequence of real numbers between −1 and 1. This data sequence is
transferred to the buffer of STM32 through UART communication. The DAC
module of STM32 then generates voltage pulses with pulse width of 120 μs and
amplitude (0–3.3 V) corresponding to data values. The input amplifier resizes the
amplitude of voltage pulse between −3 to 3 V and applies it to the memristor
device. The constant RL in series with the memristor is used to convert the response
current into a voltage signal. The value of RL is dependent on the magnitude of the
current response Imemristor and the maximum gain of the amplifier (Av= 1000) we
used. In the speech recognition task, our system need to detect a current on the
order of 1 μA. As the voltage upper limit of our ADC is VADC= 3.3 V, the load

resistor should satisfy the following equation: VADC

Imemristor ´RL
≤Av . In our system, we

have RL ≥
VADC

Imemristor ´Av
� 3.3 kΩ. In addition, in order to reduce the voltage drop on

the load resistor connected in series with the dynamic memristor, RL should be
much smaller than the memristor resistance (7 MΩ–20 kΩ measured in voltage
range of 1–3 V). As a result, the value of RL is chosen to be 4.7 kΩ in our
experiment. The output amplifier transforms the small current signal of memristor
into a large voltage signal (0–3.3 V), which is then sampled by the ADC module.
Finally, the ADC data are transferred from STM32 back to the PC for post-
processing. The simulations of dynamic memristor-based RC and software-based
RC are both implemented in MATLAB.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Source data are provided with this paper.

Code availability
The code that supports the dynamic memristor-based RC simulations in this study is
available at https://github.com/Tsinghua-LEMON-Lab/Reservoir-computing/ (https://
doi.org/10.5281/zenodo.4299344). Other codes that support the findings of this study are
available from the corresponding authors upon reasonable request.
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