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Metabolic footprinting o	ers a relatively easy approach to exploit the potentials of metabolomics for phenotypic characterization
of microbial cells. To capture the highly dynamic nature of metabolites, we propose the use of dynamic metabolic footprinting
instead of the traditional method which relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS),
we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 di	erent C-sources
(glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological replicates. In order to analyze the dynamic mass
spectrometry data, we developed the novel analysismethods that allowus to performcorrelation analysis to identifymetabolites that
signi�cantly correlate over time during growth on the di	erent carbon sources. Both positive and negative electrospray ionization
(ESI) modes were performed to obtain the complete information about the metabolite content. Using sparse principal component
analysis (Sparse PCA), we further identi�ed those pairs of metabolites that signi�cantly contribute to the separation. From the list
of signi�cant metabolite pairs, we reconstructed an interactionmap that provides information of how di	erent metabolic pathways
have correlated patterns during growth on the di	erent carbon sources.

1. Introduction

�e word metabolism comes from Greek metabolé which
means change or transformation, and in fact the levels of
most cellular metabolites change with half times of minutes,
seconds, or even faster. During the past years the complexity
and dynamics nature of themetabolites have become increas-
ingly apparent [1–6]. �e comprehensive analysis of a large
set of metabolites, now referred to as metabolomics, present
in a biological sample, has emerged as an important tool
in functional genomics and systems biology [7, 8]. Since it
is “downstream” of central dogma (not like transcriptome
and proteome at higher cascade), the metabolome should
show greater e	ects of genetic or physiological changes [9,
10] and is therefore much closer related to the phenotype
expressed by an organism [11]. Metabolic �ngerprinting (an

analysis of intracellular metabolites pro�ling) and metabolic
footprinting (an analysis of extracellular metabolites pro-
�ling) have succeeded in experimental characterization of
genetic mutants on the basis of combined intracellular and
extracellularmetabolite datameasured bymass spectrometry
(MS) [5, 8, 11, 12]. However, the measurement of extracel-
lular metabolites, o�en referred to as footprinting [4, 11],
represents several advantages over the analysis of intracellular
compounds, o�en referred to as metabolic �ngerprinting
[13], for microbial cultures. Although the functional analysis
using metabolic �ngerprinting can classify the di	erent phe-
notypes of several mutants, it is di�cult to scale up for high-
throughput screening of many mutants as it is quite time-
consuming and subject to technical di�culties caused by the
rapid turnover and the need of quenching and extracting of
metabolites from the extracellular space [5, 11].
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Analysis ofmetabolite pro�les can be done using di	erent
analytical techniques, but recent technical advances in MS
have brought this technology to the forefront amongmethods
for metabolome analysis due to the high sensitivity and
separation e�ciency [13, 14]. Gas chromatography coupled
to MS (GC-MS) is the most extensively used technique
in metabolome analysis [15], as it is e	ective for resolving
complex biological mixtures and hereby enable reliably
identi�cation of the analyzed compounds. However, GC-MS
can only analyze metabolites which are stable at the high
temperatures present in GC and they have to be volatile
or can be made volatile upon chemical derivatization. Most
metabolites are not volatile and many of them are not stable
at high temperature or cannot be derivatized. Recently, Direct
Infusion-Mass Spectrometry (DI-MS) has been reported as
an alternative to GC-MS and it seems to be an ideal analytical
tool for high-throughput metabolome analysis [16–20]. �e
most signi�cant feature of ESI mode for DI-MS is that it is
a very so� ionization technique which, in many cases, will
produce protonated molecular species (in positive ESI) for
a broad range of di	erent compounds with very high sen-
sitivity [19]. With high sensitivity and atmospheric pressure
ionization, DI-MS can analyze the majority of metabolites in
the sample in a few seconds without any chromatographic
separation [16, 17, 19, 20]. An obvious extension of a DI-
MS approach is to store the spectra in a database using the
database so�ware included with most instruments. �is will
give a sample identi�cation database rather than compound
identi�cation as anticipated by the manufactures [15, 17, 19,
21, 22].

Here we present the use of dynamic metabolic footprint-
ing analyzed by DI-MS for phenotypic information of yeast.
Using novel data analysis methods we show that it is possible
to extract the key information about the metabolism from
footprinting data when yeast is grown on di	erent carbon
sources. �e data analysis is based on identi�cation of signif-
icantly correlated metabolites over time, which corresponds
to �ux-ratios for di	erent metabolites. �e advantage of this
approach is that it is not sensitive to a single time point
and, therefore, better allows for analysis of mutants having
di	erent growth rates.

2. Materials and Methods

2.1. Reagents. All reagents used for metabolite analysis and
the medium for yeast cultures were prepared using analytical
grade ingredients. Methanol, acetonitrile, and formic acid
used for mass spectrometry were obtained from Sigma-
Aldrich (St. Louis, MO, USA). MilliQ-puri�ed water was
used during the sample preparation for HPLC and DI-MS
analyses.

2.2. Yeast Strain. �e S. cerevisiae strain BY4709 (MAT
�ura3Δ0) obtained from the European S. cerevisiae archive
for functional analysis (EUROSCARF, Frankfurt, Germany)
was used in this study.

2.3. Medium. �e strain was grown in a minimal synthetic
medium supplemented with a metabolite cocktail according
to Allen et al. [11] (see Table 1). �e metabolite cocktail con-
tained a selection of amino acids, organic acids, and organic
bases. �e medium was based on yeast nitrogen base (YNB)
without amino acids (BD Difco, Franklin Lakes, NJ, USA)
and the metabolite cocktail was composed of L-arginine,
L-aspartate, L-glutamate, L-histidine, L-leucine, L-lysine, L-
methionine, L-serine, L-threonine, L-tryptophan, L-valine,
citrate, fumarate, malate, pyruvate, succinate, cytosine, and
uracil. All compounds from the metabolite cocktail had a
concentration of 1mM in the �nalmedium.Cultivationswere
performed with 3 di	erent carbon sources, that is, glucose,
glycerol, and ethanol. Each carbon source is dissolved in
water, autoclaved separately, and �nally added to give a �nal
concentration 0.67 C-mole/L corresponding to (20.00 g/L
glucose, 15.34 g/L ethanol, or 20.45 g/L glycerol).

2.4. Cultivation Conditions. Cultivations were performed in
5 replicates in 500mL ba�ed shake �asks (150 rpm), at 30∘C.
Each �ask contained 100mL of footprinting media prepared
according to Allen et al. [11] and closed with cotton plugs.
During cultivation, the culture purity was monitored on a
regular basis by phase contrast microscopy and they east
growth was monitored by OD measurements at 600 nm.

2.5. Cell Mass Determination. Biomass dry weight was deter-
mined by �ltering a known volume of fermentation broth,
approximately 5mL, through a dried, preweighed nitrocel-
lulose �lter (Sartorius Stedim Biotech S.A.) with a pore size
0.45 �m. �e residue was washed twice with distilled water.
�e �lter was dried to constant weight in a microwave oven
at 150W for 10min, cooled in a desiccator, and the weight
was measured. Besides, the optical density was determined
at 600 nm using a Genesis 20 (�ermo spectronic), spec-
trophotometer. Sampleswere dilutedwithwater to obtainOD
measurements in the linear range of 0.1–0.5 OD units.

2.6. Analysis of Culture Media by HPLC. Samples harvested
from the cultivation broth were immediately �ltered through
a 0.45 �m pore-size cellulose acetate �lter (VWR) and stored
at –20∘C until analysis. Glucose, glycerol, ethanol, succinate,
and acetate concentrations were determined by HPLC anal-
ysis using an Aminex HPX-87H column (Biorad, Hercules,
CA) and all the conditions were set following Zaldivar et al.
[23]. Brie�y, the separation was performed at 45∘C, with
sulfuric acid (5mM) at a �ow rate of 0.5mL/min as the
mobile phase. Subsequent determinations of yield coe�cients
for extracellular metabolites as well as biomass were based
on linear regressions of their concentration as a function of
the residual glucose concentration in the exponential growth
phase.

2.7. Sampling Procedure. �e yeast strain BY4709 was grown
on three di	erent carbon sources: glucose, ethanol, and
glycerol. For each carbon source 5 replicates were carried out
and the sampleswere taken every 3 hours from3 hr until 30 hr
such that they represented di	erent growth phases for growth
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Table 1: Media composition used for metabolic footprinting experiment.

Group Formula Common name MW g/L

Yeast nitrogen base

Nitrogen source (NH4)2SO4 Ammonium sulphate 132.13952 5.0198

Vitamins

C10H16N2O3S Biotin 244.31064 0.00002

C18H32CaN2O10 Calcium pantothenate 476.53208 0.002

C19H19N7O6 Folic acid 441.39746 0.002

C6H12O6 Inositol 180.15588 0.01

C6H5NO2 Niacin 123.1094 0.0004

C7H7NO2 p-Aminobenzoic acid 137.13598 0.0002

C8H11NO3⋅HCl Pyridoxine hydrochloride 205.63878 0.00056

C17H20N4O6 Ribo�avin 376.3639 0.0002

C12H17ClN4OS⋅HCl �iamin hydrochloride 337.26852 0.0004

Trace elements

H3BO3 Boric acid 61.83302 0.05

CuSO4 Copper sulphate 159.6086 0.00004

KI Potassium iodide 166.00277 0.0001

FeCl3 Ferric chloride 162.204 0.0002

MnSO4 Manganese sulphate 151.000645 0.0004

Na2MoO4 Sodium molybdate 205.9171386 0.0002

ZnSO4 Zinc sulphate 161.4716 0.0004

Salts

KH2PO4 Potassium phosphate monobasic 136.085542 0.85

K2HPO4 Potassium phosphate dibasic 174.175902 0.15

MgSO4 Magnesium sulphate 120.3676 0.5

NaCl Sodium chloride 58.44276928 0.01

CaCl2 Calcium chloride 110.984 0.1

Metabolite cocktail

Amino acids (all L-form)

C6H14N4O2 Arginine 174.20096 0.1742

C4H6NO4K Aspartate (monopotassium salt) 171.19304 0.1712

C5H8NNaO4 Glutamate (monosodium salt) 169.1110893 0.1691

C6H9N3O2 Histidine 155.15456 0.1552

C6H13NO2 Leucine 131.17292 0.1312

C6H14N2O2 Lysine (hydrochloride) 146.18756 0.1462

C5H11NO2S Methionine 149.21134 0.1492

C3H7NO3 Serine 105.09258 0.1051

C4H9NO3 �reonine 119.11916 0.1191

C11H12N2O2 Tryptophan 204.22518 0.02042

C5H11NO2 Valine 117.14634 0.1051

Organic acids

C6H8O7 Citrate 192.12352 0.2101

C4H2O4Na2 Fumarate (disodium salt) 160.0358186 0.16

C4H6O5 Malate 134.08744 0.1341

C3H4O3 Pyruvate 88.06206 0.0881

C4H4Na2O4 Succinate (disodium salt) 162.0516986 0.2701

Base
C4H5N3O Cytosine 111.102 0.1111

C4H4N2O2 Uracil 112.08676 0.1121
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on the di	erent carbon sources. Two-milliliter samples were
centrifuged (8,000 g, 10min) and the supernatant was stored
at –18∘C until further DI-MS analysis.

�e supernatants were diluted �vefold with acetonitrile
right before they were analyzed by DI-MS.

2.8. Direct Infusion-Mass Spectrometry Analysis. �e sample
preparation for the dynamic metabolic footprinting analysis
was performed as illustrated in the metabolic footprinting
pipeline in Figure 1. �e supernatants were diluted �vefold
with acetonitrile right before the injection. �e DI-MS
analysis was performed on a system setup with an Agi-
lent 1100 micro�ow HLPC pump, LC-Packings autosampler
coupled to a Micromass (Waters, Manchester) Q-tof system
with an electrospray ionization interface. �e instrument
was tuned for maximal sensitivity at low �ow rate and
minimal fragmentation using leucine-enkephalin, followed
by external calibration using a mixture of PEG200 and 400
in acetonitrile-water. �e samples were diluted �vefold in
acetonitrile (with 1 �g/�L leucine-enkephalin as an internal
standard mass reference) and centrifuged at 10,000 g for
1min. �e supernatants were transferred into 200 �L HPLC
vial inserts and the vials were placed in the autosampler.
�e sequence of samples was randomly injected in order
to decrease the e	ects from instrumental bias. �e samples
were analyzed by infusion of 5 �L sample into the ESI source
of Q-tof MS at a �ow rate of 20�L/min. A carrier �ow of
methanol was used at a rate 15 �L/min from the LC-pump
through the autosampler; just before the ion source a �ow of
2% formic acid in water was fed into the solvent stream from
a syringe pump at a rate of 5�L/min using a t-piece giving
a combined �ow of 20 �L/min of 75% methanol-water with
0.5% formic acid going into the source. Mass spectra were
acquired in both positive and negative mode and data were
collected for 3min/sample between 50 and 1000Da/e at a rate
of one continuum scan/second. �e Q-tof conditions were
the following: capillary voltage 3,000V in positive mode and
2,600V in negative mode, desolvation temperature 150∘C,
dry gas, desolvation gas at 300 L/hr, nebulizer �ow 20 L/hr,
source temperature 90∘C, and cone voltage optimized to
minimal fragmentation approximately 40V in positive mode
and 30V in negative mode.

2.9. Data Analysis. Initially, the raw data were processed acc-
ording to the method described by Hansen and Smedsgaard
[24].�eMSdata (as shown in Figure S1A)were preprocessed
in the following way: for each sample, the elution pro�le were
detected, 40 continuum scans (1 s/scan) were summarized
to a single continuum spectrum to reduce noise, followed
by background subtraction and calculating the centroid
spectrum (Figure S1B). �en, all data were normalized
based on the ion count of leucine-enkephalin (m/z 556.2771)
internal standard to reduce technical variability from the
instrumental bias [24]. �e result was a matrix where each
row corresponded to a sample and each of the columns to a
metabolite. �e width of each column roughly corresponded
to 0.5m/z.

In the following, two criteria were applied for selecting
(cherry-picking) the metabolites.

(1) �e �rst criteria dealt with screening for the single
metabolites in each injected sample showing proper
changes over time (either decreasing or increasing or
a combination of both). Since the changing pattern
can either be linear or nonlinear (e.g., exponential
or sigmoidal pattern), the data smoothness step was
required for the nonlinear function by �tting to the
(standardized) time pro�les. In the later step, those
selected metabolites which have the actual trend in
the pro�les (noise excluded) will further be analyzed.

(2) For the next criteria, we identi�ed metabolite pairs
which show the covariance across time. Eachmetabo-
lite was paired up and plotted against each other to
investigate the correlation pattern of individual pair
and the regression line was �tted to the data. Finally,

the correlation (�2 of the regression line) and the �
value were calculated.

�e intercept, slope (which is equivalent to what is o�en
referred to as yield coe�cients), �2, and the � value of the
regression line for each metabolite were stored in a matrix of
dimension as the number of metabolites.

Since many of the identi�ed metabolites are related and
covary we used only the selected metabolites to analyze the
variance present in data. Whereas ordinary Principal Com-
ponent Analysis (PCA) [25] is widely used in data processing
and dimensionality reduction, PCA in general su	er from
the fact that each component is a linear combination of
all the original variables. Even if some variables contain
random noise, those will be assigned weights (loadings) in
the linear combination. �us, it is o�en di�cult to interpret
the results. As for ordinary PCA, Sparse PCA [26] �nds sets of
Sparse vectors (having a relatively small number of nonzero
elements) for use as weights (loadings) in the linear combina-
tions while still explainingmost of the variance present in the
data. For all samples, based on the � value calculated for each
pair of ions, we could generate a symmetric matrix of corre-
lations with the ions along both axes. �e upper triangular
part of the matrix was extracted and unwrapped (Figure S2).
Based on the matrix WT (1) × ESI-mode (2) × Source (3) ×
Rep (5) rows and (�−1)�/2 columns, where� is the number
of ions present, we investigated the variation (informational)
content by Sparse Principal Component Analysis and further
identi�edmetabolites that additionally correlated in response
to time for growth on the di	erent carbon sources.

3. Results and Discussions

Metabolic footprinting is traditionally based on analysis at
a single time point. �erefore, the analysis becomes very
dependent on the growth rate of the organism and also on
factors such as inoculum size. In order to circumvent this
problem we developed a pipeline for dynamic metabolic
footprinting (Figure 1). �is involved both HPLC and MS
analysis of extracellular samples during the fermentation.
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Yeast cultivation 
and sampling

Metabolic 
footprinting 

analysis

and
correlation 

analysis

PCA analysis

Key metabolites 

identi�cation and
network analysis

Cherry-picking

Figure 1: �e pipeline for our dynamic metabolic footprinting process. Di	erent perturbations are imposed on the microorganism, for
example, growth on di	erent carbon sources or parallel analysis of di	erent mutants, and the growth pro�le is recorded using at least 10
samples. �e samples are processed and analyzed using DI-MS. �e resulting spectra are processed to obtain correlation between di	erent
metabolites analyzed.
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Figure 2: �e cherry-picking process illustrated. Two upper �gures show two selected metabolites during the �rst step, and the lower �gure
shows their corresponding correlation in time. Both metabolites will be picked. Slopes (yields) in the matrix that had a � value less than 0.01
were set to zero.

Table 2: Speci�c rates for the 3 sets of conditions.

C-sources �
max

(h−1) 	� (g substrate/gDWh) 	� (C-mmole/gDWh)

Glucose 0.391 0.304 10.133

Ethanol 0.121 0.027 1.117

Glycerol 0.129 0.048 1.564
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Figure 3: Pro�les of growth (OD600) and metabolite concentrations; glucose, glycerol, succinate, and ethanol of yeast BY4709 during the
fermentationmeasured byHPLC.�e plots show fermentation pro�le grown in di	erent carbon sources; glucose (a), ethanol (b), and glycerol
(c).

3.1. Cultivation Pro
le. Based on HPLCmeasurements of the
carbon sources and metabolic products the overall kinetics
of substrate uptake could be determined. For the glucose
cultures, the cells took approximately 12 hours to �nish their
exponential phase with a glucose consumption rate of 0.304 g
glucose/gDW/h (see Table 2 and Figure 3). In contrast, the
cells growing on a nonfermentative carbon source took 21
hours to �nish their exponential phase with a consumption
rate of 0.027 g ethanol/gDW h and 0.048 g glycerol/gDW/h,
respectively. Even though they were grown in di	erent initial
concentrations in terms of g substrate/L the C-mole amounts
were exactly the same (0.67 C-mole/L) for all three carbon
sources. Comparing the speci�c consumption rate in terms
of C-mole (see Figure 3 and also Table 2), the cells could

consume glucose approximately 10 times faster than ethanol
and glycerol (i.e., 10.133, 1.117, and 1.564 C-mmole of car-
bon/gDWh for glucose, ethanol, and glycerol, resp.). Not sur-
prisingly, yeast cells preferred glucose which is a fermentable
carbon source more than the 2 nonfermentable carbon
sources.

3.2. Dynamic Metabolic Footprinting and DI-MS Analysis.
�ere is as mentioned in the introduction an interest in
usingmetabolic footprinting as the turnover rate for extracel-
lular metabolites is much longer, than that for intra-cel-
lular metabolites (�ngerprinting) and footprinting does not
require any complicated procedure for the quenching and
extraction steps. However, using a single data point can
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Figure 4: Standard PCA and loading show the clustering of di	erent C-source cultures (including both ESI modes) and 5 replicates based
on yield/slope of metabolite pro�le.

cause problems with capturing the phenotype of di	erent
mutants, and the approach proposed here may therefore
allow for wider use of metabolic footprinting. Here we dem-

onstrate high-throughput metabolic footprinting using DI-
MS, which allow us to cover more than 2,000 ion peaks (both
from positive and negative ESI mode), which cover many
metabolites in di	erent pathways to be analyzed at the same
time. From the DI-MS analysis results and its integrated
signal spectra (Figures S1A and B), we pointed out how the
techniquewas so consistent giving such a high reproducibility
in all 5 biological replicates. Even though it is complicated
to interpret biological meaning from thousands of ion peaks,
we here demonstrate the cherry-picking criteria to identify a
list of single metabolites that showed signi�cant change over

time. �us, our method is an unbiased strategy to get to the
key metabolites.

�e DI-MS analysis showed that amino acids were best
detected in positive mode, probably due to the amino group.
�e typical base peak ion was [M + H]+ and [M + CH3CN +
H]+.

3.3. Key Metabolites (Cherries) Picked up from MS Spectra.
A�er conversion and alignment of the data according to
Hansen and Smedsgaard [24], each of the metabolites was
�rst analyzed for trends over time. �e resulting matrix
had 300 rows (one for each sample) and approximately
1500 columns. A�er binning the data, as part of the initial
procedure, columns containing no data were removed.
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Figure 5: Sparse PCA and loading show the clustering of di	erent C-source (including both ESI modes) and 5 replicates based on yield/slope
of metabolite pro�le.

�e �rst cherry-picking criteria identi�ed a list of single

metabolites that showed the proper change over time. A�er

this step, the number of columns in thematrix was reduced to

145 metabolites. Two examples of identi�ed metabolites can

be seen in the top two �gures in Figure 2.

As the next criteria, the degree of covariance over time

was calculated. Figure 2 (bottom picture) illustrates the pro-

cess, where the two metabolites were picked during the �rst

selection step, and shows covariance across time. For all met-

abolite pairs, the intercept, slope (yields), �2, and the � value
of the regression line for each metabolite were stored in a

matrix of dimension as the number of metabolites.

3.4. Standard and Sparse PCA Analysis. In order to evaluate
the information present in the matrix of metabolite pairs, we
initially analyzed the variation in yields by PCA to identify
the key metabolites which are signi�cantly di	erent between
the sample groups and to how well they can separate growth
on the di	erent carbon source from each other.

�e upper triangular part of the matrix of the yields was
extracted and unwrapped. Based on the matrix columns as
shown with the cherry-picking method (Figure 2), we calcu-
lated the PCA loading for PCA analysis. Figure 4 illustrates
the scores and loadings for the �rst two principal components
using ordinary PCA. As can be seen from the plots, the yields
of the selected metabolite pairs show a nice separation of
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Figure 6: Key metabolite network on PC1; there are 32 key metabolites linking to each other with 4 hubs, that is, glucose, cyclic AMP, cyclic
dAMP, and NAMN in PC1 network.�ese key metabolites can be used as PC1 to separate the sample taken from glucose culture from ethanol
and glycerol cultures. Since there are 3 di	erent patterns of changing in metabolite pro�le, these nodes are shown in 3 di	erent colors; red
(increasing), (decreasing), and blue (nonmonotonous or constant).

the carbon sources. Still, when looking at the loadings we see
that all metabolite pairs are assigned weights.

Sparse PCA was used to obtain sets of Sparse vectors for
weights (loadings) in the linear combinations while explain-
ing most of the variance present in the data. Figure 5 illus-
trates the e	ect of using of Sparse PCA rather than ordinary
PCA on the loadings.We see thatmost of themetabolite pairs
have been assigned zeroweight, whereas only a few pairs have
been assigned a weight. Although most of the weights in the
loadings are zero, we still see the same grouping into carbon
sources as when using ordinary PCA.

As can be seen from the Sparse PCA, a few pairs of met-
abolites can separate the data into distinct carbon sources.
Next, we wish to investigate those metabolites in further
detail. From the reconstruction of the correlation networks
it was found that pairs from PC1 are most important as
they generate the largest network. PC1 segregates the signal
from glucose from the other two carbon sources (ethanol
and glycerol). �e size of key metabolites network represents
the level of di	erences in dynamic pattern among the sample
groups [6, 21].

3.5. Identi
cation of the High Correlated Ion Pairs. Pairs of
MS ions that correlated over time were identi�ed as those
the Sparse PCA were assigned weights. Only the metabolite
pairs from the loadings corresponding to the Sparse PC1
and Sparse PC2 were extracted. �ere were a total of 48
pairs, which corresponds to correlation between 44 ions as
key metabolites: 24 pairs between 17 metabolites for PC1
and 3 pairs between 3 metabolites for PC2 in positive ESI
mode (see Table 3), and 17 pairs between 19 metabolites for
PC1 and 4 pairs between 5 metabolites for PC2 in negative
ESI mode (see Table 4). A few metabolites were identi�ed
both in positive and negative ESI mode, and the number of
metabolites identi�ed was 45. For each ion the corresponding
metabolite was identi�ed using the database developed by
Højer-Pedersen [17], and a list of the identi�ed metabolites
for the two modes are given in Tables 5 and 6. Moreover,
the fragmentation patterns from ESI-MS of each metabolite
were also carefully considered and compared according to the
Golmmetabolome databases [15] to con�rm the possible cal-
culatedmass per charge. Formost of the ions there is a unique
identi�cation of the corresponding metabolite, but for some
ions more than one metabolite has the corresponding mass,
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Table 3: List of major metabolites (signi�cantly correlate response over time in the di	erent C-source) by positive ESI mode.

Positive ESI pairs PC

homoserine/threonine Carnitine/4-aminobutanoate

1

Methylglyoxal 3-Indoleacetonitrile

Succinate 3-Indoleacetonitrile

Valine 3�, 5� cyclic AMP

Leucine 3�, 5� cyclic AMP

4-Aminobutyric acid/aspartate 3�, 5� cyclic AMP

Valine 3�, 5� cyclic AMP

Homoserine/threonine 3�, 5� cyclic AMP

�ymine/4-guanidino-butanamide 3�, 5� cyclic AMP

Leucine 3�, 5� cyclic AMP

sn-Glycerol-3-phosphate/3-dehydroshikimate 3�, 5� cyclic AMP

Glutamine 3�, 5� cyclic AMP

But-1-ene-1,2,4-tricarboxylate/7,8 diaminononanoate 3�, 5� cyclic AMP

Valine 3�, 5� cyclic AMP

Methylglyoxal 3�, 5� cyclic AMP

homoserine/threonine 3�, 5� cyclic AMP

Valine 3�, 5� cyclic AMP

Succinate 3�, 5� cyclic AMP

N-Acetyl-L-glutamate 3�, 5� Cyclic AMP

Leucine Nicotinate-D-ribonucletide

4-Aminobutyric acid/aspartate Nicotinate-D-ribonucletide

Glycerone/lactate Nicotinate-D-ribonucletide

sn-Glycerol-3-phosphate/3-dehydroshikimate Nicotinate-D-ribonucletide

But-1-ene-1,2,4-tricarboxylate/7,8 diaminononanoate Nicotinate-D-ribonucletide

Leucine O-Acetyl-L-serine

2Aspartate O-Acetyl-L-serine

Leucine O-Acetyl-L-serine

for example, for the ion 179.0353m/z there are three potential
candidates for the corresponding metabolite, namely, 3-(4-
hydroxyphenyl) pyruvate, glucose, and myo-inositol. In this
particular case glucose is the most likely metabolite and it
was chosen, but cases where there could not be made a clear
assignment both metabolite names were used.

PC1 ions primarily separate the glucose samples from the
ethanol and glycerol samples and PC2 mainly separates the
ethanol samples from the glycerol samples. �e metabolite
pairs from PC1 represent a network as illustrated in Figure 6,
and the metabolite pairs from PC2 represent two networks as
illustrated in Figure 7. In these networks the edges represent
correlations between the corresponding key metabolites. It is
observed that most of the key metabolites are amino acids
that are linked to cyclic AMP or cyclic dAMP, but glucose
is also clearly correlated to several metabolites. �e color
code indicates the slope with green indicating decreasing
concentration with time and red increasing concentration
with time. A few metabolites do not change much in concen-
tration pro�le or do not have a monotonous concentration
pro�le during the whole fermentation, for example, their
concentration are increasing in one part of the fermentation
and decreasing in another part of the fermentation, and these
are marked blue in the networks. It is interesting to note

that there is a positive correlation between cAMP and most
amino acids, whereas the glucose concentration is negatively
correlated with the concentration of several metabolites, for
example, glycerol.

�e PCA results, both ordinary PCA, and Sparse PCA
showed that the main variance in the data is caused by the
3 di	erent C-sources: glucose, ethanol, and glycerol. �e
Sparse PCA �nds sets of Sparse vectors for use as weights
in the linear combinations while still explaining most of
the variance present in the data. It is built on the fact
that PCA can be written as a regression-type optimization
problem, with a quadratic penalty; the lasso penalty (via the
elastic net) can then be directly integrated into the regression
criterion, leading to a modi�ed PCA with Sparse loadings
[26]. According to the results we obtained fromboth ordinary
PCA (Figure 3) and Sparse PCA (Figure 4), it is clearly
shown that the Sparse PCA gives a better clustering among
the groups compared to the normal PCA results. Focusing
on the consistency of this analysis, the results from PCA
indicated that the main variance in the data is caused by the
di	erent C-sources with high reproducibility.�e 5 replicates
are separated into the same cluster based on the dynamic
metabolic pro�le which is promising.
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Table 4: List of major metabolites (signi�cantly correlate response over time in the di	erent C-source) by negative ESI mode.

Negative ESI pairs PC

Glyoxylate/(s)-lactaldehyde 4-Hydroxybenzoate

1

Ser Itaconate/N-acetylputrescine

4-Aminobutanoate Xanthine

4-Aminobutanoate Carnitine

Glycerone/lactate 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

(s)-Lactaldehyde/glycerol 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

Glycine 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

4-Hydroxybenzoate 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

2-Oxoglutarate/gamma-amino-gamma-cyanobutanoate/2-
dehydropantoate/glutamine/lysine

3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

Itaconate/N-acetylputrescine 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

4-Hydroxy-L-threonine/adenine/homocysteine/2-
phenylacetamide/3-hydroxyanthranilate

3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

3-Hydroxyanthranilate 3-(-4-hydroxyphenyl)pyruvate/glucose/myoinositol

(s)-lactaldehyde/glycerol cdAMP

Glycine/sn-glycerol 3-phosphate cdAMP

Itaconate/N-acetylputrescine cdAMP

D-Glyceraldehyde 3-phosphate/glycerone
phosphate/guanine/N-methyl-L-histidine/pyridoxamine
phosphate/pyridoxine

cdAMP

3-Hydroxyanthranilate cdAMP

Sul�de Glycerol

2Sul�de Uracil

Glycerol Phosphocholine

Met Phosphocholine

Table 5: List of key metabolites in positive ESI mode.

Abbreviation Metabolites 
/� Suggested

ACNL 3-Indoleacetonitrile 198.1135 +CH3CN

ASP Aspartate 88.0879 −CHOOH

cAMP Cyclic AMP
312.4857
330.0861

−H2O+H

DANNA 7,8 Diaminonanoate 189.0893 +H

DHSK 3-Dehydroshikimate 173.1333 +H

GBAD 4-Guanidinine-butanide 127.1331 −H2O

GL3P sn-Glycerol-3-phosphate 173.1333 +H

GLN Glutamine 188.0823 +CH3CN

HSER Homoserine 102.0638 −H2O

LEU Leucine 86.1026 and 132.1146
−N?,
−CHOOH,

MTHGXL Methylglyoxal 73.0893 +H

NAGLU N-Acetyl-L-glutamate 190.069 +H

NAMN Nicotinate-D-ribonucleotide 378.0777 +CH3CN

OAHSER O-Acetyl-L-Serine 136.4695 +H

SUCC Succinate 119.0985 +H

THR �reonine 102.4362 and 120.4362
−H2O
+H

THY �ymine 127.1331 +H

VAL Valine 72.0881 and 118.0985
−CHOOH

+H
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Table 6: List of key metabolites in negative ESI mode.

Abbreviation Metabolites 
/� Suggested

4HBZ 4-Hydroxybebzoate 119.0248 −H2O

4HLT 4-Hydroxy-L-threonine 134.3312 −H
AD Adenine 134.3312 −H
AKG 2-Oxoglutarate 127.0434 −H2O

GABA 4-Aminobutanoate 102.4149 −H

GL Glycerol 73.0310 and 91.0174
−H2O
−H

GLC Glucose 179.0353 −H
GLX Glyoxalate 73.0310 −H
GLY Glycine 76.0346 −H
GN Guanine 150.3323 −H
HAN 3-Hydroxyanthranilate 152.0691 −H
HCYS Homocysteine 134.3312 −H
LACAL Lactaldehyde 73.0310 −H
LYS Lysine 127.0434 −H2O

MET Methionine 148.0470 −H
MVL Mevalonate 129.0356 –H2O

MHIS N-Methyl-L-histidine 150.3223 −H2O

PCHO Choline Phosphate 183.0650 −H
PDLASP Pyridoxamine phosphate 150.3223 −H3PO4

cdAMP Cyclic dAMP 215.0070 −H3PO4

PYRDX Pyridoxine 150.3223 −H2O

SER Serine 104.1285 −H
H2SO3 Sul�de 80.9743 −H
T3P1 D-Glyceraldehyde-3-phosphate 150.3223 −H2O

T3P2 Glyceronephosphate 150.3223 −H2O

URA Uracil 93.0162 −H2O

XAN Xanthine 151.0958 −H

3.6. Key Components of Metabolic Network of Yeast Grown
on Di�erent C-Sources. �e key metabolites network on PC1
which contain more metabolite nodes compared to that
on PC2 show the higher di	erence between glucose and
ethanol or glucose and glycerol cultures while there are less
di	erences between glycerol and ethanol cultures. In other
words, the dynamic pattern of the glucose culture is more
unique than the rest. So, we can obviously see that there
are largest dynamic changes in metabolite concentrations
during growth on glucose, which can be explained by the fact
that glucose is a fermentative carbon source whereas there is
purely respiratory growth on ethanol and glycerol.

�e 4 main hubs of the network are glucose, cyclic AMP,
cyclic dAMP, and nicotinate-D-ribonucleotide (NAMN) as
illustrated in the key metabolites network on PC1 (Figure 6).

Cyclic AMP and cyclic dAMP have been shown to
regulatemany di	erent nutrient responses.�e levels of these
metabolites are linked to the biosynthesis of many amino
acids and also a	ected by the concentrations of glucose

and also amino acids [27]. Since fermentable sugars are
speci�c stimulators for cAMP synthesis in yeast cells [28], the
Ras/cAMP pathway is activated by both growth signal (e.g.,
glucose) and stress signals (e.g., UV radiation and starvation)
[29]. Our �nding from the correlation analyses is consistent
with this as it shows that glucose and cAMP have the same
dynamic pattern at all conditions.

Since low cAMP concentration stimulates the uptake of
and L-leucine [30], we can see that the uptake rate of leucine
was increasing (the extracellular leucine level was decreas-
ing), while the extracellular cAMP level was decreasing. From
the keymetabolites network on PC2 (Figure 7), we also found
the link between methionine, glycine, 4-phospho-hydroxy-
L-threonine, and pyridoxine. As the methionine is required
for synthesis of phosphatidylcholine (PC) via methylation of
phosphatidylethanolamine (PE) [31], these two metabolites
have high correlation (sharing the same pattern) in corre-
lation analysis result. In a similar case, 4-phospho-hydroxy-
L-threonine (4HLT, the precursor to pyridoxal 5�-phosphate
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Figure 7: Key metabolites network on PC2; there are 8 key met
abolites in PC2 network, 5 and 3 nodes in each subnetwork. �ese
key metabolites can be used as PC2 to separate the sample group
taken from ethanol culture from glycerol culture. Since there are 3
di	erent patterns of changing in metabolite pro�le, these nodes are
shown in 3 di	erent colors; red (increasing), (decreasing), and blue
(nonmonotonous or constant).

biosynthesis) was also linked to glycine, serine, and threonine
metabolism and also pyridoxal phosphate synthesis pathway
via cyclic AMP and cyclic dAMP.

In conclusion we here show that through dynamic met-
abolic footprinting it is possible to identify correlations
between metabolites that can be used to provide new insight
into possible regulatory structures. Furthermore, our correla-
tion analysis may be used for identi�cation of key biomarkers
for speci�c phenotypes during dynamic growth conditions.
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