
Dynamic Microcell Assignment for Massively Multiplayer
Online Gaming

Bart De Vleeschauwer
bdevlees@intec.ugent.be

Bruno Van Den Bossche
brvdboss@intec.ugent.be

Tom Verdickt
tverdick@intec.ugent.be

Filip De Turck
fdeturck@intec.ugent.be

Bart Dhoedt
dhoedt@intec.ugent.be

Piet Demeester
pietdm@intec.ugent.be

Ghent University - IBBT - IMEC, Department of Information Technology
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

Tel: +3293314900, Fax: +3293314899

ABSTRACT
With the number of players of massively multiplayer on-
line games (MMOG) going beyond the millions, there is
a need for an efficient way to manage these huge digital
worlds. These virtual environments are dynamic and sud-
den increases in player density in a part of the world have an
impact on the load of the server responsible for that section
of the virtual world. In this paper we propose the division
of the world into several interacting microcells that can be
dynamically assigned to a set of servers. We outline the ar-
chitecture of such a system and describe a set of algorithms
that assign the microcells to the available servers. The max-
imum load experienced by a server is used as a minimization
criterion. The different algorithms are compared with each
other and with the standard approach used in these games.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.2.11 [Software Engineering]: Software Archi-
tectures; I.6.5 [Simulation and Modeling]: Model Devel-
opment

General Terms
Algorithms, Performance, Design

Keywords
MMOG, Game Server Architecture, Load Balancing, Micro-
cell Distribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames’05, October 10–11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010 ...$5.00.

1. INTRODUCTION
Recent years have seen an enormous increase in the num-

ber of players engaging in Massively Multiplayer Online Ga-
mes (MMOGs). These games offer the player a huge digi-
tal environment in which he can interact with other play-
ers. One of the more recent incarnations of this game type,
World of Warcraft [2], has over 2,000,000 users with peaks
of over 500,000 players interacting at the same time in the
digital world. Other examples include Second Life [7], a vir-
tual world that even allows users to create their own objects
and insert them into the world. With the widespread avail-
ability of broadband Internet access and a new generation
of game consoles [5, 6, 9] on the horizon, all boasting broad-
band capabilities, this type of game will no doubt enjoy an
even greater popularity in the future.

To support these virtual worlds, with huge numbers of in-
teracting entities, there is a need for an efficient architecture
that is able to meet the requirements in terms of generated
load. Due to the massive scale of these games, a single ma-
chine is not able to support a virtual world with hundreds
of thousands of users. As a result all MMOGs distribute
the load among a set of servers, a grid or a cluster. The ap-
proach used in Second Life is splitting the gameworld into
different cells, each managed by a single server. These cells
communicate with their neighbours and manage players and
objects located within their boundaries.

In this paper we propose to go a step further. A static
division of the game world in big cells is not able to react to
the dynamic increase in load when events that create local
peaks in player density happen. These so called hotspots
occur when a location in the game world exhibits a sudden
increase in popularity resulting in a high concentration of
players in a small part of the world. When using large static
cells, it can occur that several hotspots are managed by
one single server, resulting in a severe degradation of the
game experience when this server can no longer cope with
the increased load. We propose splitting the game world
into several smaller cells called “microcells”. These cells can
be dynamically assigned to a set of servers, thus allowing
an even distribution of the load in order to minimise the
maximum load experienced by one server and to eliminate
bottlenecks.

In section 2 the microcell architecture is outlined and
the differences with a standard architecture are highlighted.
Section 3 contains a description of the algorithms that we
have developed to determine a microcell allocation. These
algorithms are evaluated in section 4. Finally, in section
5 conclusions are drawn and some directions for future re-
search are described.

2. ARCHITECTURAL OVERVIEW
The overall concept of the game for which an architecture

is presented in this paper, follows that of a typical MMOG.
Players can move freely through a vast virtual world, inter-
acting with other players and computer-controlled entities.

2.1 Cells
In the architecture presented in this paper, the world is

divided into a number of interconnected cells. Each cell
consists of a part of the world, with its own contents and
characteristics. No initial assumptions are made regarding
the exact shape of the cells, though in a real-life implemen-
tation, the cells will probably have a regular shape, such as
square or hexagonal. Also, no assumption is made about the
number of cells neighbouring a given cell. Again, in a real-
life scenario this might be the same for every cell. Figure 1
depicts a world divided into four cells.

Figure 1: Traditional cell-based world

The underlying goal of this design is to allow the world and
all the entities contained in the world to be easily divided
over several servers. This concept has already been shown
to work in Second Life [7], where the world is also divided
into a number of regions, each assigned to a different server,
in order to distribute server load.

An important aspect of the design is that the cell concept
should be “transparent” to the players. Players should ex-
perience a single, vast, unfragmented world. They should
be able to seamlessly move from one cell to another, with-
out noticing the cell borders, and players near a cell border
should see and be influenced by events in the neighbour-
ing cell. This does of course necessitate the communication
between neighbouring cells. Player data should be moved
between cells if a player moves from one cell to another, and
events and player actions happening near the cell border
should be forwarded to the neighbouring cell.

While an architecture with fairly large cells assigned to
separate servers (figure 1) distributes the load over several
servers, it cannot guarantee an even distribution of the load.
The reason is that players will probably not be spread evenly
across the virtual world. Some regions, e.g. large cities, will
have a much higher player concentration than others, e.g. a
desert.

As a result, servers managing the more densely populated
cells will have a much higher load than other servers. When

there is a very high player density in a certain region, this
might cause a situation where one or a few servers can no
longer handle their load, leading to unacceptable perfor-
mance loss in the cells managed by those servers. It would
be better to reduce the load in those servers, by shifting
part of it to the other, less populated, servers. There is a
certain tolerance to performance problems in general and
delay specifically: delays below a certain limit do not really
influence the game or the user experience [1, 8]. Therefore
the slightly higher load in the least-loaded servers will not
cause real problems, while the reduced peak loads will pre-
vent bottlenecks from occurring.

2.2 Microcells
One way to solve this problem is to vary the size and

shape of the regions managed by a single server. In densely
populated areas of the virtual world, smaller regions could
be assigned to servers, while larger regions could be used in
less populated areas, allowing the load to be spread much
more evenly among the servers.

This solution solves the problem if the population density
is more or less fixed, which however, is not always the case.
A number of events might cause a drastic shift in the popu-
lation density of certain regions. A huge, week-long festival
in a town might suddenly attract players from all over the
world, and two player factions waging war over a mountain
pass might summon large armies to a previously deserted
region.

Clearly, a more flexible division of the world is needed
to handle these situations. The research presented in this
paper therefore takes the cell concept a step further. In-
stead of dividing the world into fairly large static cells, each
supported by a different server, the world is divided into a
significantly larger number of smaller cells that can be dy-
namically assigned to a set of servers, we call these cells
microcells (figure 2). A single server now manages not one
large cell but a number of microcells. Rebalancing the load
between the servers can be performed by moving microcells
from a high-load server to a lower-load server, and thereby
resizing the regions they are responsible for. This is signif-
icantly easier than reshaping or resizing existing cells, and
thus is viable even when managing only temporary popula-
tion density shifts.

Figure 2: World divided into microcells

Of course, having a larger number of cells causes an in-
crease in the inter-cell communication. While this might in-
crease the average server load, modeling results presented
further in the paper indicate that the load of the most
heavily-loaded server can be decreased by using microcells,

because of a better spreading of the server load. This de-
creases the chance of a bottleneck occurring, which is the
primary design goal of the platform architecture.

By using a careful server design, the overhead caused by
the communication between cells can be somewhat reduced
when using microcells. In the “large cell” architecture pre-
sented in section 2.1, each cell has its own database, con-
taining among other things the players residing in the cell
and the cell’s entities. This does not have to be the case in a
microcell architecture. Instead, a single database is used for
every server, irrespective of the number of microcells present
on the server. Apart from the actual cells and the database,
each server also contains a controller, managing the cells,
the database, and the communication between the cells.

Figure 3: Server architecture

Using the shared database and the controller, communi-
cation between microcells on the same server can now be
made more efficient. For example, moving a client from one
cell to another would usually require the player information
to be moved from the database of one cell to that of an-
other. This server architecture, however, allows to avoid
such copying for players moving between cells on the same
server, since the database is shared between both cells.

While this server design will not completely eliminate
the additional overhead of using microcells instead of larger
cells, it does allow to reduce that additional overhead sig-
nificantly, provided that several neighbouring and commu-
nicating microcells are supported by the same server. More
information on deploying the microcells to the servers will
be given in section 3. Together with the possibility, pro-
vided by the microcells, to spread the load more evenly
across the servers, the maximum load on a server can be lim-
ited, with only a moderate increase in average server load.
Thus, chances of servers being overloaded are reduced, mak-
ing bottlenecks and unacceptable game performance occur
less frequently.

3. ALGORITHMS
To take full advantage of the microcell approach we need

an efficient way to distribute the cells over the servers. This
must be done in such a way that the interaction patterns
between the microcells are taken into account and that the

maximal load experienced by a server is minimized. The to-
tal load experienced by a server is expressed as a weighted
sum of all tasks to be performed by that server, these are:
processing player actions, forwarding player actions to neigh-
bouring cells, receiving forwarded actions from neighbour-
ing cells, and moving players to and from neighbouring cells.
The weights allow to define the load caused by such actions,
relative to each other. For example, the movement of a
player between cells generates more load than the process-
ing of a simple player action, and a player migration between
cells on the same server requires less work than when those
cells reside on different servers. In Appendix A a math-
ematical formulation of the server load function is given.
More information on the specific values of the parameters
can be found in section 4.

For each microcell the number of actions that are per-
formed within the cell boundaries is specified, as well as the
interaction pattern with its neighbouring cells: the forward-
ing and receiving of actions between cells and the migration
of players between cells. Figure 4 shows the information
flow of the algorithms. On top there is the logical world,
divided into microcells that are specified by their values for
actions and migrations. Darker colours indicate a higher
player concentration. The world model is handed to the al-
gorithm, together with the load function and the values of
the parameters of the algorithm. The result is the allocation
scheme that defines to which servers the cells are assigned.

Figure 4: Algorithm Flow Diagram

We developed a set of algorithms that determine the as-
signment of cells to servers, ranging from a greedy heuristic
to an optimal ILP-based (Integer Linear Programming) al-
gorithm.

3.1 Balanced Deployment Algorithm
This is a greedy algorithm, trying to distribute the server

load as evenly as possible. Starting with the microcell with
the highest number of players and thus the highest load,
not taking inter-cell interactions into account, the microcells
are added to the servers one by one. The server to add a
microcell to is chosen such, that the highest server load is
minimized after adding the cell and in case the maximum
server load would be equal with the cell being deployed on
different servers, the decision will be made based on the

average server load.
While this algorithm will prevent one server being over-

loaded, when another server has a much lower load, the al-
gorithm does not explicitly take “locality” into account. It
will deploy cells on the servers one by one, without explicitly
placing neighbouring cells on the same server. As a result,
while the maximum server load might be limited, the aver-
age server load is expected to be rather high, compared to
the other deployment algorithms.

3.2 Clustering Deployment Algorithm
An algorithm similar to the greedy approach consists of

clustering those microcells that will cause the least overhead
when placed together on the same server. This algorithm
starts by creating a list of clusters, initially each consisting
of one microcell. Next it calculates the cost of placing any
combination of two clusters on one server and merges the
two clusters with the smallest cost when merged. In the
following step this process is repeated until the number of
clusters equals the number of available servers.

This algorithm has an important disadvantage as in the
last few steps it will have to merge clusters with rather large
loads, usually resulting in a deployment with at least one
highly loaded cluster. An optimization exists in applying
this algorithm on a subset of the microcells and adding the
remaining microcells one by one to those clusters with the
least load.

3.3 Simulated Annealing Deployment
Algorithm

Simulated annealing is a technique that can be used to
solve combinatorial optimization problems [3]. Starting from
an existing solution it gradually tries to find a better one by
altering it. The new deployments are generated by randomly
swapping microcells between two servers or by moving a mi-
crocell from one server to another. If the new deployment is
better, the new solution becomes the current solution. Oth-
erwise, the decision to change the current solution is made
according to a probabilistic criterion. At first, there is a high
chance to change the current solution in one that is worse,
but as the algorithm has done more moves, this probability
becomes smaller and smaller. Accepting a worse solution
is allowed to let the algorithm explore the whole solution
space, as a better solution may only be found by first doing
an action that degrades the current solution. During our
experiments we noticed that this algorithm was able to find
good solutions for our problem with random initial deploy-
ments, but especially when starting from the solution of one
of our other heuristics.

3.4 Optimal Deployment Algorithm
To determine the optimal allocation scheme for a world,

we formulated the problem as an Integer Linear Program-
ming (ILP) problem [4]. Solving this formulation using stan-
dard techniques allows us to determine the optimal cell allo-
cation scheme. However, due to the low scalability of these
solution methods, determining the optimal distribution of
even a small world composed of 64 microcells, distributed
over 4 servers already spans multiple days on an average
desktop computer. Therefore, this approach can only be
used for small worlds. Nevertheless, this algorithm provides
an interesting benchmark to evaluate how close the solutions
of the deployment algorithms are to the optimal solution for

small worlds.
By placing an upper bound on the total time the ILP

solver searches for a solution, this algorithm can also be
used as a deployment heuristic, but does no longer generate
an optimal result.

4. EVALUATION
A test framework was designed to simulate and compare

the deployment algorithms presented in section 3. The frame-
work applied the algorithms on a given test world to dis-
tribute the microcells over a number of servers. The perfor-
mance of the deployment was then calculated and compared
for all applied algorithms.

The world can consist of any number of cells, arranged
in an arbitrary fashion. An important characteristic for the
world is, for every cell a and cell b, the fraction of the ac-
tions in cell a needing to be forwarded to cell b, because
they occur close to cell b, and so might influence players in
cell b. Another characteristic is the fraction of the players in
cell a moving from cell a to cell b during a single time inter-
val. These “migration fractions” also define the steady-state
player distribution across the world. Cells with a higher in-
flux of players have a higher player concentration than cells
with a high percentage of players leaving the cell.

Though the framework allows world maps with arbitrary
shapes, all simulations were performed on square maps, or
more accurately toroidal worlds, where a player walking off
the top of the world arrives at the bottom, and players walk-
ing off the left side arrive back at the right side. We used
square cells, where players in a cell could only move to and
interact with neighbouring cells. The player distribution was
chosen, such that the world contained a number of “two-level
hotspots”(see the upper part of figure 4). These hotspots
consist of an outer region with a moderately high player
concentration, and a centre with a very high player concen-
tration. The rest of the world is assumed to have a much
lower player density than the hotspots. The hotspots rep-
resent among other things cities, with many players in the
city centre and somewhat less players in the city outskirts,
but still more than in the rest of the world.

As explained in section 3, the weighted sum of the num-
ber of “messages” to be processed by a server was used as a
measure of the performance. Important evaluation parame-
ters, therefore, are the weights assigned to the various types
of messages, or the various sources of load on the server, like
actions by players in a cell on the server, players moving to
or from a cell on the same server, etc. An overview of the
values used in our simulations is presented in table 1. These
parameter values were mostly estimated from measurements
on an existing multiplayer game 1.

Table 1: simulation parameters: event weights
internal external

player action 1.0 N/A

forward action 0.05 0.1
receive forwarded action 0.2 0.4

player emigration 3.0 15.0
player immigration 3.0 15.0

A distinction is made between messages that remain in-

1http://crossfire.real-time.com

ternal to the server (e.g. player migration between two cells
deployed on the same server) and “external” messages, be-
tween two servers (player migrations between cells on dif-
ferent servers). The reason is that the interaction between
cells on the same server can be made more efficient by using
a server architecture as presented in section 2.2.

Player action is the weight given to the processing of a
single action, like moving or jumping, performed by a player
in the cell, including notifying the players in the same cell of
the action and its results. A fraction of those actions needs
to be forwarded to a neighbouring cell. The weights for send-
ing and receiving such an action forwarding are presented as
forward action and receive forwarded action, respectively.
Player movement between cells has a weight player emigra-
tion in the cell the player is leaving, and a weight player
immigration in the destination cell.

To evaluate the performance of the proposed MMOG ar-
chitecture, several simulations were performed, deploying
the cells of the worlds shown in figure 5 over four servers.
The grayscale indicates the player densities.

(a) Concentrated (b) Balanced

Figure 5: A highly concentrated and a perfectly bal-
anced world

It is important to note that all worlds were assumed to
contain an equal total number of players. Their only differ-
ence lies in the player distribution across the world. In the
world shown in figure 5(a), the hotspots are very much clus-
tered together, causing a highly uneven player distribution.
Figure 5(b), on the other hand, shows a world containing 4
hotspots, perfectly distributed over the world. Once again,
the total number of players is equal for all the worlds, so a
higher number of hotspots does not signify a higher number
of players, but merely a higher concentration of players in
that vicinity.

The figures show the worlds as being divided into 256
microcells (a 16 by 16 grid). The simulations, however, were
performed for a varying number of microcells (2 by 2, 4 by 4,
8 by 8, and 16 by 16). In the results we present in this paper,
we always used 4 servers to deploy the microcells on. The
results for the 2 by 2 world thus represent the traditional
large-cell architecture with one cell per server.

The maximum server loads (as defined in section 3 and
equation 1) for the map with higher player concentrations
(figure 5(a)) and the different deployment algorithms is pre-
sented in figure 6. For reference, the maximum server load
for the “large-cells” architecture, with a single cell on each
server is also shown in the figure.

As can be seen in the figure, a significant performance gain
can be obtained by using smaller cells, distributed across the
servers, as opposed to a single static cell per server (static in
that its size is not dependent on the load or player density
in the cell). By dividing each cell into four equal, smaller
cells, the maximum server load can be reduced by up to
30%, depending on the deployment algorithm.

Using even smaller cells, however, does not yield an ad-
ditional performance gain and even increases the maximum

2x2 4x4 8x8 16x16
5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

number of microcells

m
ax

im
um

 s
er

ve
r

lo
ad

Cluster
Balanced
Cluster + Simulated Annealing
Balanced + Simulated Annealing
Large Cells
ILP

Figure 6: Server load in function of the number of
cells for a world with concentrated hotspots

server load. The reason is that the communication overhead
between cells increases with an increasing number of cells,
offsetting the possible benefit of redistributing the cells over
the servers. Therefore, the microcell architecture must be
applied with care.

A comparison of the different deployment algorithms shows
that by far the best result can be obtained by combining a
deployment algorithm with simulated annealing. The choice
of algorithm to combine with simulated annealing is less crit-
ical, though the balanced algorithm provides a small benefit
over the clustered algorithm in this case.

Note that while ILP has been described in section 3.4 as
the “optimal deployment algorithm”, the results presented
in figure 6 are clearly sub-optimal. The reason is that the
ILP solver was stopped after an optimization period of two
days, resulting in a sub-optimal solution. This shows that
ILP, while theoretically providing perfect results, is not us-
able as a deployment algorithm in this architecture, since the
obtained results are worse than those obtained with other
algorithms, that required only a few seconds to complete.

The microcell architecture was expected to perform well
with high player densities in a small part of the world.
Therefore, a similar simulation was performed with a world
map with a more even player distribution, as presented in
figure 5(b). The maximum server load for the different de-
ployment algorithms is shown in figure 7, the ILP algorithm
was again stopped after a period of 48 hours.

In this perfectly symmetrical world, the microcell archi-
tecture does not provide a performance gain compared to
the large-cell architecture. However, the extra cost of divid-
ing the cells is smaller than 5% for 16 microcells (4 by 4) and
10% for 64 microcells (8 by 8). This is not a large penalty to
pay for the increased flexibility. As MMOGs give the users
more and more freedom, a more dynamically varying distri-
bution with temporary concentrations will likely be much
more typical in future MMOGs.

To evaluate the behaviour of the microcell architecture
with different player distributions, we generated two more
worlds with the same number of players but with other
hotspot distributions. These are depicted in figure 8. These
worlds have player concentrations that lie between those of
the worlds we used before and allow us to evaluate how

2x2 4x4 8x8 16x16
5000

6000

7000

8000

9000

10000

11000

number of microcells

m
ax

im
um

 s
er

ve
r

lo
ad

Cluster
Balanced
Cluster + Simulated Annealing
Balanced + Simulated Annealing
Large Cells
ILP

Figure 7: Server load in function of the number of
cells for a world with balanced hotspots

the architecture behaves for different moments in a dynamic
game world.

(a) Semi-balanced (b) Semi-concentrated

Figure 8: Additional random worlds

The graph in figure 9 presents the influence of the player
distribution on the maximum server load, for the different
microcell architectures. The algorithm to determine the mi-
crocell allocation was the simulated annealing algorithm ap-
plied to the solution generated by the balanced algorithm.
When using 4 large cells (and thus, a single cell per server),
the maximum load experienced by one server is highly vari-
able, going from just 5500 in a perfectly balanced world to
around 8500 in the most concentrated world. The microcell
approach however is able to significantly limit the variation
of the maximum load. When dividing the world into 16
microcells, the maximum load for the servers, experienced
in the different scenarios all lie within 5% of each other.
This indicates how well the microcell architecture can dy-
namically adapt to changing player distributions. A very
important consequence of this behaviour is that it is much
easier to dimension the servers, as much narrower bounds
to the server load can be defined.

Apart from removing peak server load and server bottle-
necks and improving flexibility, another goal of this archi-
tecture was to spread the load more equally over the servers.
The results presented in figure 10 show the maximum and
average server load for the Concentrated world model of
figure 5. The algorithm to determine the microcell alloca-
tion was the simulated annealing algorithm applied to the
solution generated by the balanced algorithm. They show
a difference of over 35% between the maximum and aver-
age server load, when using large cells, which indicates one
server is much more loaded than the others. By increasing
the number of cells from 4 to 16 this difference is less than
2%. By splitting the world into the small microcells we are

2x2 4x4 8x8 16x16
5000

5500

6000

6500

7000

7500

8000

8500

number of microcells

m
ax

im
um

 s
er

ve
r

lo
ad

Concentrated
Semi−concentrated
Semi−balanced
Balanced

Figure 9: The maximum server load for different
player distributions

thus able to evenly distribute the total load generated by
the game over the servers.

2x2 4x4 8x8 16x16
5000

6000

7000

8000

9000

10000

11000

number of microcells

m
ax

im
um

 s
er

ve
r

lo
ad

Maximum
Average

Figure 10: The maximum and average server load
of a distribution

To illustrate how a microcell deployment looks, figure 11
shows the cell assignment for the semi-concentrated world
(figure 8(b)), divided into 256 microcells, to 4 servers. The
algorithm that was used to obtain this result was the sim-
ulated annealing algorithm applied to the solution provided
by the balanced algorithm. When looking at the figure, one
can see the large clustering of cells belonging to the same
server. This is to be expected as microcells that belong to
the same server will have a lower cell intercommunication
overhead.

5. CONCLUSION
This paper presented an MMOG architecture that divides

the game world into a number of smaller parts, called mi-
crocells, dynamically distributed over the available servers.
This is an improvement to similar existing MMOG archi-
tectures, where the world is divided into a number of larger
cells, each managed by a separate server. We describe a
set of algorithms that assign the microcells to the different

Figure 11: Resulting cell distribution for the semi-
concentrated world

servers and use simulations to evaluate the microcell ap-
proach.

Simulation results show that a judicious assignment of the
microcells to the servers reduces the maximum server load
dramatically, compared to large-cell architectures, when the
players are not symmetrically distributed over the virtual
world. We achieve a load reduction of up to 30%. By min-
imizing the maximum server load, we greatly decrease the
chance of a bottleneck occurring and improve the overall
performance perceived by the players. At the same time,
both the maximum and the average server load are much
less sensitive to the exact player distribution. This greatly
facilitates server dimensioning, preventing resource waste.

Future research on this architecture includes a study of its
dynamic behaviour. We will focus on how the microcells can
be re-assigned to the servers efficiently and study the over-
all impact on game performance. The automation of this
process, in order to automatically re-assign the microcells
to the servers in real-time, will also be studied.

6. REFERENCES
[1] G. Armitage. An experimental estimation of latency

sensitivity in multiplayer Quake 3. In Proc. of the 11th

IEEE International Conference on Networks
(ICON2003).

[2] Blizzard Entertainment Press Release. World of
warcraft achieves new milestone with two million
paying subscribers worldwide. In [Online]
http://www.blizzard.com/press/050614-2million.shtml.

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science, Number
4598, 13 May 1983, 220, 4598:671–680, 1983.

[4] G. L. N. Laurence A. Wolsey. Integer and
Combinatorial Optimization, volume 0-471-82819-X.
Wiley-Interscience, 1988.

[5] Microsoft. Xbox 360 fact sheet. In [online]
http://www.xbox.com/en-US/xbox360/factsheet.htm.

[6] Nintendo press release. Nintendo’s compact console will
turn the world of gaming on its side. In
[online]http://www.nintendo.com/newsarticle?
articleid=02ea1a40-ac09-4cdf-9548-
91e5a4e78746&page=other.

[7] P. Rosedale and C. Ondrejka. Enabling player-created
online worlds with grid computing and streaming.
Gamasutra, September 2003.

[8] N. Sheldon, E. Girard, S. Borg, M. Claypool, and
E. Agu. The effect of latency on user performance in
Warcraft III. In Proc. of ACM Network and System
Support for Games (NetGames), pages 3–14, May 2003.

[9] Sony press release. Sony to launch its next generation

computer entertainment system. In
http://www.us.playstation.com/Pressreleases
.aspx?id=279.

APPENDIX
A. SERVER LOAD FUNCTION

The mathematical description of the server load is given in
equations 1 and 2. Here serverloadA is the load on server A,
which consists of the sum of the loads of all cells i that reside
on server A. It is assumed that the cells j reside on the same
server as cell i, while the cells k reside on a different server
(not indicated in the formula, in order to avoid unnecessary
clutter). The factor pa represents the player activity, being
the average number of actions a player performs during a
single time interval. pi is the number of players in cell i.
ffracij is the fraction of player actions occurring in cell i
that need to be forwarded to cell j, while mfracij represents
the fraction of the players in cell i that move to cell j in a
single time interval. Weight parameters ending in in are pa-
rameters for interactions between cells residing on the same
server. Weight parameters ending in ex, on the other hand,
are used for interactions that are extern to the server (and
thus between cells on different servers). The fsweightxx pa-
rameters are used for forwarding an action to another cell,
while frweightxx is used for receiving such an action. Anal-
ogously emweightxx is used for players moving out of the
cell, and imweightxx for immigrations (players moving into
the cell). For example, fsweightex represents the weight
for forwarding an action to a cell on another server, and
imweightin the weight for handling a player moving into
the cell, from another cell residing on the same server.

serverloadA =
X

i

loadi (1)

loadi = pa× pi (2)

+
X

j

pa× pi × ffracij × fsweightin

+
X

k

pa× pi × ffracik × fsweightex

+
X

j

pa× pj × ffracji × frweightin

+
X

k

pa× pk × ffracki × frweightex

+
X

j

pi ×mfracij × emweightin

+
X

k

pi ×mfracik × emweightex

+
X

j

pj ×mfracji × imweightin

+
X

k

pk ×mfracki × imweightex

Note that the servers could be located on a single site, or
distributed across the internet.However, the network load
was not taken into account in defining the system load func-
tion, which makes sense in a localised cluster environment
(the most probable server setup in this type of gaming ar-
chitecture).

