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Abstract—Despite increasing usage of mobile computing,
exploiting its full potential is difficult due to problems such as
resource sparseness. In this paper, we explore the feasibility of
a mobile cloud computing framework to use local resources
to solve these problems. The framework aims to determine
a priori the usefulness of sharing workload at runtime. The
results of experiments conducted in Bluetooth transmission and
an initial prototype are also presented. Furthermore, we discuss
a preliminary analytical model to determine whether or not a
speedup will be possible in offloading.
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I. INTRODUCTION

Mobile computing allows the user to be locationally inde-
pendent by providing a tool when and where it is needed.
However, problems arise when trying to support mobility
in computing devices: resource sparseness, hazardousness,
finite energy source, and low connectivity [18]. Offloading
mobile applications to remote clouds such as Amazon EC2
has been discussed [13] where services are provided from
the resource rich cloud to the mobile device. But this type
of offloading depend on the connection to the remote cloud,
and the system fails in low connectivity scenarios [19]. A
solution would be to exploit the capabilities of the mobile
cloud where a mobile cloud is defined as a ‘cloud’ of local
resources utilized to achieve a common goal in a distributed
manner. In this paper, we refer to ‘mobile cloud’ in a
different view than traditional cloud computing. Typically,
most of the local cloud resources would be mobile (mobile
phones, PDAs, laptops etc) and would be owned by different
individuals. A ‘mobile cloud computing framework’ needs
to be dynamic such that it can handle runtime resources and
connectivity changes, proactive such that the costs are pre-
estimated , opportunistic such that it exploits resources as
they are encountered, and cost effective such that its task
distribution is based on a cost model with benefits to all
participating nodes. Furthermore, such a cloud will not be
limited to high end mobile devices, but will be able to cater
to low end devices as well. The future computing cloud that
surrounds a user will not just be smartphones and PCs, but
also computers in shoes, watches, jackets, furniture, cups
etc, and such a collection of devices around the user will
change as he moves from one environment to another, calling
for greater opportunistic behaviour and ad hoc set up, with
graceful failing.

Although the concept of offloading to local hardware has
been explored in a number of frameworks, these do not sat-
isfy all the requirements of a ‘mobile cloud’ as defined above.
In this paper, we discuss the vision towards such a framework
and explore the possibilities based on related work and some
preliminary experiments. Challenges in such a framework in-
clude mobility, job partitioning, job distribution in the cloud,
recognizing a potential cloud device, connectivity options,
cost estimation and fault tolerance. Ideally, networking would
be accomplished via a common existing short-range protocol
such as Bluetooth/WiFi etc, rather than special protocols and
we experimentally investigate this possibility in this paper.

II. MOTIVATION

Consider the case of Jane traveling on a train in a foreign
country. She needs help planning her trip and wishes to ask
from the many locals on the train. To solve the language
problem, she starts up a speech recognition and synthesis
application in her phone. However, such a program would
require much computational power and drain her battery.
Fortunately, Jane is able to use her mobile phone to initiate
setting up a ‘virtual cloud’ of local computational resources
comprised of the many mobile devices on board.

The aforementioned scenario is only one example demon-
strating the need for a mobile cloud computing framework.
In wearable computing, two major challenges are to reduce
bulkiness and low battery power [1]. This could be solved
by offloading the computational jobs to the local ‘mobile
cloud’, while sensors and peripherals facilitate the pervasive
experience. In augmented reality, it has been suggested using
cloud resources [15] to solve similar problems. Other areas
include but are not limited to resource demanding rich media
applications, video editing, facial recognition and image
search.

We propose comprising the local cloud with other mobile
devices, enabling mobility without additional infrastructure.
Considering the trends for smart phones, which shows they
are getting more powerful each year, a local mobile cloud will
be able to provide sufficient resources for intensive mobile
apps. Also, since most mobile devices have sensing abilities,
a cloud made up of mobile devices will be able to provide
the users with context aware services.

In the coming sections, the device that has a job to be
completed and initiates the sharing/offloading process will be
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referred to as ‘master’ and the other devices doing a share
of the job would be referred to as ‘slaves/clients’.

III. PROPOSED ARCHITECTURE

The main components of the framework can be given
as Resource handler, Job handler and Cost handler as in
Figure 1. The Resource Handler would be responsible for

Fig. 1. Main components of a Mobile cloud framework

resource discovery, establishing connections, and exchanging
meta data with clients. Meta data includes device details
such as CPU, available battery, pricing etc. The Context
Manager senses and records contextual information about
clients, such as their location, movement, and acceleration
which is used by the Resource Monitor to keep track on
client nodes. Context information is important to register
if new devices are coming in, or if current devices are
moving away, resulting in disconnection and fault tolerance
mechanisms. Cost handler would need to estimate costs and
select suitable client devices based on the device meta data
,user’s specific requirements. A micropayment module should
also be included to handle the monetary transactions between
client devices and master device. Job handler would be in
charge of dynamically partitioning the application, creating
a job pool and managing a work distribution mechanism. The
basic steps are as follows:

1) Resource discovery: The master device needs to per-
form a discovery procedure to search for potential
clients within range.

2) Calculate costs: A comparison of potential clients, user
priorities, requirements and constraints, is needed to
estimate the cost of sharing. Clients can be selected
based on this calculation.

3) Distribute jobs: Since client devices will most probably
differ in their resources and capabilities, a mechanism
to decide which job is assigned to whom is needed.
Lessons could be drawn from [9].

4) Run the jobs: Once the jobs have been distributed, the
clients would proceed to execute their job/s.

5) Collect the results: When the client devices finish
their job/s, results are sent back to the master, and
reassembled.

6) Cleanup: Once the job is finished, a method to clean up
the client devices of data and/or code that were part of
the job is needed to ensure data privacy and security.

7) Handle micropayments: Payments to the client nodes
could be processed before or after the completion of
the job.

IV. COST MODEL, PROTOTYPE IMPLEMENTATION AND

EXPERIMENTATION

We conducted experiments on Bluetooth to determine
its suitability for connectivity on a mobile cloud and the
results of these tests were helpful in the construction of our
prototype. Our reasons for conducting the preliminary tests
on Bluetooth are due to its advantages such as low radiation,
low energy cost[6], and wide spread availability as opposed to
other protocols such as WiFi [3] and 3G. Also, according to
its specifications, future versions will be faster up to 24Mbps
and consume less energy.1 Therefore, when dealing with low
end devices Bluetooth would be a better option, although not
the only one. Ideally, the system should be able to switch
to other protocols depending on the client capabilities and
energy situation.

Two phones: Nokia X6 and Nokia 6500, and a PC were
used in experiments.These three devices were used since
they represent a range (low end mobile, high end mobile,
resource rich PC) of devices. The PC used had Microsoft
Windows 7 Enterprise with Intel(R) Core(TM) Duo CPU
E7300 @ 2.66 GHz 2.67 GHz as processor, 2 GB RAM
and Bluecove 2.1.0 on Winsock as Bluetooth driver. To
implement Bluetooth communication for J2SE in the PC, we
used the third party library BlueCove. According to Nokia’s
device specifications2, X6 runs Symbian OS v9.4 with 434
MHz while 6500 runs Nokia OS. Although the CPU details
for Nokia 6500 are not available there, other sources such as
Softpedia3 gives it to be 170 MHz.

A. Cost Formulae for Work Distribution

As the primary phase in developing a framework for job
sharing, a master-slave system consisting of mobile devices
on a piconet was designed using Bluetooth and J2ME.
The master node initiates contact and seeks other client
nodes advertising ‘job sharing’ services. Once the master
finds client nodes and forms a piconet, it can proceed with
sharing/offloading.

1) Sharing jobs: The time for a master node to complete
a job is given in equation 1 where 𝑇𝑚 is the total time to
complete the job in master and 𝑇𝑝𝑡 is the time to establish
the piconet. 𝑇𝑑 is the time to partition and distribute jobs
to slaves, 𝑇𝑠 is the time to complete the master’s job and
𝑇𝑤&𝑟 is the time the master spends waiting for the slaves.
Since computing the master’s job and receiving the results
are done in separate threads in parallel, the greater value of
𝑇𝑠 and 𝑇𝑤&𝑟 is used. The pseudo code for the master is given
in Listing 1.
𝑇𝑚 = 𝑇𝑝𝑡 + 𝑇𝑑 +𝑀𝑎𝑥(𝑇𝑠, 𝑇𝑤&𝑟) (1)

The time to complete a job in the slave is given in equation
2 where 𝑇𝑠𝑙 is the total time to complete the job, 𝑇𝑐𝑛 is the
time to connect to the master, 𝑇𝑟𝑐𝑣 is the time to receive the
job parameters from the master, 𝑇𝑐𝑝 is the time to complete

1https://www.bluetooth.org
2http://www.forum.nokia.com/Devices/Device specifications/X6-00/
3http://news.softpedia.com/news/Nokia-6500-slide-Review-76693.shtml
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s t a r t m a s t e r / /−−(1)−−
do d e v i c e & s e r v i c e d i s c o v e r y
u n t i l s l a v e s e r v i c e s a r e found
i n t numOfdevs = numOfServ ices + 1
long [ ] readWai tT imes = new long [ numServ ices ] ;
IF s e r v i c e s a r e found

FOR each s e r v i c e d i s c o v e r e d
Open a C o n n e c t i o n
Open an o u t p u t S t r e a m

END FOR
ELSE
E x i t app
END IF / /−−(2)−− 𝑇𝑝𝑡 = ( 2 ) − ( 1 )
FOR each s l a v e

g e n e r a t e & d i s t r i b u t e p a r a m e t e r s
END FOR / /−−(3)−−𝑇𝑑 = (3) − (2 )
S t a r t t h r e a d ownWork f o r do ing own j o b
Thread tRead [ ] = new Thread [ numOfServ ices ] ;
FOREACH tRead

Open i n p u t S t r e a m / /−−(4)−−
Wait f o r incoming t r a n s m i s s i o n s from s l a v e i

Read r e s u l t i
/ /−−(5)−−𝑇𝑤&𝑟 [ i ] = (5) − (4 )

END FOREACH
J o i n a l l s l a v e t h r e a d s tRead
and t h r e a d do ing own j o b wi th main t h r e a d
/ / −−(6)−𝑇𝑠 = (6) − (3 )
/ / −−(7)−𝑇𝑤&𝑟 = add a l l v a l u e s i n
readWai tT imes a r r a y
/ / −−(8)−𝑇𝑚 = ( 8 ) − ( 1 )

Listing 1. Pseudo code for master

slave’s job and 𝑇𝑠𝑟 is the time to send the completed results
back. Listing 2 gives the pseudo code for the slave.

s t a r t s l a v e / /−−(1)−−
s e t d e v i c e as d i s c o v e r a b l e
s t a r t s e r v i c e and w a i t f o r c o n n e c t i o n s
open i n p u t S t r e a m / /−−(2)−−𝑇𝑐𝑛 = ( 2 ) − ( 1 )
s t a r t r e c e i v i n g j o b params−−(3)−−

WHILE NOT end of i n p u t S t r e a m
r e a d params
END WHILE

c l o s e i n p u t S t r e a m
/ /−−(4)−−𝑇𝑟𝑐𝑣 = ( 4 ) − ( 3 )
run j o b / /−−(5)−−𝑇𝑐𝑝 = (5) − (4 )
open o u t p u t s t r e a m / /−−(6)−−
Send comple t ed r e s u l t / /−−(7)−−𝑇𝑠𝑟 = (7) − (6 )
c l o s e c o n n e c t i o n / /−−(8)−−𝑇𝑠𝑙 = ( 8 ) − ( 1 )

Listing 2. Pseudo code for slave device

𝑇𝑠𝑙 = 𝑇𝑐𝑛 + 𝑇𝑟𝑐𝑣 + 𝑇𝑐𝑝 + 𝑇𝑠𝑟 (2)

2) Offloading on a slave: Equation 3 gives the parameters
for offloading in the master’s perspective. Here, 𝑇𝑚𝑂𝑓𝑓 is
the total time to complete the job in the master node, 𝑇𝑜𝑗 is
the time to send job parameters to slave/s and 𝑇𝑤&𝑟 is the
time the master spends waiting till the slave starts sending
results and the time to complete receiving the complete result.
The pseudo code for the master is given in Listing 3. The
offloaded slave’s time is given in equation 4 where 𝑇𝑠𝑂𝑓𝑓 is
the total time it takes to complete the job, 𝑇𝑐𝑛 is the time
to connect to the master, 𝑇𝑐𝑝 is the time to complete the
computation and 𝑇𝑠𝑟 is the time to send the completed results

back to the master. The pseudo code for the offloaded slave
is the same as for the job sharing slave as given in Listing
2.

s t a r t m a s t e r / /−−(1)−−
do d e v i c e & s e r v i c e d i s c o v e r y u n t i l
a s l a v e i s found
IF a s e r i v i c e i s found

open c o n n e c t i o n
open o u t p u t S t r e a m / /−−(2)−−
/ / 𝑇𝑝𝑖𝑐𝑜𝑛𝑒𝑡𝑂𝑓𝑓 = ( 2 ) − ( 1 )
g e n e r a t e & d i s t r i b u t e p a r a m e t e r s
f o r s l a v e / /−−(3)−−
/ / 𝑇𝑜𝑗 = (3) − (2 )
open I n p u t S t r e a m / /−−(4)−−−

r e a d o f f l o a d e d j o b r e s u l t s from s l a v e
c l o s e i n p u t S t r e a m
c l o s e c o n n e c t i o n t o s l a v e

END IF / /−−(5)−−
/ / 𝑇𝑤&𝑟 = ( 5 ) − ( 4 ) , 𝑇𝑚𝑂𝑓𝑓 = ( 5 ) − ( 1 )

Listing 3. Pseudo code for master offloading code on slave

𝑇𝑚𝑂𝑓𝑓 = 𝑇𝑝𝑖𝑐𝑜𝑛𝑒𝑡𝑂𝑓𝑓 + 𝑇𝑜𝑗 + 𝑇𝑤&𝑟 (3)

𝑇𝑠𝑂𝑓𝑓 = 𝑇𝑐𝑛 + 𝑇𝑟𝑐𝑣 + 𝑇𝑐𝑝 + 𝑇𝑠𝑟 (4)

3) Analytical model : Offloading to n slaves: We now
provide an analytical model generalizing offloading to n
slaves, showing the conditions under which such offloading
results in speedups. We assume that a job is uniformly
partitioned such that all slaves get an equal sized job so that
a 𝐽𝑜𝑏 =

∑𝑛
𝑖=1 𝐽𝑖, there is no dependency among each job,

and that all n slaves in the piconet would be dedicated nodes
such that their computational power would be predominantly
available for the job. Since 𝐽1 = 𝐽2 = ... 𝐽𝑖 = 𝐽𝑖+1 ... =
𝐽𝑛 for n slaves, 𝐽𝑜𝑏 = 𝑛𝐽 . Therefore, if 𝑇0 is the time to
do Job sequentially on master, and if the time it takes the
master to run a job J sequentially is 𝑇𝑖, then, 𝑇0 = 𝑛𝑇𝑖

(5)
If the computational time for one slave 𝑠𝑙𝑎𝑣𝑒𝑖 is 𝑇𝑐𝑖,
then 𝑇𝑐𝑖 would be the computational time to do job 𝐽𝑖.
∴ 𝑇𝑖 ∝ 𝑇𝑐𝑖, ∀𝑖, 𝑇𝑖 = 𝑘𝑖𝑇𝑐𝑖 (6)
Where 𝑘𝑖 is a constant depending on each slave. Therefore,
from (5) and (6), we see that since 𝑇𝑖 = 𝑇0

𝑛 , 𝑇0

𝑛 = 𝑘𝑖𝑇𝑐𝑖

and 𝑇0

𝑇𝑐𝑖
= 𝑛𝑘𝑖. If 𝑛𝑘𝑖 = 𝐾𝑖 where 𝐾𝑖 is a constant, then

𝑇0

𝑇𝑐𝑖
= 𝐾𝑖. ∴ 𝑇0 = 𝐾𝑖𝑇𝑐𝑖 (7)

If the Speedup is S, and 𝑇𝑤&𝑟 is time to wait for and receive
all results from slaves, then
𝑆 = 𝑇0

𝑇𝑚𝑎𝑠𝑡𝑒𝑟
= 𝑇0

𝑇𝑚

𝑇𝑚 = 𝑇𝑝𝑡 + 𝑇𝑜𝑗 + 𝑇𝑤&𝑟

𝑆 = 𝑇0

𝑇𝑝𝑡+𝑇𝑜𝑗+𝑇𝑤&𝑟
(8)

For n devices and a fixed job size of J, 𝑇𝑝 and 𝑇𝑜𝑗 would
depend on the bluetooth stack/drivers of the device. Hence,
for a given device, let us assume that 𝑇𝑝 + 𝑇𝑜𝑗 would be a
constant 𝛼. Then, 𝑆 = 𝐾𝑖𝑇𝑐𝑖

𝛼 +𝑇𝑤&𝑟
(9)

If 𝑡𝑖 is the time the 𝑖𝑡ℎ thread on master spends waiting and
receiving from the 𝑖𝑡ℎ slave, then the total wait and receive
time is equal to the maximum 𝑡𝑖 value of the 𝑛 threads.
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This can be represented as: 𝑇𝑤&𝑟 = 𝑚𝑎𝑥{𝑡1, 𝑡2, ...𝑡𝑖..., 𝑡𝑛}
(10) If the communication overhead is 𝛿𝑖, 𝑡𝑖 = 𝑇𝑐𝑖+𝑇𝑠𝑟𝑖+𝛿𝑖,
𝑇𝑤&𝑟 = 𝑚𝑎𝑥{(𝑇𝑐𝑖 + 𝑇𝑠𝑟𝑖 + 𝛿𝑖)},
∴ 𝑆 = 𝐾𝑖𝑇𝑐𝑖

𝛼+𝑚𝑎𝑥{(𝑇𝑐𝑖+𝑇𝑠𝑟𝑖+𝛿𝑖)} (11)
Since the job size is fixed, 𝑇𝑠𝑟𝑖 solely depends on the
device Bluetooth, i.e, the communication cost 𝐶𝑐𝑜𝑚𝑚𝑖.
Since 𝛿𝑖 is also related to communication overhead,
𝑇𝑠𝑟𝑖 + 𝛿𝑖 is proportional to 𝐶𝑐𝑜𝑚𝑚𝑖. Therefore, if 𝛽𝑖

= 𝑇𝑠𝑟𝑖 + 𝛿𝑖, then from (IV-A3), 𝑆 = 𝐾𝑖𝑇𝑐𝑖
𝛼+𝑚𝑎𝑥{(𝑇𝑐𝑖+𝛽𝑖)} .

Here, 𝛼 depends on the master device, 𝐾𝑖 is the ratio
of computational times between the master device and
the 𝑖𝑡ℎ slave, 𝑇𝑐𝑖 is the computational time on 𝑖𝑡ℎ slave,
max{(𝑇𝑐𝑖 + 𝛽𝑖)} is the maximum value of 1 to 𝑛 slaves
sum of computational time and send result time. Therefore,
for 𝑆 > 1, 𝐾𝑖 >

𝛼+𝑚𝑎𝑥{(𝑇𝑐𝑖+𝛽𝑖)}
𝑇𝑐𝑖

. By maximizing the right
hand side, since 𝛼 is related to master’s communication
cost, the range of 𝛼 falls between the maximum and
minimum values of 𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚. The same applies
for 𝑇𝑐𝑖 and 𝛽𝑖 which are related to the computation time
and communication time of 𝑖𝑡ℎ slave respectively. So,
𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑎𝑥

𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑝𝑚𝑖𝑛
𝑖 ≤ 𝑇𝑐𝑖 ≤ 𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑝𝑚𝑎𝑥

𝑖

𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑚𝑖𝑛
𝑖 ≤ 𝛽𝑖 ≤ 𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑚𝑎𝑥

𝑖 (12)
Therefore, the maximum value of 𝛼

𝑇𝑐𝑖
, 𝑚𝑎𝑥[ 𝛼

𝑇𝑐𝑖
] comes

from 𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑎𝑥

𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑚𝑖𝑛
𝑖

and 𝑚𝑎𝑥[𝑚𝑎𝑥{(𝑇𝑐𝑖 + 𝛽𝑖)}] is
related to 𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑝𝑚𝑎𝑥

𝑖 + 𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑚𝑎𝑥
𝑖 . Therefore,

𝐾𝑖 >
𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑎𝑥+𝑚𝑎𝑥{𝐶𝑝𝑖+𝐶𝑚𝑖}

𝐶𝑝𝑚𝑖𝑛
𝑖

(13)
Where 𝐶𝑝𝑖 and 𝐶𝑚𝑖 represent 𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑝𝑖 and
𝑆𝑙𝑎𝑣𝑒𝐶𝑜𝑚𝑚𝑖. From (6) and (13), 𝑇0

𝑇𝑐𝑖
= 𝐾𝑖. Since

𝑇0

𝑇𝑐𝑖
ratio is dependent on the computational capabilities of

the devices, if 𝐾𝑖 ∝ 𝐶𝑃𝑈𝑠𝑙𝑎𝑣𝑒𝑖

𝐶𝑃𝑈𝑚𝑎𝑠𝑡𝑒𝑟 then, considering (13), in
order to get a speedup greater than one from offloading on
n devices,
𝐶𝑃𝑈𝑠𝑙𝑎𝑣𝑒𝑖

𝐶𝑃𝑈𝑚𝑎𝑠𝑡𝑒𝑟 > 𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑎𝑥+𝑚𝑎𝑥{𝐶𝑝𝑖+𝐶𝑚𝑖}
𝐶𝑝𝑚𝑖𝑛

𝑖
(14)

Based on this derivation, if the ratio between the CPU of
the 𝑖𝑡ℎ slave and the master device is greater than the sum
of the communication cost of master and the maximum sum
of computation and communication costs out of slaves 1 to
n, there would definitely be a speedup. The right hand side
of the inequality gives the maximum possible value and we
have an assumption that the CPU clock rates of the 𝑖𝑡ℎ slave
and master are inversely proportional to their calculation
times.

An application of this relation with actual data is given in
Section IV-C3.

B. Bluetooth transmission testing

The experiments on Bluetooth were focused on the ef-
fect of message length, distance, protocol and buffer
size.‘Buffer size’ refers to the size of a message buffer.

1) Message length and Buffer size: Messages of varying
lengths were transmitted from Nokia X6 to 6500 for protocols
RFCOMM and OBEX for buffer sizes from 256 to 900 B.
The trends for all buffer sizes were almost linear, with 500
B giving the best time.

When comparing these two protocols, it could be seen that
RFCOMM was faster.

2) Distance: Our tests showed that OBEX has more range
than RFCOMM, and as data lengths increase, the maximum
range of transmission decreases and so does the consistency.

3) Computational power and heterogeneity: A PC was
used to send and receive data to and from Nokia X6 to inves-
tigate the effects of computational power and heterogeneity.
Figure 2 shows the trend of time against data lengths up to
2 MB in mobile-to-mobile, mobile-to-PC, and PC-to-mobile.
Surprisingly, PC to Nokia X6 has the lowest performance,

Fig. 2. Bluetooth transmission experiments

while Nokia to PC gives the best time suggesting that
although the PC is more powerful than X6, transmission also
depends on the receiver’s capabilities. It could be that use
of third party library to interface with the native Bluetooth
stack of the PC (Bluecove) might be adding an overhead.
According to the Bluecove speed tests on the web, in some
cases mobile to PC is faster, while in other cases, the opposite
is true.

C. Initial Experiments with Distributed Mandelbrot Set Gen-
eration

As a first step for a framework for job sharing, we
implemented a prototype that partitions a predefined problem
and distributes the job among mobile and stationary devices.
It was developed using Java, and was executed on the same
two mobile phones and the PC that was used in the Bluetooth
tests. RFCOMM was used since it had proved to be faster
than OBEX in previous experiments.

As a sample application, we implemented a distributed
Mandelbrot set generation and compared the results with
its sequential implementation on the initiating master device.
Although it is not a typical candidate for a mobile application,
Mandelbrot generation was selected to study the feasibility
and issues in the preliminary tests due to its ease of job
partitioning.

1) The Mandelbrot set: The Mandelbrot set is a set of
points situated in the complex plane and the boundary of
these points forms a fractal. Iterating the formula given in
Equation (15) gives this set of points.
𝑍0 = 0, 𝑍𝑛+1 = 𝑍2

𝑛 + 𝐶 (15)
Where C is a constant number on the Complex plane, and
𝑍𝑛 is the current point. As the number of iterations per point
increases, the accuracy of the image increases.

2) Parallelizing the Mandelbrot set generation: For a
given point, the Mandelbrot iteration feeds the result of the
previous step into the next one. Hence, the simplest method
of partitioning this algorithm is to assign each device a
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continuous block of the image. An example of how an image
of 300 X 350 pixels is split is given in Figure 3.

Fig. 3. Splitting up the Mandelbrot image among three devices
3) Execution results: We tested the application for an

image of pixel size 300 X 300 for varying number of
iterations from 200 to 5000. The distributed version was
tested on two to three devices and the results were compared
with the performance of the monolithic version. Figures
4(a,b) shows the results of the Mandelbrot image generation
using Nokia 6500 and X6 as the Master.

Fig. 4. Iterations vs Speedup (a,b)for different configurations.

Here, Speedup is defined by the following formula in
equation (16). 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇1/𝑇𝑚 (16)

Where 𝑇1 is the execution time of the sequential algo-
rithm on master device, and 𝑇𝑚 is the distributed version
measured on master device. As can be seen from Figure 4(a),
sharing/offloading with Nokia 6500 as master gives speedups
from 1.29 up to 3.92. However, the results obtained with
Nokia X6 as master show that the distributed version failed
to produce a speedup except when it was offloaded and shared
with the PC, since X6 is more powerful. When work is shared
with a device that is substantially weaker (Nokia 6500), the
weak device degrades the overall performance, since the total
outcome cannot be given until all the devices complete their
work.

Figure 5 shows the processing times in local execution and
the shared version in, (A)Nokia 6500 as master and (B)Nokia
X6 as master. X axis shows the results of executions for
varying Mandelbrot iterations from 500, 1000, 2000 and
5000. Here, 1(A) represent the results of execution for 500
iterations in Mandelbrot generation in which Nokia 6500 was
the master and X6 was the slave. Here, the computational
time measured on 6500 when it shared the workload with
the X6 was only 73% that of its monolithic execution. 1
(B) shows the results for 500 iterations when X6 was master
and 6500 was slave. In this case, exeution time on X6 was
84% that of when the Mandelbrot generation was performed
on the device (X6) itself. Likewise for results represented in
2,3, and 4. In all cases, though only (A) gave a speedup, it
is apparent that the processing time has lessened, suggesting
an energy saving [12], given the energy cost for Bluetooth
communication is also taken into account.

Fig. 5. Processing times Local vs Shared execution where the time for
Shared execution is given as a percentage of the Local time.

With regards to Section IV-A3, experimental results
above, we identify that the CPU ratio for phones
X6 and 6500 as 2.553. When we apply average val-
ues from an instance of a series of experiments
where the master was 6500 and job was offloaded
to X6, the value of 𝑀𝑎𝑠𝑡𝑒𝑟𝐶𝑜𝑚𝑚𝑚𝑎𝑥+𝑚𝑎𝑥{𝐶𝑝1+𝐶𝑚1}

𝐶𝑝𝑚𝑖𝑛
1

is
342,925.4+40,668+334,369

334,369 ,giving the following inequality:

2.553 > 2.1472

(1)

thereby satisfying the relation in (IV-A3).

V. RELATED WORK

Two common methods relating to offloading and/or sharing
work from mobile devices are, partitioning applications and
VM migration.

These include the approach of cyber foraging by Satya-
narayan [19] for available resources and offload the work
through VM synthesis to a local cloudlet. The ‘Scavenger’
framework [11] also employs cyber foraging.CloneCloud [4]
uses VM migration, while MAUI [5] uses a combination of
VM migration and code partitioning.Kemp’s [10] ‘Cuckoo’
framework offloads mobile applications onto local and re-
mote cloud servers such as the Amazon EC2.

Marinelli [16]’s ‘Hyrax’ based on Hadoop4 presents a cen-
tral server that coordinates data and jobs on connected mobile
devices. The Mobile Message Passing Interface (MMPI)
framework [7] is a mobile version of the standard MPI over
Bluetooth. Huerta-Canepa and Lee [8] present a framework
for virtual mobile cloud focusing on common goals

Enabling mobile clouds with context awareness has been
discussed in [14] and [17]. The system proposed in [8] also
uses context to identify common goals.

VI. SUMMARY AND FUTURE CHALLENGES

Based on our experiments, we surmise that Bluetooth is
one of the viable options as the mode of transmission in
a mobile cloud. However, our future experiments will not
be confined to Bluetooth and would explore other protocols
such as WiFi and 3G as well. Also, our experiments show
that Bluetooth transmission time is linear against data length
and distance and the buffer size plays a substantial role, and
RFCOMM outperforms OBEX in terms of speed, but OBEX
has more range and computational power alone is not the
deciding factor in transmission speed.

4http://hadoop.apache.org

285



The results with prototype for distributed Mandelbrot set
shows that merely distributing a task regardless of device
capabilities will not always give a speedup. In case of equal
job sharing, a speedup could only be achieved in cases where
the slave node/s were of higher performance than master.
Therefore, the device capabilities of the master and potential
slaves need to be compared before a job is shared. Tests with
offloading show that offloading gives better performance than
sharing.

These factors point out the need for a cost model, and we
aim to explore ‘work stealing’ [2] as a way of effective load
balancing.
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