
A&A 555, A22 (2013)
DOI: 10.1051/0004-6361/201220176
c© ESO 2013

Astronomy
&

Astrophysics

Dynamic model of dynamo (magnetic activity) and rotation

Aditi Sood and Eun-jin Kim

School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK
e-mail: [smp11as;e.kim]@sheffield.ac.uk

Received 6 August 2012 / Accepted 19 April 2013

ABSTRACT

A dynamic model of dynamo and rotation is investigated to understand the observational data of the dependence of the magnetic ac-
tivities and the differential rotation ∆Ω on the rotation rate Ω. Specifically, we propose a minimal seventh-order nonlinear dynamical
system for magnetic fields and differential rotation ∆Ω by parameterizing the generation and destruction of magnetic fields by α-Ω ef-
fect and magnetic flux loss from stars and by including quenching of α-effect and differential rotation ∆Ω due to the Lorentz force. By
examining different forms of α-quenching and flux loss, we study how the strength and frequency ω of magnetic fields and the differ-
ential rotation ∆Ω change with the rotation rate Ω through dynamo number. In particular, among the three cases with (i) α-quenching
and no flux loss; (ii) flux loss and no α-quenching; (iii) α-quenching and flux loss, our results show that the best agreement with
observations is obtained in case (iii) with equal amounts of α-quenching and poloidal and toroidal magnetic flux losses with quadratic
nonlinear dependence on |B|. Specifically, in this case, the frequency spectrum of the magnetic field has a well-localized frequency of
the maximum intensity which scales as ω ∝ Ω0.80, in agreement with a previous observation. The magnetic field and mean differential
rotation exhibit the tendency of saturation for high rotation. The implication of our results in light of necessary dynamic balance is
discussed.
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1. Introduction

Magnetic activity occurring in the stellar surface originates
through dynamo action, which generates magnetic fields by
inductive motion of a conducting fluid in the stellar interior.
Different models have been proposed to understand the stel-
lar magnetic activity and the magnetohydrodynamic (MHD)
mechanism occurring in stellar interior. A first successful dy-
namo model was proposed by Parker (1955) which considers
the co-action of non-uniform rotation and cyclonic convection.
This model generates a toroidal field from poloidal field and a
poloidal field from toroidal field, respectively. Since then, mean
field models have mainly been used to study magnetic activity,
butterfly diagrams, and sunspots by placing various constraints
and requirements on fluid motions beneath the stellar surface.
The key feature that determines the strength of the magnetic
field is the stellar rotation rate. The traditional mean field dy-
namo theory is based upon the assumption that both α-effect and
differential rotation, the two key ingredients for mean field dy-
namo, increase linearly with rotation rate, which is related to
a dimensionless dynamo number D. As notable previous nu-
merical studies, Gilman (1983a,b) investigated the behavior of
nonlinear dynamos with varying D using numerical simulation
of MHD equations, whereas Catteneo et al. (1983) and Weiss
et al. (1984) studied nonlinear dynamos by using low-order mod-
els. Observationally, Noyes et al. (1984) showed the dependence
of chromospheric levels and surface magnetic activity in lower
main sequence stars on the inverse Rossby number σ = τc/Prot,
where τc is the convective turnover time and Prot is the stellar
rotation period at the base of the convection zone. In particu-
lar, they examined the relationship between magnetic activity
and dynamo number D. Specifically, they found that for stars
of the same spectral type, the cycle period Pcyc of magnetic

fields depends upon the stellar rotation period Prot as Pcyc ∝ P
β
rot,

with scaling exponent β = 1.25 ± 0.5. Detailed and systematic

investigation of different types of stars has revealed two branches
of stars with different scaling exponents, β = 0.8 for active
branch and β = 1.15 for inactive branch (Saar & Brandenburg
1999; Charbonneau & Saar 2001; Saar 2002).

While differential rotation (shear), one of the crucial ingre-
dient for α − Ω dynamo, plays a vital role in understanding var-
ious activities of stellar magnetism, it has been a subject of in-
vestigations on its own for a long time. Starspots are the most
visible feature of the magnetic activity occurring as a result of
differential rotation (shear) inside the star. Differential rotation
(shear) is observed in stellar bodies like stars when the rota-
tion rate varies with latitude. Typically, the increasing latitude
causes the decrease in the rotation rate. Observationally, the de-
pendence of differential rotation on rotation is quite uncertain.
Various studies that have investigated the relationship between
stellar angular rotation Ω and its latitudinal difference ∆Ω, that
is, ∆Ω ∝ Ωn suggested a broad range of n as 0 < n < 1
(Fröhlich et al. 2009; Hotta & Yokoyama 2011; Donahue et al.
1996; Reiners & Schmitt 2003; Barnes et al. 2005). This sug-
gests that the angular velocity difference ∆Ω increases and the
relative difference ∆Ω/Ω decreases with increase in the stellar
rotation rate Ω. For instance, Barnes et al. (2005) showed that
in cool stars differential rotation ∆Ω virtually does not depend
on rotation rate as ∆Ω ∝ Ω0.15, whereas Saar (2011) showed
a rather different result between differential rotation and rota-
tion rate as ∆Ω ∝ Ω0.68 that is very similar to HK-based results
of ∆Ω ∝ Ω0.70. Furthermore, time variation of differential rota-
tion has been reported in recent work (e.g., Fröhlich et al. 2009;
Hotta & Yokoyama 2011).

In α−Ωmean field dynamo, mean helicity thought to be cru-
cial for α- effect is produced due to rotation (Moffat 1978; Parker
1979). The regeneration of poloidal magnetic field thus depends
on a parameter α = −

τc

3
〈u(∇× u)〉, where u is the convective ve-

locity with magnitude U and τc = L/U is the convective turnover
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time on characteristic length scale L. The α-effect can thus be
measured by a non-dimensional parameter Dα = αL/η, where
η = L2/τc is turbulent magnetic diffusivity. On the other hand,
the efficiency of the generation of a toroidal magnetic field due to
differential rotation (shear) is measured by a magnetic Reynold
number DΩ = Ω

′L3/η, where Ω′ ∝ Ω/L is the gradient of ro-
tation rate Ω. The dimensionless dynamo number D governing
dynamo action is thus given by

D = DαDΩ =
αL

η

Ω′L3

η
· (1)

By assuming α is proportional to rotation rate, we then obtain
the dependence of D on Ω as

D ∝ Ω2. (2)

For stars with the same internal structure, the cycle period Pcyc

of the magnetic field is related to the rotation rate Ω as Pcyc ∝

D−
1
2 ∝ Ω−1 in the case of linear dynamo theory so that fre-

quency of magnetic fields scales with Ω as ω ∝ P−1
cyc ∝ Ω , that

is, the period of the magnetic field decreases with rotation rate,
which is compatible with observations. However, in nonlinear
dynamo, the growth of the magnetic field is limited by dynamo
saturation, and it is thus not at all clear if this linear relation still
holds. For instance, there are at least three different saturation
mechanisms that have been proposed for stellar dynamo theory:
(i) α-quenching: the quenching of helicity by the magnetic field,
causing the growth of the mean field to be saturated; that is, large
magnetic field strength reduces the total helicity and dynamo ac-
tion is ceased; (ii) Ω-quenching (shear quenching): mean differ-
ential rotation is opposed by the tension in the magnetic field
lines by the Lorentz force, reducing Ω-effect; (iii) magnetic flux
loss: the growth of the magnetic field can be inhibited by the
magnetic flux removed from the region in which the dynamo
operates; for instance, magnetized fluid lighter than the unmag-
nified surroundings becomes buoyant as reduced magnetic pres-
sure inside the tube along with density makes it rise against
the gravity due to buoyancy. In particular, the first two satura-
tion mechanisms (α and Ω-quenching) seriously question the
validity of the classical α-Ω dynamo (e.g., Charbonneau 2005,
and references therein). Furthermore, in the previous work, the
models in which the magnetic field is limited by the quench-
ing of α-effect or of differential rotation (Jepps 1975; Ivanova
& Ruzmaikin 1977; Yoshimura 1978) were shown to be in dis-
agreement with observations of stellar rotation and activity cy-
cle period. While there is no consensus on a precise form of
the stellar/solar dynamo, the advection-dominated dynamo (e.g.,
Dikpati & Charbonneau 1999) has been the most popular model
for explaining several features of the solar activity cycle.

The purpose of this paper is to use the aforementioned ob-
servational data, specifically, the dependence of the frequency
of magnetic field and its strength (inferred from magnetic activ-
ity) and differential rotation on stellar rotation rate, to identify
the key feature of the dynamo process, which is required for a
successful dynamo model. To this end, we propose a minimal
dynamical model for magnetic fields and differential rotation
and perform a detailed analysis by varying various parameters
to constrain the model to reproduce results consistent with ob-
servational data. Specifically, we implement α-quenching, mag-
netic flux loss, and the Lorentz force on mean and fluctuating
differential rotations in a low-order dynamo model of seven cou-
pled equations for magnetic fields and differential rotations, and
compare our results with observations. Principle results are that
the observed relation between magnetic frequency and rotation

rate results from a nonlinear balance between the generation and
destruction of the magnetic fields, which makes the dynamo op-
erate close to stability. This leads to the almost linear increase
in frequency with rotation rate with a rather well-localized fre-
quency (reminiscent of a linear dynamo), flattening of magnetic
energy for high rotation, and quenching in total shear consistent
with observation. Furthermore, we suggest that the long-range
correlation in stars and open boundaries could be a key feature
necessary to reproduce observation.

We admit the limitations of our model, which is, however,
likely to be more valid for slow rotators in inactive branch than
fast rotators. Whether our model is applicable to fast rotating
stars seems to depend on the identification of fundamental phys-
ical mechanisms causing these two distinct branches. It is not
inconceivable that fast rotation and/or strong differential rota-
tion introduce additional physics (e.g., quenching of eddy vis-
cosity, Kichatinov 2012) that may have to be taken into account
to explain these two branches. Moreover, we should note that
Saar (2002) was inconclusive as to the most promising mod-
els that best fit the data of these two branches. In particular, he
noted that the α − Ω dynamo, where differential rotation and
α-effect strongly depend upon rotation rate, could explain these
two branches (Saar 2002).

The remainder of the paper is organized as follows. Section 2
presents our extended dynamo model. Section 3 contains the re-
sults of seventh-order system. In Sect. 4 we study the system
in the limit where mean differential rotation dominates fluctuat-
ing differential rotation while in Sect. 5 we study the system in
the opposite limit. Section 6 elaborates on the basic property of
the seventh-order system in Sect. 2, in particular, in light of the
balance between all nonlinearities and investigate a more gen-
eral seventh-order system to check on parameter dependencies.
In Sect. 7, we discuss our results and conclude.

2. Model construction

By taking into account dynamical interactions between the mag-
netic field and differential rotation, we build upon a simple pa-
rameterized dynamo model that was constructed by Cattaneo
et al. (1983) based on α-Ω dynamo. Specifically, plane wave
solutions propagating in x-direction (Parker 1979), in the pres-
ence of azimuthal velocity v = (V(z) + W(x, z, t))ŷ, which
consist of rotation velocity V = Ωz (where z is the radial
coordinate) and the differential rotation W(x, z, t) due to back
reaction, were considered taking local cartesian co-ordinates
y-axis and z-axis pointing westward and radially outward, re-
spectively. Periodic boundary conditions are assumed for the
model in terms of Fourier modes and for a magnetic field of
k-mode B = (0, B(t)eikx, ikA(t)eikx). The Lorentz force gener-
ates the differential rotation ∂W

∂z
= w0 + w(t) exp(2ikx), where w0

and w(t) are mean and fluctuating differential rotation, respec-
tively, leading to a low-order dynamo model given by seventh-
order coupled equations in the following dimensionless forms:

Ȧ = 2DB − A, (3)

Ḃ = i(1 + w0)A −
1

2
iA∗w − B, (4)

ẇ0 =
1

2
i(A∗B − AB∗) − ν0w0, (5)

ẇ = −iAB − νw. (6)

Here A is the poloidal magnetic flux, B is the toroidal magnetic
field, and w represents fluctuating differential rotation with twice
the frequency of poloidal and toroidal magnetic fields. While A,
B, and w are complex, w0 is the mean component of differential
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(a) as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of ΩωM

Fig. 1. Frequency of maximum intensity ωM, magnetic field strength |B| and total shear are plotted as a function of Ω for κ1 = 2.5, λ1 = λ2 = 0 for
Case 1 in the seventh-order system.

rotation, which is real. We note that in these dimensionless units
the total mean differential rotation is represented by 1+w◦ =

∆Ω

Ω
,

whose numerical value is always less than unity as w◦ is a nega-
tive constant. In addition, ν and ν0 are constants representing vis-
cosity of mean and fluctuating differential rotations, respectively,
and D is the dynamo number. We note that Eqs. (3)−(6) possess
the same linear dispersion relation ω = k2[−1 ± (1 + i)D1/2] as
given by Weiss (1984) and that leads to finite amplitude nonlin-
ear solutions for D > 1. We extend the above system (3)−(6)
by taking into account α-quenching and magnetic flux loss as
follows:

Ȧ =
2DB

1 + κ1(|B|2)
−
[

1 + λ1(|B|2)
]

A, (7)

Ḃ = i(1 + w0)A −
1

2
iA∗w −

[

1 + λ2(|B|2)
]

B, (8)

ẇ0 =
1

2
i(A∗B − AB∗) − ν0w0. (9)

ẇ = −iAB − νw. (10)

Here, λ1(|B|2), λ2(|B|2), and κ1(|B|2) are assumed to be func-
tions of |B| to include the feedback of growing magnetic field
onto itself: λ1(|B|2) captures the effect on the generation of the
magnetic field, while λ2(|B|2) and κ1(|B|2) capture the effect on
the dissipation of magnetic field. All three terms become zero
when B = 0 and are assumed to increase with |B| (Robinson &
Durnery 1982; Weiss et al. 1984) to model α-quenching and en-
hanced magnetic dissipation for strong magnetic field. We note
that the latter is in contrast to some other previous work using
the quenching of magnetic dissipation (e.g., Brandenberg et al.
2008). For our minimal model, we consider λ1(|B|2) = λ1|B|

2,
λ2(|B|2) = λ2|B|

2, and κ1(|B|2) = κ1|B|
2 with constant coeffi-

cients of λ1, λ2, and κ1. Thus, non-zero κ1 represents the non-
linear α-effect quenching while non-zero λ1 and λ2 represent
loss of poloidal and toroidal fields due to magnetic flux loss,
respectively. In our extended model, α simply parameterizes
the efficiency of the generation of poloidal magnetic field from
toroidal field (for instance, by helicity) which is assumed to lin-
early increase with rotation rate. We note that similar quadratic
α-quenching and flux loss were used previously, but in a simpler,
fourth-order system without differential rotation (e.g., Weiss
et al. 1984).

3. Seventh-order system

We investigate our extended model (7) to (10) for the following
three cases by taking ν = 1.0 and ν0 = 35.0 and by varying D
from 1 to 400.
Case 1: α-quenching and no flux loss i.e., λ1 = λ2 = 0, κ1 � 0

Case 2: no α-quenching and flux loss i.e., λ1 = λ2 , κ1 = 0
Case 3: α-quenching and flux loss i.e., λ1 = λ2 = κ1.

We solve Eqs. (7) to (10) numerically and study how the

frequency of magnetic activity ω varies with D and Ω (Ω = D
1
2

as noted in the introduction). To obtain the frequency of
maximum intensity for the magnetic activity of each dynamo
number, we obtain a time series of all the dynamical variables
(say B) and use fast Fourier transforms to obtain a Fourier
series of B to compute the power spectrum of frequency for
each dynamo number. Once we have the power spectra for
all dynamo numbers, we assign the color according to the
color coding as shown in the bar next to the figure, where
yellow to dark colors denote frequency of maximum intensity
to low intensity. We also study the variation of magnetic field
strength |B| and differential rotation ∆Ω with rotation rate Ω.
We note that total shear is related to rotation rate Ω using
the power law as 1 + w◦ = Ω

δ, where δ is the scaling expo-
nent. Normalized differential rotation is given as 1+w◦ = ∆Ω/Ω.

Case 1: α-quenching is causing the saturation (i.e., λ1 = λ2 = 0,
κ1 = 2.5). We examine how frequency, say ωM, of B of
maximum intensity varies with Ω by using the power law
as ωM = Ω

β, where β is the scaling exponent (cf. Fig. 1a). We
also study how |B| and total shear change with rotation rate
(Figs. 1b, c). In Fig. 1a, we plot the frequency of B as a function
of rotation rate, where yellow to dark black colors represent the
high to low intensity of the frequency. It is interesting to see
that there is a well-defined frequency of maximum intensity ωM

denoted in yellow, which slowly increases with rotation rate Ω.
The dependence of frequency of maximum intensity ωM on Ω
is found to be a power law using ωM = Ω

β with the two scaling
exponents of β = 0.67 and 1.24 for slow and high rotations, re-
spectively. This is not in agreement with observation. The band
in red around ωM represents the dispersion in the frequency,
which slowly reduces its width with increasing Ω. Figure 1b
shows the strength of toroidal magnetic field |B| as a function
of Ω. It is clearly seen that |B| increases up to Ω ∼ 6 with
increasing Ω before decreasing for Ω ≥ 10. The decrease of |B|
for Ω > 10 is caused by the quenching of mean differential
rotation w0 due to the Lorentz force of magnetic fields. We
show this shear quenching in Fig. 1c, where total shear 1 + w◦ is
plotted as a function of Ω. This total shear becomes very small
as high rotation and does not exhibit a reasonable power-law
scaling.

Case 2: magnetic flux loss alone leads to saturation (i.e.,
λ1 = λ2 = 2.5, κ1 = 0.0). We again examine the behaviors
of ωM, the magnetic field strength |B|, and the total shear for
different rotation rates (cf. Figs. 2a−c). In Fig. 2a, the frequency
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(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 2. Frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for κ1 = 0.0, λ1 = λ2 = 2.5
for Case 2 in the seventh-order system.

of B is plotted as a function of rotation rate. Here, yellow color
again indicates the frequency of high intensity and dark black
colors indicate the frequency of low intensity. A main branch of
maximum intensity with a well-defined frequency ωM denoted
in yellow increases with rotation rate Ω at a rate faster than in
Fig. 1a. We use the power law ωM = Ω

β to examine the depen-
dence of frequency of maximum intensity ωM on Ω, finding that
the scaling exponent β decreases its value from β = 1.08 to 0.73
for slow-to-high rotation rate. We find that β = 1.08 for Ω ≤ 7
and β = 0.87 for 7 < Ω < 10 are compatible with the observed
range of β ∼ 0.80 to β ∼ 1.15 whereas β = 0.73 for Ω > 10 is
close to the observed range. Dispersion in frequency around ωM

broadens with increasing Ω. Interestingly, a second branch of
frequency of localized maximum intensity is observed above the
main branch, which increases quickly with increasing rotation
rate. This second branch arises from fluctuating differential
rotation. Figure 2b shows the strength of the toroidal magnetic
field |B| as a function of Ω. Clearly, |B| increases with Ω for the
stars having a rotation period of five days or longer (Ω ≤ 6)
but starts decreasing for faster rotating stars with the a rotation
period less than five days, for Ω ≥ 6. We note that this decrease
in |B| is not as fast observed in Case 1 (cf. Fig. 1b). Here again,
mean differential rotation w0 due to the Lorentz force causes the
decrease of |B| for Ω > 6, as can be seen in Fig. 2c.

Case 3: saturation is taking place because of the combined ac-
tion of α-quenching and loss due to magnetic flux (i.e. λ1 = λ2 =

κ1 = 2.5). In Fig. 3a, the frequency spectrum of the magnetic
field B as a function of rotation rate shows a well-defined fre-
quency of maximum intensity and a frequency of low intensity,
which are depicted in yellow and dark black colors, respectively.
In this case, the frequency of maximum intensity ωM slowly in-
creases with rotation rate Ω. The dependence of the frequency
of maximum intensity ωM onΩ is found to exhibit a clear power
law scaling in the entire range of Ω as ωM = Ω

β with the scaling
exponent of β = 0.80 (see Fig. 3d for scaling). This value is the
same as that of the observed value of β ∼ 0.80 for active stars.
We observe dispersion in the frequency around the well-defined
frequency of maximum intensity ωM, which is depicted in the
red band. The width of the band expands moderately with in-
creasing Ω, being broader than the bands observed in Case 1
and Case 2. In Fig. 3b, the strength of the toroidal magnetic
field |B| is studied as function of Ω. Interestingly, |B| approaches
the asymptotic value of |B| = 1.25 with an increasing rotation
rate Ω. The shear-quenching can be seen in Fig. 3c, where total
shear decreases with increasing rotation, but at a much slower
rate compared to Case 1 and Case 2.

In summary, among the three cases considered in this
seventh-order system, Case 1 and Case 2 with only α-quenching
or flux loss show the behavior of frequency and strength of
magnetic fields that are in disagreement with observation. We
observe in both cases that the absence of α-quenching or flux
loss causes a magnetic field that is too strong for high rota-
tion, which then reduces total shear to a small value by the
Lorentz force back-reaction. This feedback therefore makes the
dynamo less efficient. Agreement with observations is obtained
only in Case 3, which exhibits an equal amount of α-quenching
and poloidal and toroidal magnetic flux losses. Specifically, in
this case, the frequency spectrum of the magnetic field has a
well-localized frequency of the maximum intensity which scales
as ω ∝ Ω0.80, in agreement with the observation of Noyes et al.
(1984). The magnetic field and mean differential rotation exhibit
a tendency of saturation for high rotation. These results thus
suggest that there must be an effective balance between gener-
ation and dissipation of magnetic fields to obtain the saturation
of magnetic fields at high rotation. This is explained in detail in
Sect. 6.

4. Reduced fifth-order system

In the previous section, a too strong mean differential rotation
was shown to make dynamo action ineffective. To highlight this
and to elucidate the role of the mean differential rotation w0 in
a mean field dynamo, we consider the extreme limit where fluc-
tuating differential rotation w is much weaker than w0 by taking
the limits of ν → ∞ and w → 0 in Eqs. (7) to (10). A re-
duced fifth-order system in the presence of nonlinearities such
as α-quenching and magnetic flux loss is then given as follows:

Ȧ =
2DB

1 + κ1(|B|2)
−
[

1 + λ1(|B|2)
]

A, (11)

Ḃ = i(1 + w0)A −
[

1 + λ2(|B|2)
]

B, (12)

ẇ0 =
1

2
i(A∗B − AB∗) − ν0w0. (13)

We examine this fifth-order system with ν0 = 35.0 by varying D
for the following different three cases;

Case 1: κ1 � 0, λ1 = λ2 = 0,
Case 2: κ1 = 0, λ1 = λ2 � 0,
Case 3: κ1 = λ1 = λ2 � 0.

Case 1: saturation occurs through quenching of α-effect only
(i.e., λ1 = λ2 = 0, κ1 = 1.0). We examine the behavior of fre-
quency of the magnetic field ωM, the magnetic field strength |B|
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(a) ωM = Ω
0.80 (b) |B| as a function of Ω

(c) Total shear as a function of Ω (d) Log-log plot of ωM with rotation rate, where curve fit-
ting is represented with ‘+’ symbol.

Fig. 3. Frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for κ1 = λ1 = λ2 = 2.5 for
Case 3 in the seventh-order system.

(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 4. ωM, |B|, and total shear are plotted as a function of Ω for λ1 = λ2 = 0, κ1 = 1.0 for Case 1 in the fifth-order system.

(Figs. 4a, b) and the total shear as a function of rotation rate Ω
(Fig. 4c). In Fig. 4a, we plot the frequency spectrum of B as
function of the rotation rate where high and low intensity of
frequency is again represented by yellow and dark black, re-
spectively. We find a finite amplitude wave with the fixed fre-
quency ωM of maximum intensity, denoted in yellow, which
does not change with rotation, in sharp contrast to observa-
tions. Figure 4b shows the strength of the magnetic field |B| as
a function of Ω. Strength of magnetic activity increases initially

with rotation rate up to Ω ∼ 6 but starts decreasing for stars
with a rotation period of less than five days. These results are
due to severe quenching in both α-effect and Ω-effect, which
makes D almost independent ofΩ. Shear quenching can be seen
in Fig. 4c, which decreases very rapidly up to a rotation rate
Ω ∼ 10 and becomes almost zero for Ω > 10. It is interesting
to note that similar severe quenching of differential rotation and
dynamo was also obtained in full MHD simulations using a
flux-transport dynamo model (e.g., Rempel 2006).
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(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 5. ωM, |B|, and total shear are plotted as a function of Ω for λ1 = λ2 = 2.5, κ1 = 0.0 for Case 2 in the fifth-order system.

Case 2: dynamo action is ceased by loss due to magnetic flux
only (i.e., λ1 = λ2 � 0, κ1 = 0). The behavior of ωM, |B|, and
total shear with Ω is examined (cf. Figs. 5a−c). In Fig. 5a, we
explore the frequency spectrum of the magnetic field B as a
function of rotation rate. The frequency of maximum intensity
denoted by ωM, represented in yellow, increases with rotation
rate up to Ω ∼ 5 and then starts decreasing with rotation (cf.
Fig. 5a), in strong disagreement with observations. The band
of frequency of lower intensity around ωM, represented in red,
again shows the frequency dispersion in the system. The width
of band decreases with increasing rotation rate. The dependence
of ωM on Ω is found to be a power law as ωM = Ω

β with a
scaling exponent of β = 0.91 for stars with rotation period
of six or more days, which is in the observed range of 0.80
to 1.15. However, this relation breaks down for stars with a
rotation period of less than six days. Figure 5b shows that the
strength of magnetic activity |B| attains its maximum value
for rotation rate Ω = 7 and starts decreasing for Ω ∼ 8. The
decrease of |B| forΩ ≥ 8 is caused by the quenching of the mean
differential rotation w0, as can be seen from Fig. 5c. We find
the total shear decreases by up to Ω ∼ 12, which is not as fast
as noted in Fig. 4c. For Ω ≥ 12, the value of shear approaches
zero.

Case 3: saturation of dynamo action is caused by the equal com-
bination of α-quenching and magnetic flux loss (i.e., κ1 = λ1 =

λ2 = 3.5). The frequency spectrum of B as a function of rotation
rate Ω is shown in Fig. 6a, illustrating high-intensity frequency
in yellow and low-intensity frequency in dark black. In compar-
ison to Cases 1 and 2, |B| does not become sufficiently strong
to dramatically reduce Ω without causing a dramatic reduction
in D. Therefore, there is a very slow increase in the frequency of
maximum intensity ωM with rotation rate Ω, although at a vari-
able rate with the two scaling exponents β = 0.63 for Ω ≤ 10
and β = 0.45 for Ω > 10. This variation is not in agreement with
the observation. The band in red around ωM represents the dis-
persion in the frequency, which gradually widens with increas-
ing Ω. Clearly, strength of magnetic field |B| increases slowly
with increasing rotation as shown in Fig. 6b, in disagreement
with observations. Total shear as function of rotation rate is plot-
ted in Fig. 6c, which shows a rapid decrease in total shear with
increasing rotation rate.

In summary, the fifth-order system is not compatible with
observations in all possible cases, with a tendency toward too
severe quenching of differential rotation and a lower frequency
of B than observed. These results imply that fluctuating differen-
tial rotation can be important to obtain magnetic field intensity
and frequency spectrum consistent with observations (as found

in the seventh-order system). It is thus useful to identify the role
of fluctuating differential rotation, which is done in the following
section.

5. Reduced sixth-order system

We now examine the effect of fluctuating differential rota-
tion w by taking the opposite limit to Sect. 4. That is, the
system (7)−(10) is reduced to a sixth-order system by taking
ν0 → ∞ and w0 → 0. A reduced sixth-order dynamical sys-
tem in the presence of nonlinearities such as α-quenching and
magnetic flux loss is given as follows:

Ȧ =
2DB

1 + κ1(|B|2)
−
[

1 + λ1(|B|2)
]

A, (14)

Ḃ =
iA

1 + κ2(|B|2)
−

1

2
iA∗w −

[

1 + λ2(|B|2)
]

B, (15)

ẇ = −iAB − νw. (16)

We note that unlike the seventh- and fifth-order systems, we in-
clude the reduction ofΩ effect due to shear quenching by includ-
ing 1 + κ2|B|

2 in Eq. (8). We investigate the system (14)−(16)
for the following two cases, taking ν = 1.0 and varying D:

Case 1: λ1 = λ2 = κ1 = κ2 � 0,
Case 2: κ1 = 0, κ2 = λ1 = λ2 � 0.
We note that (14) to (16) are reduced to Weiss model (1984)
when λ1 = λ2 = κ1 = κ2 = 0.

Case 1: dynamo action is saturated by an equal combination of
α-quenching, shear quenching, and loss due to magnetic flux
(i.e., for λ1 = λ2 = κ1 = κ2 = 0.5). In Fig. 7a, the fre-
quency of B is plotted as a function of rotation rate Ω, depicting
high-intensity frequency in yellow and low-intensity frequency
in dark black. Here, again, we find a well-defined frequency of
maximum intensity ωM denoted in yellow, which increases with
rotation rate Ω. We use the power law ωM = Ω

β to study the
dependence of ωM on rotation rate ω; the scaling exponent β
is found to be 0.90, which is in the observed range between
β = 0.80 and β = 1.15. Dispersion in the frequency is rep-
resented by the red band around ωM, which expands its width
with increasing rotation rate. Figure 7b shows that the strength
of toroidal magnetic field |B| increases with increasing rotation
rate. We find an almost similar trend of ωM and |B| when we
investigate the system by taking λ1 = 0, λ2 = κ1 = κ2 � 0,
λ2 = 0, λ1 = κ1 = κ2 � 0, λ1 = λ2 = 0, κ1 = κ2 � 0,
and κ2 = 0, λ1 = λ2 = κ1 � 0.
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(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 6. ωM, |B|, and total shear are plotted as a function of Ω for κ1 = λ1 = λ2 = 3.5 for Case 3 in the fifth-order system.

(a) ωM as a function of Ω (b) |B| as a function of Ω

Fig. 7. Frequency of maximum intensity ωM and strength of magnetic field |B| as a function of rotation rate Ω for κ1 = κ2 = λ1 = λ2 = 0.5 for
Case 1 in the sixth-order system.

Case 2: we consider the effect of shear quenching and loss due
to magnetic flux in the absence of α-quenching (i.e., κ1 = 0,
κ2 = λ1 = λ2 = 0.5). Figure 8a shows the behavior of the fre-
quency spectrum of magnetic field strength B as a function of
rotation rate. Frequency of maximum intensity ωM, illustrated
in yellow, increases with rotation rate. By using the power law
ωM = Ω

β, we find the scaling of β = 1.17, which is close to
the observed range of β = 1.25 ± 0.5 (Noyes et al. 1984). In
this case, we observe a red band of localized frequency around
the maximum intensity frequencyωM, which broadens gradually
with rotation rate due to dispersion. Moreover, a second branch
of frequency of localized maximum is found above the main
branch. This second branch is caused by the fluctuating differ-
ential rotation. In Fig. 8b, we study |B| as a function of Ω and
clearly see that the magnetic field strength increases very fast
with rotation rate as compared to Case 1. We find almost similar
results for ωM and |B| when we consider the effect of loss due to
magnetic flux on dynamo action in the absence of α quenching
and shear quenching, that is, for κ1 = κ2, λ1 = λ2 � 0.

In summary, in all cases of the sixth-order system, the ab-
sence of mean differential rotation leads to a monotonic in-
crease of magnetic field with rotation rate without saturation.
That is, the severe quenching of dynamo and w◦ obtained in
the fifth-order system in Sect. 4 is compensated by w, imply-
ing the complementary role of w and w◦ in stellar dynamo and
the necessity of incorporating both. Furthermore, frequency is
found to be higher than that obtained in seventh-order system,
confirming that w◦ and w tend to generate lower and higher ω,
respectively.

6. Minimal dynamical model: parameter

dependencies

In Sects. 2−5, we have shown that the best agreement with obser-
vations is obtained in Case 3 of the seventh-order system, which
includes both quadratic α-quenching and flux loss with the coef-
ficients of order one. The success of Case 3 in reproducing ob-
servations is due to its capability of keeping a dynamical balance
among the generation and dissipation of magnetic fields and also
between the mean and fluctuating differential rotations. This bal-
ance makes the dynamo operate near the onset of dynamo in-
stability, leading to an almost linear increase in frequency with
rotation rate with a rather well-localized frequency (reminiscent
of a linear dynamo), flattening of magnetic energy for high rota-
tion, and quenching in total shear, consistent with observations.
We demonstrate in this section that this seventh-order system is
“minimal” in terms of the number of necessary parameters by
investigating a more general seventh-order system, which has a
different nonlinear power-law dependence of α quenching and
flux loss on B in Eqs. (7) and (8) and by checking on parameter
dependencies. Generalized equations are given as follows:

Ȧ =
2DB

1 + κ1(|B|m)
−
[

1 + λ1(|B|n)
]

A, (17)

Ḃ = i(1 + w0)A −
1

2
iA∗w −

[

1 + λ2(|B|n)
]

B, (18)

ẇ0 =
1

2
i(A∗B − AB∗) − ν0w0, (19)

ẇ = −iAB − νw, (20)
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(a) ωM as a function of Ω (b) |B| as a function of Ω

Fig. 8. Frequency of maximum intensity ωM and |B| as a function of rotation rate Ω for κ1 = 0, κ2 = λ1 = λ2 = 0.5 for Case 2 in the sixth-order
system.

(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 9. Case 1: frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for m = n = 1
and κ1 = λ1 = λ2 = 2.5.

where m and n are the power-law index of the α-quenching
term and the flux-loss terms, respectively. We have investigated
about 35 different cases by varying systematically values
of m, n, κ1, λ1 and λ2. For all these cases and three cases in
Sect. 3, we compared the main terms on the right hand side
(RHS) of above Eq. (17) and also those in (18) (i.e., generation
and dissipation terms); we confirmed that the observation is
reproduced only when (i.e., Case 3 in Sect. 3) the α-source term
and magnetic dissipation are in balance in Eq. (17) with similar
magnitude (within a factor of less than 2), while the generation
of A by shear and dissipation are in balance in Eq. (18). From
this thorough investigation, we found that the α-quenching
power law and magnetic dissipation should increase at least
quadratically (m ≥ 2, n ≥ 2) for the coefficient of order 1 (i.e.,
0.5 < κ1, λ1, λ2 < 2.5). Among these cases, we present results
for the following four cases as examples:

Case 1: m = n = 1 and κ1 = λ1 = λ2 = 2.5,
Case 2: m = n = 3 and κ1 = λ1 = λ2 = 2.5,
Case 3: m = 2, n = 1 and κ1 = λ1 = λ2 = 2.5,
Case 4: m = 1, n = 2 and κ1 = λ1 = λ2 = 2.5.

Case 1: dynamo action is ceased by the less efficient
α-quenching and flux loss due to magnetic field (i.e., m = n = 1
and κ1 = λ1 = λ2 = 2.5). In Fig. 9a, the frequency of maximum
intensity ωM is plotted against rotation rate by depicting high
to low intensity of frequency from yellow to dark black colors.
Frequency of maximum intensity increases slowly with rotation
rate, surrounded by a red band of lower frequency of maximum

intensity that increases its width uniformly with increasing
rotation rate.The dependence of ωM on Ω is found to be the
power law as ωM = Ω

β with scaling exponent of β = 0.80
for stars with a rotation period of more than three days (i.e.,
Ω ≤ 10) and β = 0.91 for stars with a rotation period of less
than three days (i.e., Ω < 10). These values lie within the
observational limit of β ∼ 0.80 and β ∼ 1.15. However, the
behavior of magnetic field strength |B| with rotation rate shown
in Fig. 9b does not seem to be compatible with observation.
Specifically, |B| increases with Ω, attaining its maximum value
around Ω ∼ 15 and then for Ω > 16, |B| starts reducing slowly.
This drop of B is shown to be associated with shear quenching
in Fig. 9c, which becomes too small for a high rotation rate.
Therefore, inefficient magnetic dissipation through weaker
quenching of alpha and flux loss leads to too strong magnetic
fields. This reduces total shear, causing the decrease of B for
high rotation.

Case 2: saturation is caused by the stronger α-quenching and
flux loss due to the magnetic field (i.e., m = n = 3 and
κ1 = λ1 = λ2 = 2.5). We now show that too strong alpha
quenching and flux loss is also problematic, with the opposite
effect. First, we study the behavior of frequency ωM, illustrated
in yellow for high intensity and with rotation rate Ω in Fig. 10a.
We notice a slow increase in ωM with rotation rate. A red band
of localized frequency of maximum intensity is observed around
ωM whose width is almost uniform. By using the power law, we
investigate the dependence of ωM on Ω with scaling exponent β,

A22, page 8 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220176&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220176&pdf_id=9


Aditi Sood and Eun-jin Kim: Dynamic model of dynamo (magnetic activity) and rotation

(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 10. Case 2: frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for m = n = 3
and κ1 = λ1 = λ2 = 2.5.

(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 11. Case 3: frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for m = 2, n = 1
and κ1 = λ1 = λ = 2.5.

(a) ωM as a function of Ω (b) |B| as a function of Ω (c) Total shear as a function of Ω

Fig. 12. Case 4: frequency of maximum intensity ωM, magnetic field strength |B|, and total shear are plotted as a function of Ω for m = 1, n = 2,
and κ1 = λ1 = λ2 = 2.5.

whose value is found to be 0.75 in this case. This is very close to
the observations. The strength of magnetic field |B| is examined
as a function of rotation rate in Fig. 10b. Clearly, |B| is growing
very slowly with rotation rate Ω without being saturated, corre-
lated with the slow decline of total shear in Fig. 10c.

Case 3: we now consider the case where saturation is caused
by quadratic α-quenching, while the magnetic flux loss has a
weaker, linear dependence on B (i.e., m = 2, n = 1 and
κ1 = λ1 = λ2 = 2.5). In Fig. 11a, a well-defined frequency of
maximum intensity ωM is shown as a function of rotation rate,
depicting high to low frequency in yellow to dark black. The ωM

increases very slowly with rotation rate and a very broad band
of localized frequency of maximum intensity is noticed around
ωM, which widens gradually withΩ. Power-law scaling β of fre-
quency of maximum intensity with rotation rate is consistent
with observations for stars with a rotation period of less than

two days (Ω > 15) with β = 0.94, whereas for stars with a rota-
tion period of more than two days (Ω < 15), we find β = 0.73,
which is close to observations. The magnetic field strength |B|
grows gradually with the rotation rate and acquires its maximum
value of 1.35 for Ω = 17. As Ω becomes more than 17, we no-
tice a slow decrease in |B| (cf. Fig. 11b). Total shear is found to
be reduced with Ω in Fig. 11c and responsible for the decrease
in |B|.

Case 4: dynamo action is saturated by weaker α-quenching and
stronger magnetic flux losses i.e., m = 1, n = 2 and κ1 = λ1 =

λ2 = 2.5. As shown in Fig. 12a, a well-defined frequency of
maximum intensity ωM, represented in yellow, increases faster
with Ω than in previous case (cf. Fig. 11a). In contrast, the
red band of lower frequency of maximum intensity around ωM

consistently broadens its width with rotation rate. In this case
the power-law exponent β possesses a value of 0.88, which is
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in agreement with observations. However, the strength of mag-
netic field |B| increases with Ω reaching a maximum value of
|B| = 1.27 around Ω ∼ 17 and starts decreasing with increasing
Ω > 17 as noted in Fig. 12c. This is incompatible with obser-
vations. Shear quenching due to the Lorentz force, which causes
the decrease in |B| shown in Fig. 12c declines slowly with Ω.

For the four cases discussed above and all other cases we
have examined, we compared the main terms on the RHS of
Eq. (17) and also those in (18) (i.e., generation and dissipation
terms). We confirmed that disagreement between the results of
these cases and the observation is associated with imbalance be-
tween the α-source term and the magnetic dissipation in Eq. (17)
and/or between the generation of A by shear and dissipation in
Eq. (18). In-depth discussion on this balance and on the effect of
various different terms in our model is presented in Sood & Kim
(2013) by using analytical and numerical simulations. In sum-
mary, our seventh-order system in Sect. 2 seems to be a minimal
model that ensures a right balance between all the nonlineari-
ties, such as α-quenching and flux losses due to magnetic field
and their respective coefficients, which gives results consistent
with observations.

7. Conclusions

We have proposed a minimal dynamical model of dynamo and
differential rotation given by seventh-order system by including
the effect of α-quenching, magnetic flux loss, and the Lorentz
force on mean w◦ and fluctuating differential w rotations. By
varying the degree of α-quenching and magnetic flux loss, we
examined how magnetic field strength, frequency (with ωM at
maximum intensity), and differential rotation vary with rota-
tion rate Ω. Our results show a good agreement with observa-
tions when α-quenching and loss due to magnetic flux are taken
into account to a similar degree with a quadratic dependence
on B. Specifically, in this case, we obtained almost linear in-
crease in frequency with rotation rate with a rather well-localized
frequency (reminiscent of a linear dynamo), flattening of mag-
netic energy for high rotation, and quenching in total shear. This
is consistent with observations. Detailed analysis of this (and
a more general) seventh-order system and its limiting cases of
fifth- and sixth-order systems suggest that a right balance be-
tween w◦ and w is necessary to obtain ωM consistent with obser-
vations. This implies that both upward (w◦) and downward (w)
scale coupling to the differential rotation is important for the dy-
namo process.

Interestingly, this balance seems to be indicative of a collec-
tive, organized process in stellar dynamo, which operates near
marginal stability as a result of balance not only between the
generation and destruction of magnetic fields but also between
poloidal and toroidal magnetic fields and between mean and
fluctuating differential rotation. That is, in contrast to the tradi-
tional view, stellar dynamos could be a result of a self-organizing
process where a long range correlation in stellar interiors and
open boundary is important. Furthermore, an almost linear
relation between observed magnetic frequency and rotation rate
could be another signature of self-organization, with the dy-
namo working near stability. In this sense, it is not coincidental
that various instability mechanisms involved in dynamos, the
effect of meriodinal circulation, and magnetic flux loss have
received great attention in dynamos in recent years (e.g., see
Charbonneau 2005; Jouve et al. 2010; Miesch & Brown 2012).
Investigations into necessary balance in dynamical models and

its precise physical mechanism in the context of stellar rotation
evolution are in progress and will be addressed in future publi-
cations (Sood & Kim 2013).

Finally, we note that while our dynamical model is lim-
ited, especially, because it is incapable of capturing the spatial
evolution of stellar magnetic fields, it seems to have certain
merit of being less sensitive to the precise form of the dynamo.
The α-effect and flux losses are simple parameterizations of
the nonlinear generation and destruction of magnetic fields in
stars. Furthermore, a long-range correlation seems to be conve-
niently incorporated in the evolution of low-harmonic modes in
our model. Thus, despite its simplicity, it can serve as a use-
ful model that can explain observed frequency and strength of
magnetic field and the differential rotation for stars with differ-
ent rotation rates. The usefulness of a dynamical model was re-
cently demonstrated in the context of shear flow dynamics (e.g.,
self-organization) where a reduced dynamical model success-
fully reproduced the essential characteristics of flows obtained in
full 2D hydrodynamic turbulence (Newton & Kim 2012). Future
work will investigate the extension of our model to include other
physical effects, especially stochasticity in the parameters in dy-
namo model (e.g., stochastic α effect) (Newton & Kim 2012;
Proctor 2007; Richardson & Proctor 2010). We note that the
signature of self-organization of solar dynamos was recently re-
ported in a stochastic dynamo (Newton & Kim 2013).
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