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ABSTRACT This paper proposes the systemic dynamic modeling and analysis of a 2PRU-UPR parallel
robot with two rotations and one translation based on screw theory, where P, R and U denote prismatic,
revolute and universal joints, respectively. Compared with existing parallel robots having two rotations and
one translation, the two actuated prismatic joints of the 2PRU-UPR parallel robot are mounted on a fixed base
to reduce the movable mass and improve the dynamic response. First, the inverse kinematics are presented.
Next, adopting the screw-based method, the velocity and acceleration of joints and limbs of the 2PRU-UPR
parallel robot are analyzed in detail. The actuated forces of the three actuators are then obtained according to
the principle of virtual work. Additionally, a numerical simulation is conducted using ADAMS software to
investigate the dynamic model of the 2PRU-UPR manipulator and to verify the correctness of the theoretical
results. Finally, distributions of the dynamic manipulability ellipsoid index are used to evaluate the dynamic
translational and rotational performances of the 2PRU-UPR parallel robot. A prototype based on the dynamic
analysis has been fabricated. The dynamic modeling and evaluation provide a basis for the efficient and
precise control of the 2PRU-UPR parallel robot in actual machining manipulations. The 2PRU-UPR parallel
robot has great potential in machining workpieces with curved surfaces.

INDEX TERMS Parallel robot, dynamic model, screw theory, dynamic performance.

I. INTRODUCTION

Parallel robots have been intensively studied over past
decades and used in many applications, from simple pick-
and-place operations to advanced electronic manufactur-
ing [1]–[3]. Having a closed structure, parallel robots have
potential advantages of a high load-carrying capacity, good
positioning accuracy and low inertia [4]–[7].
Dynamic modeling plays an important role in the pre-

design stage of the development of parallel robots and is
essential for dynamic performance analysis and parameter
optimization. The relations between forces and motions are
investigated through modeling [8] [9] and are useful for the
development of the control scheme [10], [11]. The dynamic
analysis of parallel robots is carried out adopting sev-
eral methods, mainly the Newton–Euler method [12]–[16],
Lagrange method [17]–[21] and the adoption of the virtual
work principle [22]–[26]. Additionally, methods such as the
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use of Gibbs–Appell equations [27], [28] and Kane equa-
tion [29], [30] are used in the dynamic analysis of parallel
robots.

The Newton–Euler method is the most common approach
used in analyzing the dynamic model; it is relatively straight-
forward to implement and can be understood easily. However,
the Newton–Euler method [12]–[16] requires many differen-
tial algebraic equations to be established, especially when the
parallel system is complex and has multiple constraints. The
derivation of equations requires much computational time.
In contrast with the Newton–Euler method, the Lagrange
method [17]–[21] is based on the kinetic energy and potential
energy of the system. The Lagrange method is based on pure
mathematics instead of geometry. It is simple to develop the
dynamicmodel with energy and generalized forces. However,
a long computational time is required for matrix operations
and the derivation of partial differentials. It is noted that the
Lagrange method is not good for programming and computa-
tion. The use of the virtual work principle [22]–[26] is based
on the system’s overall virtual energy, which eliminates the
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derivation of constrained forces/moments. Such an energy
approach for the analysis of a parallel robot can be simplified
applying screw theory [31]–[35]. The principle of virtual
work is suitable for the programming and computation of
parallel robots, including complex models [36]–[38].
Adopting screw theory and the virtual work principle, this

paper presents the systemic dynamic modeling and analysis
of the three-degree-of-freedom (3-DOF) 2PRU-UPR parallel
robot with two rotations and one translation (2R1T) [39].
Compared with existing 2R1T parallel robots, such as the
parallel module of the Exechon robot [40], the 2UPR-SPR
parallel robot with 13 single-DOF joints, the parallel module
of the Tricept robot [41], and the 3UPS-UP parallel robot
with 21 single-DOF joints, the 2PRU-UPR parallel robot
only has 12 single-DOF joints, which is helpful in terms
of decreasing the deformation and clearance caused by the
joints [39]. Here, P, R, U and S denote prismatic, revolute,
universal and spherical joints, respectively. Additionally, two
of actuated prismatic joints of the 2PRU-UPR parallel robot
are mounted on a fixed base to reduce the movable mass and
improve the dynamic response. In industry, the 2PRU-UPR
parallel robot has great potential in machining workpieces
with curved surfaces. It is therefore necessary to develop a
dynamic model that can be used in further research, such
as the design of control systems and experiments. Through
screw theory, the expressions of the velocity and acceleration
of each joint and limb of the 2PRU-UPR parallel robot are
established easily, and these expressions are easy to under-
stand and implement. Using the principle of virtual work,
the actuated forces of the 2PRU-UPR parallel robot are
obtained directly. The correctness of the theoretical results
for a given trajectory is verified by comparing with numerical
results obtained using ADAMS software. Using a dynamic
model with clear physical meaning and a simple expression
allows easier analysis of the dynamic performance of the
2PRU-UPR parallel robot. Additionally, the dynamic model
can be used to achieve real-time control with high efficiency
and precision, which is beneficial for machining workpieces
in industry.
In evaluating the dynamic performance of the 2PRU-UPR

parallel robot, the present paper employs the dynamic manip-
ulability ellipsoid (DME) [2], [42]–[44] to depict manipula-
bility, namely the ease with which the position and orientation
of the manipulator’s moving platform can be changed. The
distribution of this index of the 2PRU-UPR parallel robot is
obtained and discussed. The results of the paper will serve as
criteria for the structural optimization and motion control of
a prototype of the 2PRU-UPR parallel robot.
The remainder of the paper is organized as follows.

Section 2 briefly introduces the basics of screw the-
ory. Section 3 presents the inverse kinematics analysis.
Section 4 analyzes the velocity and acceleration of joints and
limbs of the 2PRU-UPR parallel robot. Section 5 presents the
derivation of actuated forces and verifies the correctness of
the theoretical method. Section 6 presents distributions of the
DME for different operating heights. Section 7 describes the

prototype and hard system of the 2PRU-UPR parallel robot.
Section 8 presents conclusions.

II. SCREW THEORY BASICS

In a Cartesian coordinate system, the position and direction
of a line are represented by a vector S. r is a position vector
at a given point expressed as

r× S = S0. (1)

Equation (1) represents a straight line using homogeneous
coordinates (S;S0)

T to show the position and direction of the
line in space. There are six components. The straight line is
represented by a screw with the form

6 S= (S;S0)
T = (S; r× S)T =

(

L M N p q r
)T

, (2)

where h = S · S0
/

(S · S) is the pitch of the screw. This screw
is a line vector and represents a revolute pair or a binding
force when the pitch is zero. A screw with an infinite pitch is
expressed as 6 S= (0;S)T , where S is a direction vector. This
screw represents a prismatic pair or a binding couple.

In modeling based on screw theory, the velocity of the
rigid body is denoted VO, the primary component is denoted
ϑ (VO) = ω, and the dual component is denoted D (VO) =
νO. It can be shown that

VO =
[

ω νO

]T
, (3)

where ω is the angular velocity of the rigid body and v0 is the
linear velocity of point O on the body.

The primary component, ϑ (VO), does not change when
the position of point O changes. This can be said to be a
characteristic of such motion. The dual component, D (VO),
changes accordingly. The speed of a rigid body can be
regarded as a twist on a screw, and (3) is thus rewritten as

VO = ω 6 S . (4)

When the representation point changes from O to P, only
the dual part of the twist changes:

D (VP) = νP = D (VO) + D (VO) × rP/O, (5)

where rP/O is the position vector from point O to point P.
From the definition of the screw, 6 S=

[

S S0
]T
, the calcu-

lation of
[

6 S1 6 S2
]

is

[

6 S1 6 S2
]T

=

[

S1 × S2
S1 × S02 − S2 × S01

]

. (6)

III. INVERSE ANALYSIS OF THE 2PRU-UPR PARALLEL

ROBOT

To simplify the progress of the dynamic model of the parallel
robot, a simplified computer-aided-designmodel is created as
shown in Fig. 1. Here, the moving platform is connected to
the fixed base through three kinematic limbs. The first limb,
A1B1, and the second limb,A2B2, are identical PRUkinematic
chains. The axis of the R joint is perpendicular to the axis of
the P joint, the first axis of the U joint is parallel to the axis
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FIGURE 1. 2PRU-UPR parallel robot.

of the R joint, and the second revolute axis of the U joint is
connected to the moving platform. The third limb, A3B3, is a
UPR kinematic chain. The first revolute axis of the U joint is
perpendicular to the axis of the P joint. The second revolute
axis of the U joint is always parallel to the second axes of the
U joints of the first two limbs.
As shown in Fig. 1, the fixed frame O− xyz is attached to

the fixed base, and the x − axis and y − axis pass through
points B3 and B1, respectively. A moving frame o − uvw is
attached to the moving platform with u − axis along oA3
and v − axis along oA1. The local coordinate frame of each
limb, as shown in Fig. 1, is established to describe inertial
characteristics. The local coordinate frames Bi − xijyijzij are
attached to the kinematic links of the 2PRU-UPR parallel
robot. The dimensional parameters of the 2PRU-UPR parallel
robot are defined as A1B1 = l1, A2B2 = l2, oA2 = a2,
oA3 = a3, oB3 = b3 and oo′ = H .
According to Fig. 1, the closed-loop vector equation of the

2PRU-UPR parallel robot can be written as p+ ai = qi + l i,
where vector ai = aiei denotes oAi and e1 =

[

0 1 0
]T
,

e2 =
[

0 −1 0
]T

and e3 =
[

1 0 0
]T
. qi is the vector of

the actuated joint, and q1 = OB1, q2 = OB2 and q3 =
B3A3. l1, l2 and l3 are vectors of links A1B1, A2B2 and OB3,
respectively.

To simplify the dynamic analysis of the 2PRU-UPR par-
allel robot, η =

[

z α β
]T

is chosen as the vector of inde-
pendent generalized coordinates in this paper. The dependent
coordinates must satisfy the constraints











γ = 0

x = 0

y = z tan(α)

, (7)

where γ denotes the rotation angle around the z-axis and the
term tan denotes the tangent function. As shown in Fig. 1,
p =

[

0 zo tanα zo
]T
, b1 =

[

0 q1 0
]T
, b2 =

[

0 −q2 0
]T

and b3 =
[

b3 0 0
]T
.

According to [38], the inverse kinematics of the 2PRU-
UPR parallel robot are written as



















q1 =
√

l21 − (z− a1sα)2 + a1cα + z tan(α)

q2 =
√

l21 − (z+ a1sα)2 + a1cα − z tan(α)

q3 =

√

(z/cα − a3sβ)2 + (a3cβ − b3)
2.

(8)

IV. VELOCITY AND ACCELERATION ANALYSIS OF THE

2PRU-UPR PARALLEL ROBOT

The generalized velocity of the moving platform is obtained
by taking derivatives of (7):



















γ̇ = 0

ẋ = 0

ẏ = z sec2(α)α̇ + ż tan(α)

= tan(α)ż+ z sec2(α)α̇

(9)

The linear velocity and rotational velocity of the moving
platform are therefore

tp =
(

ω
T
P vTP

)

= Kpη̇, (10)

where v and ω are the linear velocity and rotational velocity
of a given point P on the moving platform and Kp is the
mapping between the velocity of the moving platform and
the generalized coordinates. Kp is expressed as

Kp =





0 0 0 0 tan(α) 1
cβ 0 −sβ 0 z sec2(α) 0
0 1 0 0 0 0





T

. (11)

The linear velocity and rotational velocity are differenti-
ated to obtain the linear acceleration and rotational accelera-
tion of the moving platform:

ṫp = Kpη̈ + K̇pη̇. (12)

Here, the first limb (i.e., the PRU limb) is taken as an
example to verify the proposed method. With respect to the
fixed frame O − xyz, the twist system of the first limb in the
fixed frame O− xyz is written as






























6 S11=
(

0 0 0; 0 1 0
)

6 S12=
(

1 0 0; 0 0 −q1

)

6 S13=
(

1 0 0; 0 z− a1sα −y− a1cα

)

6 S14=
(

0 cα −sα; −zcα − ysα 0 0
)

(13)

The corresponding twist system of the first limb is rewrit-
ten as a 6 × 1 matrix and the velocity of the rigid body is
written as

V0 =
[

ω v0
]T

. (14)

In the case of the 2PRU-UPR parallel robot, the linear
expression of the moving platform is

0 EV
4
=0ω

i
1 6 Si1+1ω

i
2 6 Si2+2ω

i
3 6 Si3+3ω

i
4 6 Si4, i=1, 2, 3.

(15)
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The linear velocity and rotational velocity of the moving
platform are expressed according to (5) as

0V4 =

[

ω

v0 + ω × rpo

]

=
[

ωT vT
]T

. (16)

Equation (16) is written in matrix form as

0V4 = Ji
[

0ω
i
1 1ω

i
2 2ω

i
3 3ω

i
4

]T
, (17)

where J i =
[

6 Si1 6 Si2 6 Si3 6 Si4
]

is a 6 × 4 Jacobian matrix.
Using (13), the Jacobian matrix of the first limb is obtained
as

J1 =
[

6 S11 6 S12 6 S13 6 S14
]

=













0 1 1 0
0 0 0 cα
0 0 0 −sα
0 0 0 −zcα − ysα
1 0 z− a1sα 0
0 −q1 −y− a1cα 0













. (18)

The velocity of the moving platform, relative to the fixed
link, was solved as (17). The Jacobian matrix of the mech-
anism is reversible if the mechanism does not have motion
redundancy. The rotational velocity iωi+1 is obtained by
inversing the Jacobian matrix J i:








0ω
i
1

1ω
i
2

2ω
i
3

3ω
i
4









=
[

6 STi1 6 STi2 6 STi3 6 STi4
]−1 [

ω
T vT

]T
.

(19)

We define a unit screw 6 S
(i)
unit , which is rewritten as a 6× 1

matrix. According to the structural parameters of the 2PRU-
UPR parallel robot, the unit screw 6 S

(i)
unit intersects all screw

vectors except the prismatic pair of the ith limb, such that the
reciprocal product of the unit screw 6 S

(i)
unit and all the screws

of the ith limb except the prismatic pair screw is zero. This is
expressed as

KL(6 S(i)unit ,
j 6 Sj+1) = 0, j = 1, 2, 3, (20)

where j 6 Sj+1 denotes all screws of the ith limb except the
prismatic pair screw. The Klein form is applied to both sides
of (20).
The relationship between the drive velocity of each limb

and the velocity of the moving platform is written as

q̇i = KL
(

6 S
(i)
unit ,

0 EV
4
)

=
6 S

(i)
unit1

0 EV
4

6 S
(i)
unit16 S

q
i

= 6 S(i)10 EV
4
, (21)

where 1 =

[

03×3 I3
I3 03×3

]

= 1−1.

Substituting (16) into (21) yields

q̇i =





q̇1
q̇2
q̇3



 =







6 S(1)T10 EV
4

6 S(2)T10 EV
4

6 S(3)T10 EV
4






= JTs 1J iJ

i
ω, (22)

where Js =
[

6 S(1)
T
6 S(2)

T
6 S(3)

T
]

, J iω =
[

0ω
i
1 1ω

i
2 2ω

i
3 3ω

i
4

]T
.

Here, J iω is a joint velocity matrix for the ith limb. The
drive velocity of the ith limb is obtained using (22) and the
velocity of the moving platform. Rearranging (22) gives

J iω =
(

JTs 1J i

)−1
q̇i. (23)

We define a coefficientGjkωk+1 for the relation between the
velocity of active joint j and the rotational velocity of passive
joint k and obtain

kωk+1 = G1
kωk+1

q̇1 + G2
kωk+1

q̇2 + G3
kωk+1

q̇3. (24)

Substituting (24) into (23) yields









0ω
i
1

1ω
i
2

2ω
i
3

3ω
i
4









=















G1
0ω

i
1

G2
0ω

i
1

G3
0ω

i
1

G1
1ω

i
2

G2
1ω

i
2

G3
1ω

i
2

G1
2ω

i
3

G2
2ω

i
3

G3
2ω

i
3

G1
3ω

i
4

G2
3ω

i
4

G3
3ω

i
4



















q̇1
q̇2
q̇3



 . (25)

Equation (25) shows that the joint rotational velocity of
the corresponding limb is derived from the driving velocity
and coefficient Gjkωk+1 . We define 6 Sjin = G

j

0ω
i
1
6 Si1 + . . . +

G
j

n−1ω
i
n
6 Sin. Substituting (25) into (17) yields

0 EV
n(i)

=
(

G1
0ω

i
1
6 Si1 + . . . + G1

n−1ω
i
n
6 Sin

)

q̇1

+
(

G2
0ω

i
1
6 Si1 + · · · + G2

n−1ω
i
n
6 Sin

)

q̇2

+
(

G3
0ω

i
1
6 Si1 + · · · + G3

n−1ω
i
n
6 Sin

)

q̇3. (26)

The vector of the centroid of link Cm is denoted, with
respect to its own coordinate system, as ro. With respect to the
base coordinate system, the centroid of link Cm is expressed
as rn = RLiro. The centroid velocity screw of the component
is

V i
nCm =

3
∑

j=1

([

ϑ(6 Sjin)

D(6 Sjin) + ϑ(6 Sjin) × Ern(i)

]

q̇j

)

. (27)

We define the centroid partial screw of a component as

6 S
j
nCm(i) =

[

ϑ(6 Sjin)

D(6 Sjin) + ϑ(6 Sjin) × Ern(i)

]

. (28)

We denote the acceleration of the rigid body by Ao, denote
the primary component by ϑ(AO) = ω̇, and express the dual
component as D(AO) = a0 − ω × vO; i.e.,

AO =

[

ω̇

a0 − ω × vO

]

, (29)

where ω̇ is the angular velocity and a0 − ω × vO is the linear
acceleration of the rigid body at pointO. Applying the theory
of primary kinematics, the acceleration of the given point P
is obtained as

AP =
[

ω̇ aP − ω × vP
]T

=
[

ω̇ aO+ω̇×rP/O+ω×
(

ω×rP/O

)

−ω×vP
]T

.

(30)
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A reference coordinate system is attached to the fixed link,
such that the acceleration of the moving part m relative to the
fixed link is derived as

0Am=

[

ω̇m

am

]

=0ω̇1 6 S1+1ω̇2 6 S2+. . .+m−1ω̇m 6 Sm+6 SL,

(31)

where

6 SiL =
[

0ω
i
1 6 Si1 1ω

i
2 6 Si2 +2ω

i
3 6 Si3 +3ω

i
4 6 Si4

]

+
[

0ω
i
1 6 Si1 +1ω

i
2 6 Si2 2ω

i
3 6 Si3 + 3ω

i
4 6 Si4

]

+
[

0ω
i
1 6 Si1 +1ω

i
2 6 Si2 +2ω

i
3 6 Si3 3ω

i
4 6 Si4

]

.

The reciprocal product of two screws
[

6 S1 6 S2
]

was
introduced in (6). When the mechanism does not have
motion redundancy, the Jacobian matrix of the mechanism is
reversible, and (31) is rewritten as

[

0ω
i
1 1ω

i
2 2ω

i
3 3ω

i
4

]T
= J−1

i

(

0A4 − 6 SiL

)

. (32)

The corresponding value of screw 6 SL based on (32) is a
6 × 1 matrix. According to (29), the acceleration of the rigid
body is

a0 = D(AO) + ω × vO. (33)

According to (30), the acceleration of the link in the 2PRU-
UPR parallel robot is

a = a0 + ω̇ × rO + ω × (ω × rO) . (34)

The centroid acceleration of the moving platform and slid-
ers is






























































Ai
sCm

=

[

ω̇
i
sCm

aisCm

]

=

[

ω̇
i
s

ais0 + ω̇i
s × ri1 + ω

i
s ×

(

ω
i
s × ri1

)

]

, i=1, 2

ApCm =

[

ω̇pCm

apCm

]

=

[

ω̇P

aP0 + ω̇P × rP0 + ωP × (ωP × rP0)

]

.

(35)

The centroid acceleration of the links is







































Ai
lCm

=

[

ω̇
i
lCm

ailCm

]

=

[

ω̇i
l

ail0 + ω̇
i
l × ri2 + ω

i
l ×

(

ω
i
l × ri2

)

]

,

i = 1, 2

Ai
lCm

=

[

ω̇
i
lCm

ailCm

]

=

[

ω̇
i
l

ail0 + ω̇
i
l × ri3 + ω

i
l ×

(

ω
i
l × ri3

)

]

,

i = 3.

(36)

V. FORCE ANALYSIS AND NUMERICAL SIMULATION

Different limbs have similar compositions and can be
regarded as having the same structure. The external force FO
acting on the rigid body can be defined as a screw with basic
elements, where ϑ(FO) = Ef , D(FO) = Eτ o, and Ef and Eτ o
denote the force screw and torque screw acting on point O,
respectively. The external force FO can therefore be written
as

FO =

[

Ef
EτO

]

. (37)

We use 0Vn
Cm and 0AnCm to denote the velocity and accel-

eration of a centroid Cm of a rigid body whose mass is m,
respectively. We assume a force FnI ,Cm acting on the center of
mass Cm:

EF
n

I ,Cm =

[

−mEacm
−Inω̇ − Eω × Inω

]

, (38)

where In = 0RnI◦
n

(

0Rn
)T

is the inertia of the link with
respect to the base coordinate system.
Denoting the acceleration due to gravity by Eg, the force

FnG,Cm is written as

EF
n

G,Cm =

[

mEg
E0

]

. (39)

Assuming that an external force Ef
n

E and torque Eτ nE act at the
center of mass of the link, the external force EF

n

E,Cm is written
as

EF
n

E,Cm =

[

Ef
n

E

Eτ nE

]

. (40)

In the dynamic equations of the mechanism, the force of
each link must be based on the same coordinate system. The
vector of force EF

n
acting on a link is written as

EF
n

= EF
n

I ,Cm + EF
n

G,Cm + EF
n

E,Cm. (41)

The instantaneous power ωn acting on the mass center of
the link is expressed as

ωn = KL(EF
n
, 0Vn

Cm). (42)

In the case of the 2PRU-UPR parallel robot, the force screw
acting on the moving platform and the sliders is






















Fp =

[

mp
(

g− apCm
)

−IPω̇pCm − ωp × IPωp

]

Fs(i) =

[

m
(i)
s (g− aisCm)

−I (i)s ω̇
i
sCm − ω

i
sCm × I (i)s ω

i
sCm

]

, i = 1, 2.

(43)

The force screw acting on the link is






















Fl(i) =

[

m
(i)
l (g− ailCm)

−I
(i)
l ω̇

i
lCm − ω

i
lCm × I

(i)
l ω

i
lCm

]

, i = 1, 2

Fl(i) =

[

m
(i)
l (g− ailCm)

−I
(i)
l ω̇

i
lCm − ω

i
lCm × I

(i)
l ω

i
lCm

]

, i = 3.

(44)
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Here, ml , ms and mp are the masses of the corresponding
links, sliders, and moving platform, respectively. Parameter g
denotes gravity. Parameters Is, Il and IP denote the moments
of inertia of the corresponding links, sliders and moving
platform, respectively. The driving force is calculated using
(41) and the principle of virtual work:

W =

3
∑

v=1

(

KL(Fs(1),V v
1Cm) + KL(Fp,V v

4Cm)
)

+

3
∑

v=1

(

KL(Fl(1),V v
2Cm) + KL(Fl(2),V v

2Cm)
)

+

3
∑

v=1

(

τ vq̇v + KL(Fl(3),V v
3Cm)

)

. (45)

The principle of virtual work is that for any virtual dis-
placement, the sum of virtual work done by external forces
and internal forces of a multi-rigid body system under the
effect of an external drive is zero. The virtual velocity δq̇i is
substituted into (45) to give

δW

=

3
∑

j=1

(

KL(Fs(1), 6 Sj1Cm(1)) + KL(Fs(2), 6 Sj1Cm(2))
)

δq̇j

+

3
∑

j=1

(

KL(Fl(1), 6 Sj2Cm(1)) + KL(Fl(2), 6 Sj2Cm(2))
)

δq̇j

+

3
∑

j=1

(

KL(Fl(3), 6 Sj3Cm(3))+KL(F
p, 6 S

j
4Cm(1))+τj

)

δq̇j.

(46)

For an arbitrary choice of the virtual velocity δq̇i, the total
virtual work is zero. δW = 0 if and only if

τj = −Fs(1)1 6 S
j
1Cm(1) −Fs(2)1 6 S

j
1Cm(2) −Fl(1)16 S

j
2Cm(1)

−Fl(2)1 6 S
j
2Cm(2)−F

l(3)16 S
j
3Cm(3)−Fp1 6 S

j
4Cm(1),

(47)

and the drive can be obtained.
Equation (47) solves out the drive of the 2PRU-UPR paral-

lel robot. The drive of the mechanism is derived through the
given mechanismmodel parameters and the track of the mov-
ing platform. We import the model into ADAMS software
for simulation. Finally, the simulation results of ADAMS are
verified with the calculated drive values.
In the numerical calculation, the lengths of the first and sec-

ond limbs are l1 = l2 = 0.259m, the dimensions of the
moving platform are a1 = a2 = 0.074m, and the distance
of the sub-center U of the third limb from the origin of the
fixed coordinate system is b3 = 0.148m. Other structural
parameters are listed in Table 1. The trajectories are tested
for the dynamic model

α = arctan
0.015sin(π t)

0.15+0.03π t

TABLE 1. Parameters of the parallel robot.

FIGURE 2. Comparison of driving forces of the 2PRU-UPR parallel robot
obtained using the proposed method and ADAMS. (a) Driving forces of
actuations 1, 2, and 3 by using the screw theory. (b) Driving forces of
actuation 1, 2, and 3 by using the ADAMS simulation.

β = arcsin
0.015cos(π t)

0.049
z = 0.15+0.03π t − 0.049 cosα cosβ, (48)

where t is time. The duration of simulation is set at 0.6s.
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FIGURE 3. Dynamic index of translation for different values of z. (a) DME for translation with z = 0.1 m. (b) DME for translation with z = 0.14 m.
(c) DME for translation with z = 0.18 m. (d) DME for translation with z = 0.22 m.

Given the trajectory (48) of the moving platform, the driv-
ing forces of prismatic joints are calculated from the above
dynamic analysis. Figure 2 shows that the driving forces of
the 2PRU-UPR parallel robot obtained using the proposed
method and ADAMS are almost the same. The proposed
theoretical dynamic model can therefore be regarded as an
alternative for the accurate dynamic modeling of the 2PRU-
UPR parallel robot.

VI. DYNAMIC PERFORMANCE ANALYSIS OF THE

2PRU-UPR PARALLEL ROBOT

This section uses the DME method [2], [42]–[44] to evaluate
the dynamic performance of the 2PRU-UPR parallel robot.
By ignoring the effects of velocity and gravity on the actu-
ated forces, this method develops the mapping relationship
between the acceleration of the moving platform and actuated
forces, from which the dynamic performance of the 2PRU-
UPR parallel robot can be evaluated. Additionally, by sepa-
rating the Jacobian matrix, the DME method can be adopted
to analyze the accelerations of translation and rotation of the

moving platform under a driving force for prismatic joints.
This section also derives distributions of DME indices in the
workspace for different operational heights. These dynamic
analyses will be useful for the control and experiments of the
2PRU-UPR parallel robot in future work.

The system equation of motion of the parallel manipulator
is

τ = M(q)q̈+ C(q, q̇)q̇+ G(q). (49)

In this paper, the dynamicmodel of the 2PRU-UPR parallel
robot is rewritten as

HTM IHq̈+HTC(q, q̇) = HTFa, (50)

where H =
[

JR JT
]T

is a 36 × 3 matrix comprising the
rotation matrix and translation matrix of the corresponding

parts of the parallel robot, M I =

[

I 0

0 m

]

is the 36 × 36

mass inertia matrix, andFa denotes external forces or torques
applied to the parallel mechanism. The forces and torques are
the gravitational forces of all bodies, the driving forces of the
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FIGURE 4. Dynamic index of rotation for different values of z. (a) DME for rotation with z = 0.1 m. (b) DME for rotation with z = 0.14 m. (c) DME
for rotation with z = 0.18 m. (d) DME for rotation with z = 0.22 m.

prismatic joints, the loads applied to the moving platform and
the related torques.

For the 2PRU-UPR parallel robot, we rewrite (50) in the
form

J−T
d HTM IHJ

+
e

(

˙̃ve − J̇eq̇
)

= Fd + J−T
d (Fa − C) , (51)

where Fd is the driving force applied to the sliders of the
parallel robot. The 3 × 3 matrix Jd is related to the sys-
tem’s generalized coordinates; i.e., ḋ = Jd q̇. The vector
˙̃ve =

[

ω̇
T
P v̇TP

]T
denotes the rotational and translational

accelerations of the end-effector of the parallel mechanism.
The 6 × 3 matrix Je = JP = [ JTP,R J

T
P,T ]T is the Jacobian

of the parallel mechanism’s end-effector.
According to (51), a dynamic manipulability ellipsoid is

obtained to describe the performance of the moving platform
in terms of acceleration in various directions as

‖ F ‖≤ 1 ⇒ ãT J̃
+T
M̃

T
M̃ J̃+ã ≤ 1, (52)

where ã = ˙̃ve−J̇eq̇ is the acceleration of themoving platform.
M̃ = J−T

d HTM IHJ
−1
d is a 3×3 inertia matrix of the parallel

mechanism, and J̃ = JeJ
−1
d is a 6 × 3 matrix.

A separate dynamic matrix associated with the rotation and
translation of the manipulator is derived from (52). By replac-
ing the corresponding parts of the Jacobian matrix with
separate parts, two dynamics manipulability ellipsoids are
obtained for the evaluation of the performances of rotational
and translational accelerations:

ãTR J̃
+T

R M̃
T
M̃ J̃+

R ãR ≤ 1

ãTT J̃
+T

T M̃
T
M̃ J̃+

T ãT ≤ 1, (53)

where ãR and ãT are related to the rotational and translational
aspects of ã, respectively. Accordingly, the separate Jacobians
are given by J̃R = JP,RJ

−1
d and J̃T = JP,T J

−1
d , both of

which are 3 × 3 matrices.
It is found from (7) that coordinate y is related to coor-

dinate z. Combined with the mobility characteristic of the
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FIGURE 5. Prototype of the parallel robot.

2PRU-UPR parallel robot, the ellipsoids described by (53)
can be understood as a two-dimensional subspace of a three-
dimensional rotational space and a two-dimensional sub-
space of a three-dimensional translational space. The rota-
tional and translational accelerations are therefore limited
to two different planes. On this basis, both J̃

+T

R M̃
T
M̃ J̃+

R

and J̃
+T

T M̃
T
M̃ J̃+

T are symmetric semidefinite matrices with
rank 2, and each has two positive eigenvalues and one zero
eigenvalue. Using these nonzero eigenvalues, the condition

number of the 3 × 3 matrix M̃ J̃+
R is used to evaluate the

isotropic characteristics of rotation in the dynamic perfor-
mance of manipulators:

ωR =
σR,1

σR,2
, (54)

where σR,1 and σR,2 are nonzero singular values of M̃ J̃+
R

and σR,1 ≤ σR,2. Similarly, the translation in the dynamic
performance of manipulators is

ωT =
σT ,1

σT ,2
, (55)

where σT ,1 and σT ,2 are nonzero singular values of M̃ J̃+
T and

σT ,1 ≤ σT ,2.
Kinematics analysis reveals that parameters α, β and z

affect the dynamic manipulability. Hence, in the performance
analysis, the DME is analyzed using α, β and z. The dynamic
index of translation is affected by the parameter z, which
increases from 0.1 to 0.22 m, as shown in Fig. 3(a)–(d). The
dynamic index of rotation is also affected by parameter z,
as shown in Fig. 4(a)–(d).
Figure 3(a)–(d) shows the DME for the manipulator at its

highest position. In this case, the manipulator is asymmetrical
around the α axis, which can be explained in that the trans-
lation is only associated with the first and second limbs. The
third limb contributes nothing to the translation. The model
is symmetrical along the α axis but asymmetrical along the
β axis. With z increasing from 0.1 to 0.22 m, the range of
the DME index in the direction of the β axis increases and
the distribution moves along the β axis. The reason may be

FIGURE 6. Exploded view of a UPR limb.

that with z increasing from 0.1 to 0.22 m, the angles of the
third limb and moving platform are smaller when the moving
platform is parallel to the fixed base. Figure 3(a)–(d) also
shows that when α > 30◦, α < −30◦ or β > 30◦, the trans-
lational dynamic performance is poor owing the 2PRU-UPR
parallel robot being near the singular configurations in these
regions. Additionally, the maximum value of the translational
performance increases from 0.45 to 0.7 with z increasing from
0.1 to 0.22m,whichmeans that a better range for translational
operations is around z = 0.22m.

Figure 4(a)–(d) shows the manipulator at two higher posi-
tions with symmetry along the α axis. The two higher posi-
tions are achieved as a result of the positions of the limbs.
Rotation around the α axis is only associated with the first
and second limbs while rotation around the β axis is only
associated with the third limb. As the model is symmetri-
cal along the α axis and asymmetrical along the β axis,
the dynamic index of rotation is symmetrical along the α

axis and asymmetrical along the β axis. With an increase in z
from 0.1 to 0.22 m, the distance between the manipulator and
driving pairs lengthens, leading to a smaller dynamic index
for rotation. Figure 4(a)–(d) also shows that the rotational
dynamic performance is poor when α > 5◦ or α < −5◦.
In contrast with the distributions of translational dynamic per-
formances, the maximum value of the index of rotational per-
formance decreases from 0.9 to 0.45 with z increasing from
0.1 to 0.22m, whichmeans that the better region for industrial
application (i.e., the better range for rotational operations) is
around z = 0.1m. Figures 3 and 4 show that it is necessary
to select different operational ranges according to the actual
needs of rotation and translation in future applications.

VII. PROTOTYPING

A prototype of the 2PRU-UPR parallel robot has been built,
as shown in Fig. 5. An exploded diagram of the UPR limb
is shown in Fig. 6. Each limb comprises a support frame,
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linear units and links connected by revolute joints, as shown
in the figure. A linear unit includes a servo motor (ECMA-
C10401FS), a link, ball screws (R16-5T3-FSI), couplings, a
linear guide (MGN9C-2-R315-Z0-H-M), a support, a bearing
shaft and a sliding block. The key link parameters were intro-
duced in Section 5. To guarantee the workspace and avoid a
singularity, the displacement of the prismatic pairs is limited
within a certain range di ∈

[

75mm, 310mm
]

, and the screw
length and lead are set at 400 and 5 mm, respectively. To pre-
vent the sliding block from breaking, two optoelectronic
switches are installed near the two ends of the screw. When
the sliding block is detected by the optoelectronic switch,
the control system stops the movement of the corresponding
servo motor. Experiments on the dynamics, accuracy and
kinematic calibration will be conducted in future work.

VIII. CONCLUSION

The dynamic modeling and performance analysis of a 3-DOF
2PRU-UPR parallel robot were presented. On the basis of
inverse kinematics, expressions of the velocity and accelera-
tion of joints and limbs of the 2PRU-UPR parallel robot were
easily derived using screw theory, and the actuated forces
were then obtained directly using the principle of virtual
work. The proposed modeling method was verified in numer-
ical simulation against dynamics modeling using ADAMS
software. The DME was used to evaluate the dynamic trans-
lational and rotational performances of the 2PRU-UPR par-
allel robot, and the effects of the operating height on the
distribution of the DME were discussed in detail, providing
criteria for further precise control and high-speed machining.
A prototype suitable for themachining of curved surfaces was
built.
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