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Abstract: 
A novel nonlinear dynamic double-cable-stayed shallow-arch model of cable-stayed bridge is 
established and the in-plane 1:1:1 internal resonance between three first modes of shallow arch 
and two cables under both external primary and subharmonic resonance is investigated, 
respectively. The Galerkin discretization and the method of multiple scales are applied to obtain 
the modulation equations of the dynamic system. The stable equilibrium solutions of the 
modulation equations are examined by direct integration i.e. Runge-kutta method. Numerical 
simulations are carried out to investigate the dynamic behavior of the new dynamic system. The 
results show the rich nonlinear phenomena and some new conclusions are drawn. 
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1. Introduction 
In the past few decades, cable-stayed bridges became very popular especially when designed to 
cross valleys, wide rivers and even strait, which is a consequence of their inherent mechanical 
effectiveness, economical design, and esthetic appearance. Although high performance materials 
are used to increase these structures' stiffness, such structures are very flexible and light and 
become very sensitive to traffic, wind, rain-wind and earthquake induced vibrations. Thus, stay 
cables and global cable-stayed bridges are prone to vibrate locally or globally. Therefore, 
exploration of the dynamic behavior of these structures under time-varying loads has become an 
important research area. Research on dynamics of cable-stayed bridges went through two stages in 
the past decades. One is the dynamics of single member with ideal excitations such as cable and 
beam, and the other is the dynamics of hybrid structure with internal resonance such as 
cable-beam.  
    Cable dynamics has a long and rich history documented in the classic monograph by Irvine 
(Irvine,1981), and summarized in the review articles by Triantafyllou (Triantafyllou,1991), 
Starossek (Starossek,1994) and Rega (Rega, 2003a,2003b). Based on the parabolic static 
equilibrium configuration, linear free and forced oscillations of elastic cables with small sag were 
first developed by Irvine and Caughey (Irvine,1981). Based on a single-degree-of-freedom model 
for in-plane vibrations of a cable, Hagedorn and Shafer ( Hagedorn and Schafer, 1980) extended 
the linear theory considering the effect of quadratic and cubic non-linearities on eigen frequencies. 

© 2016. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/



 

Cubic non-linearities due to cable stretching and quadratic non-linearities due to equilibrium cable 
curvature couple these motion components in producing full three-dimensional cable response, 
namely modal interaction. A two-degree-of-freedom approximation of the model was developed 
by Perkins (Perkins, 1992), which described a class of in-plane/out-of-plane motions that are 
coupled through the quadratic non-linearities. Thereafter, many studies have focused on the modal 
interaction between in-plane and/or out-of-plane motions (Zhao and Wang, 2006; Pilipchuk and 
Ibrahim, 1997, 1999; Arafat and Nayfeh, 2003)and even between longitudinal and transversal 
motions( Srinil and Rega, 2008). With the extension of main span of cable-stayed bridge the effect 
of bending stiffness in these large-diameter bridge cables is not negligible. An investigation on 
accurate finite element modeling of large-diameter sagged cables taking into account flexural 
rigidity and sag extensibility was carried out by Ni et al( Ni et al.,2002). With consideration of 
flexural rigidity and sag extensibility the three-to-one internal resonance between the first- and 
third-order in-plane symmetrical modes is analyzed by Kang et al.( Kang et al.,2015).  
    There also have been many attempts to understand the dynamic interactions between the stay 
cables and the structural components such as the bridge deck and the towers. From an engineering 
viewpoint, Gimsing (Gimsing and Georgakis,1983) classified vibrations of cable-stayed bridges 
into two types, namely 'local' vibrations and 'global' vibrations. Cable vibrations are local, in the 
sense that the anchorage points at girder and pylon are fixed. On the other hand, girder-pylon 
vibrations are global, since the whole bridge span vibrates. Warnitchai et al. (Warnitchai et al., 
1995). separated the cable motions into two parts: the quasi-static motions and the modal motions. 
The quasi-static motions are the displacements of the cables that move as an elastic tendon with 
the supports, and the modal motions are the vibrations of the cables with fixed ends. However, to 
get for the quasi-static motions of the cables, the mode shapes of the bridge deck and the towers 
are separately obtained from the conventional finite element analysis. To avoid the limitation of 
the above approach, Gattulli and his co-workers ( Gattulli et al., 2002) proposed the hybrid mode 
shapes of a family of linearized cable-stayed beam systems by solving the eigenvalue problem of 
an entire structure. Thereafter they (Gattulli and Lepidi, 2003) have revealed that some 
combinations of the system parameters can result in 1:1 internal resonance between the so-called 
local and global modes. Recently, following the methodologies in Refs( Gattulli and Lepidi, 2003), 
Cao et al. (Cao et al.,2012) proposed a cable-stayed bridge model that consists of a 
simply-supported four-cable-stayed deck beam and two rigid towers, aiming to understand the 
complex dynamic interactions between the cables and the deck beam.  
    Although the natural frequencies and mode shapes of cable-stayed bridges have been 
calculated by a cable model or a cable-beam model, or multiple cable and a deck beam model, and 
even internal resonances between cables and deck beam have been revealed, they often have 
difficulties in analyzing their nonlinear dynamic behavior under external excitation such as 
moving vehicle loading, rain/wind loading and earthquake loading. Additionally, in these studies, 
1:1, 1:2 and 2:1 internal resonances (Gattulli and Lepidi, 2003; Wei et al., 2012,2014; Gattulli et 
al.,2005) between modes of cable and beam have been analytically and experimentally 
investigated, but it is more interesting to explore the internal resonances between modes of 
multiple cables and beam, such as 1:1:1 internal resonance and others between two cables and a 
beam, since that there always exists almost same frequencies of cables in cable-stayed 
bridges( Cao et al.,2012; Caetano et al., 2000; Ren et al., 2005). Then, it is very common that the 
initial static configurations of deck beam are designed in cable-stayed bridges and their effect on 



 

nonlinear dynamics is neglected in previous works. Actually, it is also well-known that the initial 
static configurations of cable and shallow arch are very important to their dynamical properties. 
Hence, the initial static configuration of deck beam should be considered in nonlinear dynamic 
analysis of cable-stayed bridge. Therefore, it is interesting and meaningful to establish a new 
dynamic model of cable-stayed bridges, which may can predict some new dynamic phenomena 
and reveal their mechanism of this kind of bridge. 
    The objective of the present work is to develop a general dynamic model for understanding 
the complex dynamic interactions of cable-stayed bridge. The investigation begins with the 
development of a continuum model representing the cable-stayed bridge. Based on the classic 
dynamic theories of cables and shallow arch, a double-cable-stayed shallow arch mechanical 
model and its differential equations governing in-plane motion of cable-stayed bridge will be 
established. The double-cable-stayed shallow-arch model studied here is closer to a real 
cable-stayed bridge than those in the previous works, where it can be used to analyze the modal 
interaction not only between cable and deck but also between cables. Considering simultaneous 
external resonance and 1:1:1 internal resonance, a set of non-linear partial differential equations 
governing the motion of the dynamic model are solved by Galerkin method and the method of 
multiple scales perturbation. Finally, the nonlinear phenomena of a planar double-cable-stayed 
shallow-arch model for cable-stayed bridge are explored by means of numerical analysis. 

2. Modeling and equations of in-plane motion 
2.1 Modeling of cable-stayed bridge. 

Fig. 1 shows the lateral view of general cable-stayed bridge, which is constructed commonly 
in the world. This kind of bridge is of the following feature. One of them is that the bending 
stiffness of tower is biggest than those of cables and deck. Hence, the tower is generally regarded 
as a stiff tower and cables and deck are flexible in most of references (Gattulli et al., 2002, 2005; 
Gattulli and Lepidi, 2003,2007; Cao et al.,2012)  Another is that the cables are arranged densely, 
which leads to that the fundamental frequencies of cables are dense ( Ren et al., 2005) and that 1:1, 
2:1 and 1:2 between frequencies of cable and deck are commonly( Gattulli and Lepidi, 2003; Wei 
et al., 2012,2014; Gattulli et al.,2005). Generally, the mode shapes of deck can be illustrated by 
sine functions( Chang et al.,2001; Bruno and Leonardi,1997), especially for floating deck. For 
brevity, the mode shapes of shallow arch are assumed to be sine functions as shown in section 4.2. 
Fig. 2 shows the modal shape and dynamic model of cable-stayed bridge with two towers. 
Especially, Fig. 2(a) and (b) were obtained by finite element method (Abdel-Ghaffar and 
Khalifa,1991) and Fig. 2(c) was obtained by analytical method (Cao et al.,2012). Based on these 
work, the cable-beam model is proposed to study the interaction between cable and deck. 
Although some of the dynamic properties of cable-stayed bridge have been revealed and the 
geometry boundary conditions and mechanical ones between cable and beam have been discussed 
in many references, the model itself has many shortcomings. For example, the internal bending 
moment of the cross section of beam is generally not zero at the anchored point, which is 
apparently different from the geometry boundary conditions and mechanical ones at the anchored 
point of the cable-supported cantilever beam. Actually, the cable-supported cantilever beam exists 
only in the construction stage of cable-stayed bridge. Therefore, the cable-beam model is only 
applicable to the construction stage of cable-stayed bridge. For the working bridge, actually there is 
no cable-supported cantilever beam as shown in Fig. 1. Thus, based on these researches the 



 

double-cable-stayed shallow arch model as shown in Fig. 3, is proposed to study the nonlinear 
dynamics of general cable-stayed bridge.  

 
Fig.1 Lateral view of general cable-stayed bridge 
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(d) 

 
(b) 

 
(c) 

Fig. 2 modal shape and cable-beam model of general cable-stayed bridge: (a), (b) and (c) are 
modal shape and (d) is a dynamic model. 

 
The double-cable-stayed shallow-arch model consists of a simply-supported and cable-stayed 

shallow arch and two cables, as shown in Fig. 3. Two cables are used to illustrate the possible 
internal resonance between cables and deck, where the other cables are assumed to be static. That 
is, frequencies of others do not match with those of deck. The other static cable, which is assumed 
not to vibrate, plays a role of elastic support to deck. Their contribution of elastic support on deck 
is considered by increasing stiffness of shallow arch. It should also be illustrated that the towers of 
cable-stayed bridge are assumed to be rigid due to the fact that experimental measurements on and 
finite element analysis of a real cable-stayed bridge demonstrate that the towers have minimal 
vibrations (Cao et al.,2012; Caetano et al.,2008). Hence, the two cables are assumed to be clamped 

at upper ends (Wei et al., 2014) and the lower ends are anchored at the junctions 1 2,s s . To 

simplify the calculation, we now assume that the axial strain of shallow arch does not depend on 

s  but the transverse deflection w (Mettler, 1962). The ratio ( 2 /a ah f L ) of rise to span of 

the shallow arch is very small, which is less than 0.03. It is known that there are many kinds of 
loads acting on the bridge. In this paper, our attention is focused on the axial motion of the right 
end of shallow arch, which can be induced through expansion joints by vehicle or seismic load. 
Although the shallow arch is of elastic extensibility in axial direction, only the right end load is 
considered since that the vertical deflection of deck is usually greater than that of axial direction. 
Therefore, the effect of cable vibration on axial deformation of shallow arch is neglected. The 



 

effect of cable vibration on vertical deformation of shallow arch is considered as an external load 
as shown in Eq. (3). On the other hand, the effects of motion of shallow arch on cable are assumed 
to be vertical excitation at the lower end.  
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Fig. 3 Double-cable-stayed shallow-arch model of cable-stayed bridge  
     The equation ( Malhotra and Namachchivaya,1997) of motion governing the lateral 

deflection a ( , )w s t of shallow arch, subjected to a lateral loading a ( , )p s t , can be derived by 

using the energy method and is given as  
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where,  , E , I ,  and A  are density per unit length, Young's modulus, moment of inertia, 
damping parameter and cross-section area of shallow arch, respectively. y  is the initial 
deflection of the unloaded shallow arch. L  is the span of shallow arch. In Eqs. (1) and (2), the 
subscript a denotes the shallow arch, and apex and dot denotes differentiation with respect to the 
abscissa s  and the time t . 
    The shallow arch is assumed to be subjected to a lateral loading ( , )p s t  induced by two 
cables and to an axial load ( , )u L t  induced by end excitation. Here, the lateral and axial loading 
can be written as 
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( , ) cos( )u L t B t 
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where, 1( )s s   is Dirac delta function,   denotes the inclined angle of cable, namely the 

acute angle between the horizontal line and axis ix  of cables, as shown in Fig. 3, B  and   

denote the external excitation amplitude and frequency, respectively. The subscripts a  and c are 
abbreviation of arch and cable, severally. It needs to be noted that the angle between the tangential 
line of shallow arch and horizontal line is neglected in derivation of Eq. (3) since that the initial 
deflection of shallow arch is very small. 
    Under the previous assumptions and by using the classical extended Hamilton’s principle and 
the standard condensation procedure (Luongo, 1984), the equations of cables’ motion governing 
the in-plane transverse vibration are obtained ( Gattulli et al.,2002) 
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where, ( )ie t  represents the uniform dynamic elongation given by 
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In Eqs. (5) and (6) apex and dot denotes differentiation with respect to the abscissa jx  and the 

time t . jE , jA , jp and jH  are the Young’s modulus, area of cross section, load per unit length 

and horizontal component of the initial tension of the j th cable.  
    Till now, the partial differential equations governing motion of double-cable-stayed 
shallow-arch model have been established as shown in Eqs. (1) to (6). It needs to be noted that the 
in-plane transversely forced excitation at the lower end of cable induced by in-plane transverse 
motion of shallow arch is considered in transverse displacements of cable. It is well-known that 
the existence of both types of modes in transverse displacements are described as the cable being 
quasi-statically dragged by the shallow arch as global modes and modes localized in the cable 
domain known as local modes( Wei et al.,2014; Warnitchai et al.,1995; Wu et al., 2003). Therefore, 

based on the study in these works, the in-plane transverse displacements 1v  and 1v  are 

approximated as follows: 
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 2 2 2 2 2 2 2 2( , ) , cos ( ) ( )v x t w s t x x q t    (8) 

where, 
( , ) ( ) ( )w s t s g t  (9) 

    Owing to the definition of the lateral loads in Equation (3), the elongation in Equation (6) and 
the transverse displacements in Eqs. (7) and (8) of cables, problem (1) and (5), in addition to the 
well-known quadratic and cubic interaction terms of both cable and shallow arch, shows the 
existence of coupling terms between the double-cable-stayed shallow-arch dynamics. 
    Considering Eqs. (3) and (4), a non-dimensional form of problem (1) and (5) can be obtained 
by introducing the following variables: 
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where 1  is the natural frequency of the system in-plane. In the nondimensional form, 

Eqs.(1)–(2) and (5)-(6) become: 
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where the asterisks are dropped for simplicity. Similarly, Eqs. (7)-(9) can be rewritten in 
nondimensional form as 

 1 1 1 1 1 1 1 1( , ) , cos ( ) ( )v x w s x x q       (15) 

 2 2 2 2 2 2 2 2( , ) , cos ( ) ( )v x w s x x q       (16) 

( , ) ( ) ( )w s s g    (17) 
With these assumptions, the nonlinear governing equations of motion with three 
degrees-of-freedom for the double-cable-stayed shallow–arch coupled system can be derived by 
substituting (15)-(17) into (11)-(14) and implementing the Galerkin method( Ding and Chen,2010). 
This yields the following set of equations: 

2 3 2
11 12 13 14 15 1 16 1 17 1cosg g b g b g b g b g b q b gq b q             

2
18 2 19 2 110 2 111 cos 0b q b gq b q b                                               (18) 

2
1 1 1 21 22 23 24 25 1 26 1q q b g b g b g b g b q b gq                                                                                     

2 2 2 3
27 1 28 1 29 1 210 1 0b g q b q b gq b q                                               (19) 

2
2 2 2 31 32 33 34 35 2 36 2q q b g b g b g b g b q b gq                                                                                      

2 2 2 3
37 2 38 2 39 2 310 2 0b g q b q b gq b q                                               (20) 

where ijb  ( 1,2,3; 11)i j  are the Galerkin integral coefficients of the cables and shallow 

arch, respectively, which are reported in Appendix A. From Eq. (18), it is noted that the axial load 
at end of shallow arch can induce a parametric and force excitation. From Eqs. (18)-(19), we can 
see that the coupling between cable and shallow arch are complex and different from those in 
cable-beam system( Wei et al.,2012; Gattulli et al.,2005). Therefore, the nonlinear interaction 



 

between cables and shallow arch and new phenomena are expected. 

3. Perturbation analysis 
    In this section, the method of multiple scales (MMS) (Nayfeh and Mook,1979) is directly 
applied to the governing equations (18)-(20) for determining the steady-state responses. Firstly, we 
introduce a bookkeeping parameter  , which is later set to 1, rescale the parameters of these 
governing equations including the damping coefficients and the external load.  
    The equations of motion governing the model of a double-cable-stayed shallow-arch coupled 
system in nondimensional form are rewritten as: 
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The displacements g  and iq are expanded as 
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where, 0T  , is the fast time scale associated with changes occurring at the frequencies a , b , 

c and  , 2
2T    is the slow time scale associated with modulations in the amplitudes and 

phases caused by the nonlinearity, damping and resonances.  
Substituting Eq. (24) into Eqs. (21)-(23), then equating the coefficients of the same powers of  , 
we obtain the following differential equations: 

0 : 2 2
0 1( ) 0aD g                                                         (25) 

    
2 2
0 11( ) 0bD q                                                         (26) 

    
2 2
0 21( ) 0cD q                                                         (27) 

1 : 2 2 2 2 2
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2 2 3

36 2 21 36 1 22 37 1 21 38 21 22 39 1 21 310 212b g q b g q b g q b q q b g q b q          (33) 

where 
m

j

m
j TD 

 , 1, 2m   and 0, 2j  . 

The general solution of Eqs.(25) - (27) can be expressed as 

1 1 2 0( )exp( )ag A T i T cc                                                     (34) 

11 2 2 0( ) exp( )bq A T i T cc                                                    (35) 

21 3 2 0( )exp( )cq A T i T cc                                                    (36) 

where 2( )jA T , 1, 2,3j  , are complex functions in 2T , which are defined in the next section 

( cc  denotes a complex conjugate of the preceding term). Substituting Eqs.(34) - (36) into Eqs. 
(28) - (30), we get 

213 15 2 0 16 1 2 0
2 1 02 2 2

exp( ) exp( ( ) )exp(2 )
3 (2 )

b a b
a

a a b b a b

b b A i T b A A i Tg A i T   
     


   

 
                             

     
2

17 2 0 18 3 0 19 1 3 0
2 2 2 2

exp(2 ) exp( ) exp( ( ) )
4 (2 )

b c a c

a b c a c a c

b A i T b A i T b A A i T   
      


  

  
 

     

2
110 3 0 16 1 2 0 19 1 3 0

2 2

exp(2 ) exp( ( ) ) exp( ( ) )
4 (2 ) (2 )

c a b a c

a c b a b c a c

b A i T b A B i T b A B i T    
       

 
  

    

     

13 1 1 17 2 2 110 3 3
2 2 2
a a a

b A B b A B b A B cc
  

                                           (37) 

2
23 1 0 24 1 0 26 1 2 0

12 2 2 2 2

exp( ) exp(2 ) exp( ( ) )
4 (2 )

a a a b

a b a b a b a

b A i T b A i T b A A i Tq    
      


   

    



 

     

2
28 2 0 26 1 2 0 2824

1 1 2 22 2 2

exp(2 ) exp( ( ) )
3 ( 2 )

b a b

b a a b b b

b A i T b A B i T bb A B A B cc  
     


   


     (38) 

2
33 1 0 34 1 0 36 1 3 0

22 2 2 2 2

exp( ) exp(2 ) exp( ( ) )
4 (2 )

a a a c

a c a c a c a

b A i T b A i T b A A i Tq    
      


   

    

     

2
38 3 0 36 1 3 0 34 38

1 1 3 32 2 2

exp(2 ) exp( ( ) )
3 ( 2 )

c a c

c a a c c c

b A i T b A B i T b bA B A B cc  
     


   


      (39) 

where 2( )jB T , 1, 2,3j  , are the corresponding complex conjugates of 2( )jA T . In these work 

on cable-beam system, the response to external harmonic excitation of the global mode has been 
used to demonstrate the global–local interaction. Thus, the distances to the internal and external 
resonant conditions have been appropriately described through the relations 

      
 

2
2b a     ,   2

3c a                                          (40) 

 wherer 2  and 3  describe the internal detuning parameters between frequencies of cables 

and shallow arch. Note that the detuning parameter of the forcing frequency is not introduced here 
and will be introduced later. The main cause is that the primary and subharmonic resonance of the 
global mode namely, the first mode of shallow arch, will be considered respectively. 
     Substituting the zero and first-order solutions in Eqs. (34)-(39) and Eq. (40) into the 
third-order perturbation equations in Eqs. (31)-(33), we obtain the third-order in-plane equations 

2 2 1 1
0 3 111 0 12 0 1 1 02 2( ) exp( ) exp( ( ) ) ( 2 ) exp( )a a a aD g b i T b i T i A A i T              

              a a 2 a a a
1 1 2 1 1 11 1 2 2 15 18 1 3 3 0( ) exp( )aA A B A A B A A B i T         

 

             
a a 2 a
4 1 2 1 12 2 2 16 2 3 3 0( ) exp( )bA A B A B A A B i T     

 

             
a a 2 a
6 1 3 1 10 3 3 14 2 3 2 0( ) exp( )cA A B A B A A B i T     

 

              
a 2 a 2
3 1 2 0 5 2 1 0exp( (2 ) ) exp( (2 ) )a b b aA B i T A B i T        

 

              
a 2 a 2
9 1 3 0 8 3 1 0exp( (2 ) ) exp( (2 ) )a c c aA B i T A B i T       

 

              
a 2 a 2
20 2 3 0 8 3 2 0exp( (2 ) ) exp( (2 ) )b c c bA B i T A B i T       

 

              
a a
7 1 2 3 0 17 1 3 2 0exp( ( ) ) exp( ( ) )b c a a b cB A A i T A A B i T            

 

              
a
19 1 2 3 0 1exp( ( ) )a b cA A B i T NST cc                           (41) 

2 2
0 13 1 2 2 0 21 1 0( ) ( 2 ) exp( ) exp( )b b b a aD q i A A i T ib A i T            

          
b b b 2
2 3 6 1 3 1 0 14 3 2 0( ) exp( ) exp( (2 ) )c c bA A A B i T A B i T          



 

          
2 b 2 b b

22 1 3 1 1 11 1 2 2 16 1 3 3 0( ) exp( )a ab A A B A A B A A B i T         

          
b b b 2 b
1 2 4 1 2 1 12 2 2 17 2 3 3 0( ) exp( )bA A A B A B A A B i T         

          
b 2 b 2
9 1 2 0 5 2 1 0exp( (2 ) ) exp( (2 ) )a b b aA B i T A B i T        

 

          
b 2 b 2
10 1 3 0 8 3 1 0exp( (2 ) ) exp( (2 ) )a c c aA B i T A B i T        

 

          
b b
7 1 2 3 0 13 1 3 2 0exp( ( ) ) exp( ( ) )b c a a b cB A A i T A A B i T              

          
b
15 1 2 3 0 2exp( ( ) )a b cA A B i T NST cc                               (42) 

2 2
0 23 2 3 3 0 31 1 0( ) ( 2 ) exp( ) exp( )c c b a aD q i A A i T ib A i T            

          
c c c 2
2 2 6 1 2 1 0 14 2 3 0( ) exp( ) exp( (2 ) )b b cA A A B i T A B i T         

          
2 c 2 c c

32 1 3 1 1 11 1 2 2 16 1 3 3 0( ) exp( )a ab A A B A A B A A B i T         

          
c c c 2 c
1 3 4 1 3 1 12 3 3 17 2 3 3 0( ) exp( )cA A A B A B A A B i T         

          
c 2 c 2
9 1 3 0 5 3 1 0exp( (2 ) ) exp( (2 ) )a c c aA B i T A B i T           

          
c 2 c 2
10 1 2 0 8 2 1 0exp( (2 ) ) exp( (2 ) )a b b aA B i T A B i T          

          
c c
7 1 2 3 0 13 1 2 3 0exp( ( ) ) exp( ( ) )b c a a b cB A A i T A A B i T              

          
c
15 1 3 2 0 3exp( ( ) )a b cA A B i T NST cc                              (43) 

where jNST ( j =1,2,3) denote the non-secular terms and the coefficients 
n
m

( , , ; 1, 2,3...)n a b c m   are defined in Appendix B, respectively. Note that only secular terms 
except for the external load are retained at right hand of Eqs. (41)-(43). 

    For the externally primary and subharmonic resonances of this system, 2( )jA T are expressed 

in the polar form as follows 

2( )
2 2

1( ) ( )
2

ji T
j jA T a T e , ( 1, 2,3j  )                                          (44) 

where ja  and j  are the amplitude and phase angle of jA , respectively. In the next section 

the external primary resonance for the first mode of shallow arch will be disscussed. 

4. Primary resonance of the first mode of shallow arch ( a  ) 
4.1 Modulation equations  



 

    For exploring external primary resonance of the first mode of shallow arch, we let 

2
1a                                                                   (45) 

    By substituting Eqs.(44) and (45) into secular terms in Eqs. (41)-(43) and separating the real 
and imaginary parts, we obtain the modulation equations in the polar form for external primary 
resonance as follows 

 2 a a 2 a a 3
1 1 111 1 1 2 4 3 2 1 2 5 2 12 2 28 4 4 sin ( ) sin sin 2 sina aa a b a a a a a                 

          2 a a a a a
1 3 6 9 3 19 17 2 3 7 2 3 1 2 3( ) sin ( )sin( ) sin( )a a a a a               

          2 a a 2 a 3 a
2 3 20 2 3 14 3 1 3 8 3 3 10 3sin(2 ) sin sin 2 sina a a a a              

          a a 2
16 2 13 2 3 2 3( sin sin( 2 ) a a                                       (46) 

a 2 a a 2 a a
1 1 1 1 1 111 1 1 2 4 3 2 1 2 5 2 118 4( 2 ) 4 cos ( ) cos ( cos 2 )a aa a b a a a a                  

         
a 3 2 a a a a a 3
12 2 2 1 3 6 9 3 1 2 3 19 17 2 3 2 1cos ( ) cos ( ) cos( )a a a a a a a                 

        a 2 a a 2 a a
1 2 3 7 2 3 1 3 15 18 2 3 16 2 13 2 3cos( ) ( ) cos cos( 2 )a a a a a a a                

        2 a a 2 a 3 a
2 3 20 2 3 14 3 1 3 8 3 3 10 3cos(2 ) cos cos 2 cosa a a a a                  (47) 

b 3 b 2
2 1 2 21 2 22 2 1 3 1 2 9 1 2 28 4 4 ( cos sin ) sin sin 2b b a aa a b b a a a a                 

       2 b b b b 2 b 2
1 2 5 11 2 2 6 1 3 2 3 10 1 3 2 3( ) sin (4 ) sin( ) sin( )a a a a a a               

       b 2 b 2 b b
16 1 3 2 8 1 3 2 3 15 7 1 2 3 3sin sin( 2 ) ( ) sina a a a a a a           

       b b 2
13 1 2 3 2 3 14 2 3 2 3sin(2 ) sin(2 2 )a a a a a                               (48) 

b 4 3 b a b a 4
1 2 2 3 1 2 1 2 4 2 9 2 12 2 28 cos ( cos 2 ) cosa b a a b a ba a a a a a                     

 3 b b a 2
1 3 6 2 3 10 2 3 20 2 3 2 3cos( )            cos( ) co     s(2 )    a ba a a a                 

 2 a 2 2 a a
2 3 14 3 2 3 16 2 13 2 3co                      s cos cos( 2 )b ba a a a             

 3 a 2 2 b b a a
2 3 10 3 1 2 11 5 3 4 2c                   os ( ( c s ) ) ob a ba a a a               

  2 b b a a b
1 2 3 15 7 6 9 2 13 2 3( )             ( ) cos cos       ( ) 2a b aa a a                

 2 2 2 2 b b
1 22 2 21 2 1 3 16 2 8 2 34 ( cos sin )                     cos cos( 2 )a a aa b b a a               

3 a b a b
1 2 11 12 5 2 1 3 2 2 3( cos 2 ) 4 co                  s( )   b a b aa a a a               



 

 2 a a a
1 2 3 17 19 2 3 7 2 3                  ( ) cos( ) co s( )  ba a a             

a b 2 a
1 2 1 1 2 12 1 1 2 3 8 3(4 4 8           2 cos ) cos 2          b a a b b ba a b a a a                 

 2 a b b 2 a
1 2 3 15 17 14 2 3 1 2 3 18                  cos(2 2  )   b a ba a a a a a                    (49) 

c 3 c 2
3 1 3 31 3 32 3 1 3 1 3 9 1 3 38 4 4 ( cos sin ) sin sin 2c c a aa a b b a a a a                

2 c c c c 2 c 2
1 3 5 11 3 2 6 1 2 3 10 1 2 2 3( ) sin (4 ) sin      ( ) sin(        )a a a a a                

2 c 2 c c c
1 2 16 3 1 2 8 2 3 7 15 1 2 3 2sin sin(2 ) (           ) sin a a a a a a a            

c c 2
13 1 2 3 2 3 14 2 3 2 3sin( 2 )               sin(2 2 )a a a a a                              (50) 

c 4 3 c a c a 4
1 3 3 3 1 3 1 3 4 2 9 3 10 3 38 cos ( cos 2 ) cosa c a a c a ca a a a a a                     

 3 c c a 3
1 2 6 2 3 10 2 3 13 2 3 2 3             cos( ) cos( ) co       ) s( 2a ca a a a              

 3 2 2 a a
2 3 12 2 2 3 14 3 20 2 3cos              cos cos(2          )a

c ca a a a            

 3 a 2 2 c c a a
2 3 16 2 1 3 11 5 6 9 3                     cos ( ) ( ) cos c a ca a a a            

  2 c c a a c
1 2 3 15 7 3 4 2 13 2 3( ) (                    ) cos cos( 2 )a c aa a a               

 2 2 2 2 c c
1 32 3 31 3 1 2 16 3 8 2 34 ( cos sin ) cos co                    s(2 )a a aa b b a a             

 3 a c a c
1 3 15 12 8 3 1 2 2 2 3             cos 2 4 co    s    ( ) c a c aa a a a             

 2 a a a
1 2 3 17 19 2 3 7 2 3( ) cos( ) cos(                     )ca a a          

a c 2 a
1 3 1 1 3 12 1 1 2 3 5 2(4 4 8 2 cos ) co                    s 2 c a a c c ca a b a a a              

 2 a c c 3 a
1 2 3 11 17 14 2 3 1 3 18                   cos(2 2 )c a a ca a a a a        

           (51) 

where  

1 2 2 1 2                  ( ) ( )T T T   
 

2 2 1 2 1 2 2 2                  ( ) ( ) ( )T T T T     
 

3 2 2 2 1 2 3 2                  ( ) ( ) ( )T T T T       

The stable equilibrium solutions of the modulation Eqs. (46)-(51) corresponding to steady
 
periodic 

motion of cables and shallow arch, which can be determined by setting
 

0j ja   ( 1, 2,3j  ) 



 

in the modulation equations and solving the nonlinear system by using the Newton-Rahson 
method. In order to determine the stability of these equilibrium solutions, one need to evaluate the 
eigenvalues of Jacobian matrix of the dynamic system and check whether the real part of each 
eigenvalue is negative or not. In the following, the stable and unstable solutions are indicated, 
respectively, by thick and thin lines. From Eqs. (46)-(51), it is noted that the complex mode 
interaction is possible for these modulation equations, which will be discussed in next section. The 
SN and HB are used to denote the saddle-node bifurcations and Hopf bifurcations, respectively. 
4.2 Parameters of cables and shallow arch 

In order to explore the nonlinear dynamic behaviors of the double-cable-stayed shallow-arch 
system subjected to external primary or subharmonic resonance by using the these modulation 
equations as shown in Eqs (46)-(51) or (48),(50) and (53)-(56), we choose the following 
parameters and material properties of shallow arch and cables. For shallow arch(Zhou and 
Chen,2016): Young's modulus aE =2.0×1011 Pa, length L =300 m, moment of inertia aI =1.2 m4, 

area aA =2.15 m2 and density a =7.8498×103kg/m3. It is notable that the natural frequency of 

shallow arch is subtle to the initial shallow arch axis illustrated by ay , where, 

a ( / 2)(1 cos2 )ay h s   (Yi et al., 2014). ah  denotes the non-dimensional rise of shallow 

arch and is less than or equal to 0.05. ah  is used to adjust easily the frequency of global mode as 
shown in Fig. 4. Obviously, the non-dimensional rise varies in different cable-stayed bridges, 
which leads to different global mode frequency. Simultaneously, there are many cables with 
different properties, which lead to the match of frequencies of local modes of cables and global 
modes of bridge. Hence, complex modal interaction may exist for this kind of bridge. For cables, 
Young's modulus 1E =2.1×1011 Pa, length 1L =200 m, area 1A =7.8×10-3 m2 and the density 1
=6.233×103kg/m3. The initial equilibrum configurations jy (j=1,2) for inclined cables are 

described through the parabola 24 ( ( ) )j j j j j jy d x l x l  under the assumptions of small sag 

jd  to length jl (Gattulli et al.,2002). For exploring the one-to-one-to-one internal resonance 
between cables and shallow arch, the second cable has the identical properties with the first one. 
These parameters of cables and shallow arch give the values of non-dimensional quantities in Eq. 
(10) as shown in Table 1. Furthermore, we choose the sine function as the mode shapes of cables 
and shallow arch, namely, ( ) sins s  and ( ) sini i ix x  (Kang et al., 2013). The 
relatively low excitation amplitudes (B=0.0001-0.0004) and small damping coefficients 
(i=0.003,i=1,2,3) are also used in the following numerical calculation.  

 



 

 

Fig.4 Variation of non-dimensional frequency with non-dimensional rise of shallow arch 
 
Table 1. Frequencies and Non-dimensional parameters of cables and shallow arch 

cable shallow arch 
b(c) K1(K2) 1(2) 1(2)  a   
4.53763 1.61157 409.5 0.69728  4.63763 4.88986 161850 
Note: a , b and c are the circular frequency. 
 
4.3 Numerical calculation and discussion 

As we have seen, the derivation of these modulation equations is relatively complex. In order 
to verify the accuracy of the following results obtained by the pseudo arclength algorithm 
( Seydel,2009) based on the proposed theories, the fourth-order Runge-Kutta method are used to 
integrate directly these Eqs. (21)-(23) until the steady motion of the system are arrived (Parker and 
Chua,1989), which are denoted by star and can be seen in Fig.5. It should be noted that the jumping 
phenomena can be captured by both upward and downward scanning of σ1 and the results of previous 
step are regarded as the initial conditions of the next step in calculation by the fourth-order 
Runge-Kutta method. As seen, the agreement is satisfactory. Hence, the other results are obtained by 
the pseudo arclength algorithm due to its convenience and accuracy. The frequency responses diagrams 
(see Figs. 3, 4 and 7) and amplitude responses figures (see Figs.5 and 6) are constructed to explore the 
dynamic behaviors of the double-cable-stayed shallow-arch system. 

There are two peaks in Fig. 5(b) for cables, one bent to the left and one bent to the right. This is 
associated with a double jumping phenomenon (Chen et al.,2014; Guo et al., 2016) in the frequency 
response diagrams, which is triggered by those saddle-node bifurcations, i.e., SN1, SN2. Actually, it 
can be deduced that there exists two saddle-node bifurcations at the left and right side beyond the range 
[-1.5,1.5] of σ1, respectively. For σ1<0, the cables exhibit soft-spring while for σ1>0 they behave 
hard-spring. When σ1>0, with increasing of σ1 the equilibrium solutions of cables and arch turn unstable 
through a Hopf bifurcation at HB1, and regain stability at HB2. In the small range of σ1 between the 
two Hopf bifurcations, there exist stable and unstable periodic solutions and the response amplitudes 

2a and 3a  of cables are relatively big. Hence, the Hopf bifurcations should be controlled in 
engineering. All these phenomena for cables are similar to those got by Guo et. al (Guo et al., 2016) 
due to the fact that the motion of cables are excited at the lower ends of cables. However, there exist 



 

apparently differences between them. The symmetry of the frequency response diagrams of cable does 
not exist due to the impact of coupled motion with shallow arch. It can be seen from Fig. 5(a) that the 
shallow arch always behaves soft-spring property in the whole range of σ1 and the two stable branches 
exist closely as σ1>0.686.  

 
Fig. 5 Frequency response curves of modal amplitudes a1, a2 and a3 to excitation amplitude 

B=0.0004 with 2=3=-0.1: (a) for shallow arch and (b) for cables. 
 

Additionally, an interesting phenomenon is observed for the two identical cables. As seen in Fig. 
5(b), there exists two stable branches as σ1<-0.72 or σ1>0.686. For the two identical cables, sometimes 
they behave simultaneously identical motion namely, the equilibrium solutions are the upper branch or 
the lower branch even that the different initial conditions are given. Sometimes, they behave different 
motions even the identical initial conditions are given. This means that the two identical cables 
sometimes have different equilibrium solutions, namely, the upper branch is for one cable and the 
lower branch for the other. Here, it should be illustrated that the two cables are located at shallow arch 



 

symmetrically shown in Fig.3. In other words, the two different stable equilibrium solutions of cable 
can be exhibited simultaneously by two identical cables. This novel phenomenon can be used explain 
why the vibration of cable can be observed in some cables or cable-stayed bridge. 

Fig.6 presents the frequency response curves of modal amplitudes a1, a2 and a3 to different 
excitation amplitudes. It is observed that the responses not only for cables but for shallow arch increase 
with the increasing of the excitation amplitude with the same excitation frequency. It is also noted that 
the frequency range between the two saddle-node bifurcations for large vibration of cables and arch 
expands with the increasing of the excitation amplitude.  

 
Fig. 6 Frequency response curves of modal amplitudes a1, a2 and a3 to different excitation 

amplitudes with 2=3=-0.1: (a) for shallow arch and (b) for cables. 

    Furthermore, the frequency range for periodic motion between the two Hopf bifurcations is also 
enlarged. The response of shallow arch is small as σ1>0, but the response of two cable may be very big 
as shown in Figs. 5 and 6. This means that the vibration control of deck may be useless for reducing 



 

large motion of cables in cable-stayed bridge. Similarly, reducing the axial excitation amplitude at the 
right end of shallow arch may be also fruitless because that the stable equilibrium solutions (the upper 
branch) is not susceptive to the excitation amplitude, although the response amplitude decreases to a 
certain extent.  
    By sweeping the excitation amplitude B (i.e., the right end support motion of the shallow arch) , 
the amplitude-response diagrams are also constructed similarly (with σ1= 0.5 shown in Fig. 7 and σ1= 0, 
-0.5 shown in Fig.8).  
    For σ1 = −0.5< 0, as illustrated in Fig. 8, the jumping phenomenon also exists and is triggered by 
saddle-node bifurcations SN1 and SN2. It is noted that when the excitation amplitude B decreases the 
upper stable branch jumps to zero at SN2 through the saddle-node bifurcation. Furthermore, the 
saddle-node bifurcation (with σ1 = 0) disappears as shown in Fig.8. However, for σ1 = 0.5>0, the 
dynamic behavior of the system becomes complex as shown in Fig. 7.  

 

 
Fig.7  Modal amplitudes a1, a2 and a3 for increasing excitation amplitude with 1=0.5 and 
2=3=-0.1: (a)-(c) for shallow arch and (e)-(f) for cables.  

With the excitation amplitude B increasing from zero, as shown in Figs. 5(a) and (d), the coupled 
stable responses of cables and shallow arch increase sharply, then jump to the upper branch by the 
saddle-node bifurcation (SN1) and lose their stable simultaneously, and then regain the stable through 
the Hopf bifurcation (HB3) with the further increasing of excitation amplitude B. Reversely, with the 



 

excitation amplitude decreasing from 0.0004, the responses decrease and lose their stable at HB3, then 
regain their stable at HB2, and lose their stable at HB1 and jump to the lower branch. It is interesting 
that the jumping phenomenon may not occur if the equilibrium solutions go alone the other branch as 
shown in Figs. 5(b) and (e) while the Hopf bifurcations also exist. At the same time, the responses of 
cables become relatively small. It needs to be noted that the two cables may behave different dynamic 
properties due to the multi-branch of solutions.  

When the excitation amplitude is less than 0.0002 as shown in Figs. 5(c) and (f), with its 
decreasing the upper stable solutions lose their stable at HB9 and regain the stable at HB8, and then 
jump to the lower stable branch through saddle-node bifurcation (SN3 and SN2). If the excitation 
amplitude is increased from zero, the lower stable solutions will lose and regain their stable through 
Hopf bifurcations at HB6 and HB7, respectively, and then jump to the upper stable branch through the 
saddle-node bifurcations, i.e., SN5 and SN4.  

 

Fig.8  Modal amplitudes a1, a2 and a3 for increasing excitation amplitude with 2=3=-0.1: (a) 
for shallow arch and (b) for cables.  

In order to explore the influence of different cables on the dynamics of double-cable-stayed 
shallow arch system, one of the cable is same as the aforementioned parameter (here named cable 
1#) and the other (cable 2#) is changed by 3 , which can indicate the variation of the length, 
initial force, the cross-section area, incline angle and Young’s modulus of cable. The variation of 
Young’s modulus of cable can be used to model the new CFRP cable, where CFRP is short of 
Carbon Fibre Reinforced Plastic. Fig.9 illustrates the frequency-response curves of modal 
amplitudes a1, a2 and a3 with excitation amplitude B=0.0004. It needs to be explained that the two 
modulation parameters 2 and 3 are changed with the variation of the second cable’s parameters 
because that the frequency of global mode is also changed. It is obviously that the parameter 
variation of cable 2# can influence the local dynamics of other cable and the global dynamics of 
shallow arch. In the following, the new dynamic phenomenon is our focus and the similar 
properties as aforementioned in Fig. 5 have been ignored.  

As seen in Fig. 9.1, with the increasing of 1 from -1.5, the unstable and stable equilibrium 
solutions shift alternately through those Hopf bifurcations, i.e., HB1,HB2,HB3,HB4,HB5. 
Obviously, the dynamic behaviors of cables and shallow arch become more complex than those of 
two identical cables. A new stable equilibrium solution appears as 1>0.686, which means that 



 

there exist three stable equilibrium solutions in a certain interval. Additionally, for cable 1#, the 
saddle-node bifurcation occurs in the middle stable branch while it appears in the lower stable 
branch for cable 2#.  

With the difference between the two cables increasing, namely, 2=0.78 and 3=-0.8, as 
shown in Fig. 9.2, the lower stable equilibrium branch vanishes for cable 1# when 1>0. It is 
noted that for cable 2# the response amplitude a3 increases, nearly up to 20% while there is almost 
no changes for cable 1#.  

 



 

 
Fig. 9 Frequency response curves of modal amplitudes a1, a2 and a3 to excitation amplitude 

B=0.0004 with 2=-0.1: (a) for shallow arch and (b) for cables. 
 

5. Subharmonic resonance of the first mode of shallow arch ( 2 a  ) 
5.1 Modulation equations 
For the external subharmonic resonance of the first mode of shallow arch, we let 

2
12 a                                                                  (52) 

Similarly, we obtain the modulation equations in the polar form for external subharmonic 
resonance as follows 

2 a a 2 a a 3
1 1 12 1 1 1 2 4 3 2 1 2 5 2 12 2 28 4 2 sin ( ) sin sin 2 sina aa a b a a a a a a                  

          2 a a a a a
1 3 6 9 3 19 17 2 3 7 2 3 1 2 3( ) sin ( )sin( ) sin( )a a a a a               

          2 a a 2 a 3 a
2 3 20 2 3 14 3 1 3 8 3 3 10 3sin(2 ) sin sin 2 sina a a a a              

          a a 2
16 2 13 2 3 2 3( sin sin( 2 ) a a                                       (53) 

a 2 a a 2 a a
1 1 1 1 1 12 1 1 1 2 4 3 2 1 2 5 2 114 4( ) 2 cos ( ) cos ( cos 2 )a aa a b a a a a a                  

         
a 3 2 a a a a a 3
12 2 2 1 3 6 9 3 1 2 3 19 17 2 3 2 1cos ( ) cos ( ) cos( )a a a a a a a                 

        a 2 a a 2 a a
1 2 3 7 2 3 1 3 15 18 2 3 16 2 13 2 3cos( ) ( ) cos cos( 2 )a a a a a a a                

        2 a a 2 a 3 a
2 3 20 2 3 14 3 1 3 8 3 3 10 3cos(2 ) cos cos 2 cosa a a a a                  (54) 



 

2 2 b a
1 2 2 21 1 2 1 2 1 1 1 2 1 2 18 4 sin 4 ( ) 2 (4 cos )a b a a b b aa a b a a a a a a                   

     3 b 3 b b 2 2
1 2 4 2 2 1 12 11 1 2 9 1 5 2 2         cos(2     )   a a a

a b a b a ba a a a a a a a               

   b 2 a 2 2 b a
13 1 20 2 2 3 2 3 2 3 3 17 15                c    os )  (2  a b a ba a a a a a a              

   2 a a b 2
1 2 3 18 8 3 14 1 2 3 2 3cos(2                   ) c  os 2 2 b aa a a a a a        

 a a 2 b b 2
1 3 17 19 2 2 6 1 2 3( ) (4                    ) cos( )b aa a a a           

 a 2 b 2 2 2 b 2
7 2 10 1 2 3 3 13 23 2 31 8 1cos          ( ) co      s( 2 )( ) a

b a b aa a a a a a a               

 2 2 b 2 2 b 2 a 2
1 22 3 1 2 11 1 12 2 2         (4 ) ( ) c            osa a a ba b a a a a         

 

 2 2 b a 2 b 2 a 2
1 2 5 3 4 3 16 1 16 2 2( ) ( ) co                 s    a

a b b a ba a a a a            
 

 a 2 a 2 b b a a 2
2 3 14 2 10 3 15 7 6 9 1 3( ) ( ) c                     osb a a b ba a a a a                 (55) 

 2 c 2 a 2 2
1 3 3 1 31 3 5 2 2 3 20 2 3 2 38 4 sin cos(2 ) cos(2 )a c a a ca a a b a a a                 

 c
1 3 2 1 2 12 12  2 4 co              2 sa

a c a c ca a b           

 3 c a c 2 c
1 3 6 2 10 2 1 3 2 15 2 3    cos(2 ) cos                    (2 2 )a c a aa a a a a             

 

 2 c a a 3 a a
1 3 2 17 11 5 2 1 3 15 18     cos(               2 ) ( )   a c c ca a a a a          

 

 3 c a 2 a a
1 3 13 8 2 1 2 3 17 19 2 3co            s(2 ) (       )co ) s( a c ca a a a a             

 c c 2 c 2 a 2
1 2 1 4 1 2 3 1 2 9 1 7 3 2 3(4 )cos                    ( ) cos( )a a ca a a a a a a               

   c 2 a 2 a 2 a 2
2 3 14 1 13 3 2 3 2 3 12 2 16 3 2cos( 2 )                    cosa c ca a a a a a a a             

 2 c c a a a 4
1 2 3 7 12 3 4 2 10 3 3cos co                  s   a a c c ca a a a              

   2 a 2 a 2 2 2 c 2 c 2
3 9 1 14 2 3 1 32 3 1 11 2 3c                   os 4 cosc a aa a a a b a a           

 2 2 c c a
1 3 16 8 6 3        co           s a a ca a                                       (56) 

where the others modulation equations for two cables are identical with Eqs. (48) and (50), and 

1 2 1 2 1 2 ( ) 2 ( )T T T    .
 

5.2 Numerical calculation 
 

  Fig. 10 shows the frequency–response curves for the first modes of cables and shallow arch 
when the first mode of the latter is excited by a subharmonic resonance for 2=-0.14 and 



 

3=-0.14. As can be noted from the figure, although multiple stable and unstable solutions exist 
for the three modes of cables and shallow arch, the dynamic behavior is simpler than that of the 
system under primary resonance. Saddle-node bifurcations are observed, however the jump 
phenomenon are not identified. Furthermore, Hopf bifurcations occur only if the excitation 
amplitude is greater than a threshold value. Additionally, it is noted that the response of shallow 
arch trends to zero but those of cables increase for 1>0, which is similar to those discussed earlier 
as shown in Fig. 6(b).  

 
Fig.10 Frequency-response curves of modal amplitudes a1, a2 and a3 to different excitation 
amplitudes with 2=3=-0.14: (a) for cables and (b) for shallow arch. 
    Fig.11 shows modal response amplitudes of cables and shallow arch for increasing excitation 
amplitude with 2=3=-0.14. Here the focus is on the exploration of dynamics of the system for 



 

1<0 since that the response amplitudes are considerably greater than those for 1>0. It is noted 
that the response not only for cables but for shallow arch increase with increasing of excitation 
amplitude with a constant excitation frequency. Similarly, for a constant excitation amplitude, the 
response of the system increases with decreasing of excitation frequency, which is also shown in 
Fig. 10. 

 

 
Fig.11 Modal amplitudes a1, a2 and a3 for increasing excitation amplitude with 2=3=-0.14: (a) 
for shallow arch and (b) for cables. 

Fig.12 and Fig.13 show the influence of the parametric difference between two cables on the 
dynamics of the double-cable-stayed shallow arch system. Firstly, it is noted that the difference 
between a2 and a3 is almost ignorable when the difference between the two frequencies of cables is 
small, namely 2=-0.17 and 3=-0.5. However, the response of cable 2# is considerably greater 
than that of cable 1# when 2=-0.14 and 3=-0.99, which is also seen in Fig.13. Furthermore, as 



 

can be seen from Fig.12, the type of bifurcation of both cables changes with increasing of the 
difference between the cables’ frequencies. The Hopf bifurcation and saddle-node bifurcation are 
identified when the two cables are identical. The Hopf bifurcation vanishes when 2=-0.17 and 
3=-0.5. And then, the saddle-node bifurcation vanishes and a Hopf bifurcation is identified again. 
Therefore, the difference between cables can change the dynamics of not only a cable but also the 
system. This is also shown in Fig.13. As can be noted that the number of equilibrium solutions of 
the system increases to four from two when 2=-0.14 and 3=-0.99.  

 
Fig.12 Frequency response curves of modal amplitudes a1, a2 and a3 to excitation amplitude 
B=0.0004 with 2=-0.14: (a) for shallow arch, (b) and (c) for cables. 

 
Fig.13 Modal amplitudes a1, a2 and a3 for increasing excitation amplitude with 2=-0.14 : (a) for 
shallow arch, (b) and (c) for cables. 
 

6. Conclusion 
A novel nonlinear dynamic model, namely double-cable-stayed shallow arch model, of 

cable-stayed bridge has been established where the shallow arch is used to model the bridge deck 
with consideration of its initial geometric configuration. The nonlinear governing equations of the 
dynamic system were derived and solved. Comparisons between asymptotic and numerical 
integrations results of the discrete equations have been made. Response curves have been obtained 
by varying either the amplitude or the frequency of a symmetric horizontal harmonic forcing near 
primary and subharmonic external resonance. A rich behavior of the system associated with the 
existence of periodic motion, saddle-node bifurcation and Hopf bifurcation is deduced from the 
results presented.  Especially, the following conclusion can be drawn from the results presented. 
Firstly, for the two identical cables, they may behave different motions even the identical initial 
conditions are given under external primary resonance. Secondly, for two different cables, the 
difference between them can change the dynamic behavior of not only a cable (local mode) but 



 

also the system (global and hybrid mode ).  
Additionally, the novel double-cable-stayed shallow arch model can reveal practically the 

rich dynamic behavior of cable-stayed bridge. Although the 1:1:1 internal resonance between two 
cables and bridge deck has been discussed only, the richer dynamic behavior can be explored by 
this model in our following work, such as 1:2:1, 2:1:1 internal resonance between cables and 
bridge deck. 
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Appendix A 
Firstly, in order to simplify the expression of Galerkin integral coefficients of Eqs. (18)-(20), here 
we introduce the following integrals 

1

0
dmm m m md y x   ,

1

33 0
( ) ( )dd y s s s   ,

1

0 0
( )dm m m md x x  ,

1

0 0
dm m md y x  , 

1

0
dmm m m mf y x  ,

1

0
dmm m m mh x   ,

1

0
dmm m m ml x    ,

1

0
dmm m m ms x x  , 

1 (4)
33 0

dr s   ,
1

0
1 dmm m m mx    , ( 0,1, 2,3)m  , 

where m=0 represents there is no corresponding term, and m  and my denote the mode shapes 

and initial configurations of cables and shallow arch, respectively, and 3  and 3y y . 

Then, the coefficients in Eqs. (18)-(20) are given as follows: 
2 2

2 4 2 2 2
11 33 33 33 33 33 0 33
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Appendix B 
The coefficients of Equations (41) - (43) are defined as follows: 
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