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Abstract
Thermal bimorphs are a popular actuation

technology in MEMS (Micro-Electro-Mechanical

Systems). Their operating principle is based on

differential thermal expansion induced by Joule heating.

Thermal bimorphs, and other thermal flexture actuators

have been used in many applications, from micro-

grippers, to micro-optical mirrors.  In most cases open-

loop control is used due to difficulties in fabricating

positioning sensors together with actuator.

In this paper we present several methods for

extracting reduced-order thermal flexture actuator

models based on experimental data, physical principles,

and FEA simulation. We then use the models to generate

optimal driving signals using input shaping techniques.

Both simulation and experimental results are included to

illustrate the efficacy of our approach. This framework

can also be applied to other types of MEMS actuators,

including electrostatic comb drives.

1. Introduction

MEMS (Micro Electro-Mechanical Systems)
technology is being increasingly used in micro-photonic,
micro-fluidic, and RF commercial products. Over the last
15 years several actuation technologies at the micro-scale
have gained wide acceptance, including piezo materials,
shape memory alloys, thermal flexture actuators, and
electrostatic comb drives [3,9]. Examples of such devices
include micro-relays, micro-mirrors, and micro-grippers
[9,11].

In most cases, closed-loop feedback control is not
feasible for these devices due to the difficulty in
integrating on-wafer position sensors.  Capacitive position
sensing can be used, but it requires fairly complex
electronics, due to the very low capacitance ranges [12].
Without position feedback increased precision
requirements on the thermal flextures can be addressed
with greater quantitative analysis and modeling.

Previous modeling efforts for such micro-actuators
include simplified PDE/ODE formulation from physical
principles, finite element analysis, and reduced order
modeling using Krylov subspace techniques [2,10,17,18].

Previous closed-loop control work is mostly based on
external vision and laser-based position measurement
[13]. In terms of open-loop control, finite element
analysis together with direct experimentation have been
used to generate driving signals [2,8].

Thermal micro-actuators can be fabricated in silicon
together with other passive micro-components such as
flexture joints, beams, and gears. Common fabrication
techniques for Si thermal actuators include MUMPS
surface micromachining, Sandia SUMMIT, and DRIE
etching [3,5,6].

If the thermal bimorph actuators are used for the
high-speed actuation of other MEMS structures,
suppressing residual vibrations is highly desirable.
Optical switching systems, for example, require the
control of point-to-point motion of micro-mirrors used to
redirect optical signals. Typical settling times are in the
range of a few milliseconds [7]. Input shaping is a popular
control method for vibration reduction, particularly well
suited in applications where feedback signals are not
available [14, 15]. In order to compensate for the absence
of closed-loop control, an accurate plant model is
required.

In this paper, we employ the following methodology
for the synthesis of open-loop driving signals for thermal
MEMS actuators: first, we derive ARX reduced order
models based on a PDE approximation of the thermo-
electro-mechanical behavior of the device; we then use
the FEA model as a simulated plant for identifying the
reduced order model;  using this model, we generate a
zero-vibration-derivative filter, and apply the shaped
input back to the FEA simulation; we also apply the
approach to actual experimental data; driving signals
leading to the fastest output rise-time response in the
presence of constraints are generated and experimentally
tested using an optimization-based input-shaping
technique, “output-matching”[16].

Although this paper focuses on thermal flexture
actuators, a similar approach can be used to control more
complex microstructures. This approach is especially
useful for MEMS designers who currently invest a
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considerable amount of experimentation time to find
suitable driving signals for these actuators.

2. Thermal Bimorph Banks
The positioning accuracy, actuator bandwidth and

force generated by thermal bimorph actuators, or actuator
banks have been experimentally investigated in [1,2,3,4].
For thinner (2-4 µm) MUMPS bimorphs, bandwidths
between 4 and 27 KHz, and displacements of up to 14 µm
have been reported, depending on the geometry and
number actuators, as well as on the environmental
conditions.  For thicker substrates, the force generated can
be increased from a few µN to a few mN, while the
bandwidth decreases to hundreds of Hz [1,2,3].

The geometry of basic thermal bimorph is shown in
Figure 1(a).  The basic structure has two beams called the
“hot” and “cold” arms. The hot arm has a width of  8µm,
about a third of the width of the cold arm. When a few
volts are applied between the electrical pads, differential
temperature profiles due to Joule heating produces a
horizontal deflection. Using the basic bimorph structure,
we can form actuator banks, as shown in Figure 1(b)-(e).

             
(a) 1 bimorph  (b) Loaded bimorph         (c) 2 bimorphs

    
          (d) 4 bimorphs                         (e) 6 bimorphs
Fig 1. Thermal bimorph structures. The basic structure (a)

is 250 µm long, 3.5µm thick.
Figure 2 shows an example of a MUMPS rotary stage

actuated by orthogonal banks of bimorphs. The angular
velocity of the stage depends on the motion profile of
each of the actuated arms and the size of the teeth.

3. Thermal Bimorph Modeling
Electrical current applied on the square contact pads

provides the input for the thermal bimorph actuator. Its
deflection is governed by thermal expansion resulting
from heat dissipation, according to the heat equation
written as:

HW
dt

dE
−= , cTE = , 2

RIW = .    (1)

in which E is the thermal energy stored in the
microstructure, W is the power generated by Joule heat,
and H is the heat transferred to the environment and
substrate.

(a) (b)
Fig 2. Actual MUMPS rotary stage (a), using 4

orthogonal thermal bimorph banks (b).
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In Eqns. (1) and (2) c is the volumetric specific heat
coefficient, λ is the thermal conductivity and K is
convection coefficient.   Assuming the radiation term is
negligible i.e., the hot arm does not reach very high
temperatures, eqn. (1) can be rewritten in the form:
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Fig 3. Discretized thermal bimorph

A spatial discretization as shown in Figure 3 leads to
the finite element approximation model for the heat
equation:
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in which the resistance of the n-th element, Rn is
temperature dependent:
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If ][
_
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T  are column vectors representing the

centroid positions, and temperatures of all the elements,
the mechanical equations of motion for the device
corresponding to the FEA model can be written as:
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where [M], [B], and [K] are the mass, damping and
stiffness matrices, while the driving force for the system
is generated by thermal expansion. Assuming a constant
coefficient of thermal expansion, α, the actuator force at
its tip element can be expressed as

]][[][
−
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where [N] is a linear matrix linking the displacement of
the actuator tip to small displacements of each element.
The full dynamic model of the bimorph can now be
expressed as:
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With the chain-connected elements in Figure 3, all
the matrices in Equation (8) will be tri-diagonal. A typical
FEA solver will integrate this equation over time to
provide a solution. A modal analysis on the mechanical
structure for 250 µm bimorphs reveals a dominant first
mode along the Z axis (out of plane), and another along
the X-axis (in-plane) as shown in Table 1.

  Unit: Hz

Structure Mode 1 (Z) Mode 2 (X) Mode 3 (X)

1 Bimorph 50,841.6 82,612.3 387,825

2 Bimorph 16,786.9 19,413.5 36,247.7

4 Bimorph 22,152.3 25,915.2 36,723.7

6 Bimorph 28,852.2 37,934.7 42,674.4

Load Mass 12,160.2 23,786.7 82,301.4

Table 1. Natural Frequencies of bimorph structures

We are primarily interested in the in-plane motion of
the actuator (X), along which the excitation displacement
occurs. As a first order approximation, we can retain the
first order mode of the thermo-mechanical model using
two characteristic arm temperatures (hot and cold):
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where x is now a scalar variable representing small
displacements of the bimorph tip element along the X
(horizontal) axis of motion.

If we time-discretized equation (9) with a sampling
rate Ts, we obtain a difference equation with three states
(x, Thot, Tcold), one input (V), and one output (x):
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By eliminating the temperatures state in the
discretized equation through back-substitution, and
further assuming that the g coefficients are negligible, we
obtain the following 3-rd order ARX model:

2
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3. Simulation Results

3.1 FEA Dynamic Simulation

For identification purposes, we use both trapezoid
voltage inputs, as well as PRBS (Pseudo Random Binary
Sequences) inputs, as shown in Figure 4. The trapezoidal
ramps were selected such that the signal appears like a
true step function through the first resonance mode, but it
is much higher than the FEA time integration step (fixed
at 1 µs).

    
           (a) Step Input                          (b) PRBS Input

Fig 4. Dynamic Inputs

The material constants used in the FEA model for the
polysilicon MUMPS bimorphs are fairly well known,
with the exception of thermal convection coefficients as
well as the structural and air damping coefficients.  Even
though the selected values for our simulation may not be
equal to actual values, the intent here was only to check
the performance of the 3rd order modeling assumption.
The FEA dynamic displacement response for the MEMS
structures considered in this paper are shown in Figure 5.
With an increased number of bimorphs, the deflection
increases slightly, and the actuation force will increase
significantly, although not linearly due to added stiffness.



    
            (a) I bimorph                           (b) 2 bimorph

     
             (c) 6 bimorph                 (d) Load Mass

Fig 5. Dynamic step responses of MEMS structures

3.2 System ID on FEA simulated I/O data sets and

input shaping

Although MEMS devices tend to have very small
inertias, high-speed point-to-point motion, or actuator
loading can result in significant vibration. Input shaping is
a viable approach to shape the input command in order to
reduce this vibration.

The fitted third order model for FEA displacement
data was:
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Figures 6 and 7 show the ARX identification results

using both step and PRBS. In each case, using the fitted
model we then apply a “zero-vibration-derivative” filter
design [14,15] to generate voltage inputs.  ZVD was
chosen over a simpler ZV filter because of its better
robustness. The original inputs (steps or PRBS) are then
convolved with the shaping filters and applied back into
the FEA models. The residual vibration are completely
canceled by shaped inputs on the ARX model, but are still
present in the FEA response due to modeling errors from
nonlinear-effects.

 (a) Original and Shaped Input (b) FEA Output Response
Fig 6. Simulation Results for 1 bimorph actuator

(a) PRBS input       (b) FEA and fit displacement

               (c) Shaped input         (e) Shaped response
Fig 7. ZVD Input shaper using  PRBS input

4. Experiments

4.1 Experimental Setup

Using a UMECH networked probe station
instrumented with a stroboscopic, high-resolution camera,
we performed transient displacement experiments on 3.5
µm thick, 250 µm long, single bimorph actuators (Figure
8). The probe station can sample displacement at
arbitrarily sampling intervals as low as 0.1µs, by
collecting video buffers of variable lengths from periodic
inputs. In our experiments, however, we provided input
signals sampled at 1µs, and recorded displacement data
sampled at 10 µs and 33 µs. Based on repeated
experiments on the same actuator, the actual measurement
accuracy was estimated to be better than 2 µm and 0.5
µm, respectively, for total displacements of up to 8 µm.

Fig 8 Experimental setup with one bimorph

Figure 9 shows a typical x displacement response by
applying a step-input voltage.  We noticed that the system
has an over damped behavior and that the measured
thermal bandwidth is much lower than predicted by our



FEA model. In fact, the thermal bandwidth of the actuator
is 4.33 KHz, an order of magnitude lower than the first
mechanical resonant mode. As a result, the system
behaves essentially like a first order pole. In all the
unloaded actuator cases considered in this paper, the
thermal transient will dominate the first mechanical
vibration. Therefore, in this case, ZVD filtering is not
necessary, but we would like to decrease the response
rise-time in the presence of input voltage saturation.

The first order model fit corresponding to
experimental I/O data is:
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(a) Input current (b) Input voltage

(c) Displacement      (d) Bode plot of fit
Fig 9: Experimental dynamic response of a single

bimorph. (c) shows both the measured x displacement
(noisy), and the model fit response (smooth).

4.2 Input shaping using the output matching method

Using this model, we pose the following constrained
optimal control problem:

Given plant model G, and a desired output trajectory

yd(t), find the optimal, constrained control input u(t)

minimizing the 2-norm:

max2],0[ |)(|max,||||min
2

utuyGu dTLu ≤−∈       (17)

In our case, an 8V maximum input voltage constraint
was imposed, and the desired displacement profile for the
thermal bimorph is a step as shown in Figure 10. A
solution (Figure 11) using the output-matching method
[16], can be obtained using with N=50 sinusoidal basis
functions, and the constrained linear square nonlinear
solver from the MATLAB optimization toolbox.

This optimal input profile is verified experimentally
as shown in Figures 12 and 13.  The fastest rise time with
no overshoot corresponds to maintaining the input voltage
at the maximum 8V for 4 µs. Maintaining it for 0-3 µs

leads to a slower rise-time, and the 5 µs response exhibits
overshoot.

Fig 10: Desired bimorph displacement profile (fast), and
simulated displacement profile using optimal input

constrained solution using N=50 basis functions (slow).

Fig 11: Optimal input profile with 8V maximum applied
voltage constraint.

Fig 12: Experimental applied voltage input profiles.

5.  Conclusion
In this paper we presented a model-based approach to

generating optimal inputs for controlling displacement of
thermal MEMS actuators. An open-loop approach is
advantageous for these devices because of difficulties and
cost of integrating on-wafer sensors.



We are currently applying this approach to other
types of MEMS actuators under open loop control, such
as electrostatic comb drives, MEMS micro-mirrors, and
multi-degree of freedom microrobots.

Fig 13: Measured bimorph tip displacements
corresponding to applied voltages in Figure 12.

Acknowledgement
This work was performed under the support of the

U.S. Department of Commerce, National Institute of
Standards and Technology, Advanced Technology
Program, Cooperative Agreement Number
70NANB1H3021. This research is supported in part by
the National Science Foundation Grant CMS-0301827.

References
[1] J.H. Comtois, V.M. Bright, M.W. Phipps, “Thermal

Microactuators for Surface Micro-machining
Processes”, Proc. SPIE, vol 2642, 1995, pp.10-21.

[2] D.M. Burans, V.M. Bright, “Design and
performance of a double hot arm polysilicon thermal
actuator”, Proc. of SPIE, vol3224, 1997, pp.296-
306.

[3]  J.H. Comtois, M.A. Michalicek, C.C. Barron,
“Fabrication Micro-Instruments in Surface-
Micromachined Polycrystalline Silicon”, Proc. of

the 43
rd

 International Symposium Instrument Society

of America, 1997, pp.169-179.
[4]  J. H. Comtois, V. M. Bright, “Design Techniques for

Surface Micromachining MEMS Processes”, Proc.

of SPIE, Micromachining and Microfabrication

Process Technology, vol2639, 1995, pp.211-222.
[5] K. W. Markus, D. A. Koester, A. Cowen, “MEMS

Infrastructure: The Multi User MEMS Processes
(MUMPs)”, Proc. of SPIE, Micromachining and

Microfabrication Process Technology, vol2639,
1995, pp.54-63.

[6] C.C. Barron, B.R. Davies, J. H. Comtois, “SAMPLE
(Sandia Agile MEMS Prototyping, Layout tools, and
Education)”, Proc. of SPIE, Micromachining and

Microfabrication Process Technology III, vol3223,
1997, pp.10-16.

[7] J. C. Chiou, Yu-Chen, Yi-Cheng Chang, “Dynamic
Characteristics Measurement System for Optical
Scanning Micromirror”, Proc. of SPIE,

Micromachining and Microfabrication, vol4230,
2000, pp.180-186.

[8] A. Q. Liu, X. M. Zhang, L. M. Lam, “A 4×4 MEMS
Optical Cross-connectors (OXCs)”, Proc. of SPIE,

Micromachining and Microfabrication, vol4230,
2000, pp.174-179.

[9] M. Goldfarb, N. Celanovic, “Modeling Piezoelectric
Stack Actuators for Control of Micromanipulation”,
IEEE Control Systems Magazine, June 1997, pp. 69-
79.

[10] S. L. Miller, et. al., “Performance Tradeoffs for a
Surface Micromachined Microengine”, Trans. Of

SPIE, vol. 2882, 1996, pp. 182-191.
[11]  P.B. Chu and K.S.J. Pister, ``Analysis of Closed-

loop Control of Parallel-Plate Electrostatic
Microgrippers'', IEEE Intl. Conf. on Robotics and

Automation, San Diego, CA 1994, pp. 820-825.
[12]  E.T. Enikov and B.J. Nelson, "Three Dimensional

Microfabrication for Multi-Degree of Freedom
Capacitive Force Sensor Using Fiber-Chip
Coupling," Journal of Micromechanics and

Microengineering, 10(4), pp. 492-497, Dec., 2000.
[13] Y. Zhou, B.J. Nelson, and B. Vikramaditya,

"Integrating Optical Force Sensing and Visual
Servoing for Microassembly," Journal of Intelligent

and Robotic Systems, 28(3), pp. 259-276, July 2000.
[14]  N.C. Singer, W.P. Seering, “Design and Comparison

of Command Shaping Methods for Controlling
Residue Vibrations”, IEEE Intl. Conf. on Robotics

and Automation, Scottsdale, AZ, 1989.
[15] W.E. Singhose, N.C. Singer, W.P. Seering,

“Shaping Inputs to Reduce Vibration”, IEEE Intl.

Conf. on Robotics and Automation, Cincinatti, OH,
1990, pp. 922-927.

[16] J.T. Wen, B. Potsaid, “Input Shaping for Motion
Control”, CAT Report, Rensselaer Polytechnic
Institute, May 2002.

[17] J.V. Clark, et.al,, “Addressing the Needs of Complex
MEMS Design”, Proc. IEEE International MEMS
Conf., Las Vegas, NV, Jan. 20-24, 2002.

[18] N. Zhou, J. V. Clark, K. S. J. Pister, "Nodal
Simulation for MEMS Design Using SUGAR v0.5."
In 1998 International Conference on Modeling and

Simulation of Microsystems Semiconductors,

Sensors and Actuators Santa Clara, CA, April 6-8,
1998, pp. 308-313.


	Introduction
	Simulation Results
	Experiments

