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Mechatronics Research Laboratory, Department of Mechanical Engineering 

Massachusetts Institute of Technology, Cambridge, MA 02139,  
USA 

1. Introduction 

Precision positioning and alignment are critical to an emerging class of small-scale 
manufacturing and numerous motion control applications. The drive for better performance 
steers design and control effort into achieving high tolerances and stringent specifications in 
terms of parameters, such as resolution, range, load-capacity, and bandwidth. Examples of 
applications needing precision positioning and alignment include (i) high-bandwidth 
steering of mirrors in telecommunication applications [1], (ii) tool-sample alignment in 
stamping applications such as imprint lithography [2, 3] and micro-contact printing [4], and 
(iii) alignment of optically flat surfaces brought in close proximity to characterize fields and 
forces on small-scales, such as the Casimir force [5, 6]. 
A widely used set of designs for precision applications described above involve compliant 
mechanisms based on slender beam modules, also referred to as flexures [7, 8]. The 
advantages flexures offer are mainly smooth elastic motion without non-linearities such as 
friction or backlash [9]. Flexure-based mechanisms such as the diaphragm flexure involve 
the payload suspended on a radial or tangential arrangement of flexural beams. Various 
forms of such flexures have appeared over the past few decades for applications such as 
MEMS mirrors, and in angle alignment and guidance applications [4, 10, 11]. Analysis of the 
statics and dynamics of flexure-based mechanisms have been extensively studied [9, 12]. 
While flexure-based engineering designs have been around for many decades [13], 
designing them for dynamic performance has sought little attention. Few publications [14, 
15] have appeared in this context. The design for dynamical performance of flexures in the 
context of mechanical advantage is detailed in [14]. A finite-element approach based on 
Euler-Bernoulli beam bending theory is formulated for analyzing dynamics in [15] and 
optimizing the design space for precision flexure-based applications in [16]. 

                                                 
1 © 2008 IEEE.  Reprinted by the authors, with reuse permissions, from: “V. Shilpiekandula 
and K.Youcef-Toumi, ‘Characterization of Dynamic Behavior of Flexure-based Mechanisms for 
Precision Angular Alignment,’ In Proceedings of American Control Conference, pp. 3005-3010, 
Seattle WA, June 2008.” 
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We build on the work presented in the literature and integrate models that can enhance the 

accuracy in predicting the dynamics of a given flexure-based design by including the effects 

of distributed mass and compliance of the flexures covering shear and rotational effects. 

These effects are shown to dominate at small flexure lengths. Further, we use the models to 

characterize design space parameters such as range, load-capacity, and bandwidth. While 

most of the current literature in flexure-based designs focuses on static values of 

performance variables such as angular position, or acceleration, we present a state-space 

approach for characterizing the bounds on these variables in the frequency domain. This is 

critical for ensuring that performance requirements are met within the usually large 

bandwidths of operation, an example application being fast steering of mirrors in 

telecommunications [1]. 
 

 

Fig. 1. A diaphragm flexure as a parallel kinematic mechanism with a central rigid mass 

connected by n = 3 flexural beam units to the ground. The dimension D0 = 2`+ 2R is referred in 

this chapter as the footprint of the mechanism. The Z axis is shown pointing out of the page. 

This chapter is organized as follows. In Section 2 we assemble lumped parameter models for 
a diaphragm flexure design. Section 3 covers the closed-form characterization of the design 
space from the dynamic models. Non-dimensional design plots and the efficacy of the 
models in capturing shear effects at small flexure lengths are addressed in this section. A 
state-space approach is used for characterizing key performance variables in Section 4. This 
section taps into multi-input multi-output (MIMO) analysis tools to develop a framework 
for mapping design requirements over to the state-space. The effects of manufacturing 
errors are studied in the context of decoupling and asymmetry in this section. Finally, we 
conclude with a summary of the contributions of the work. 

2. Dynamic modeling 

Our goal is to capture the out-of-plane behavior, i.e. the vertical translation, pitch, and roll 
degrees of freedom of diaphragm flexures used in precision angle alignment mechanisms. In 
this section, we assemble dynamic models for a class of diaphragm flexures – namely, those 
applying radial constraints on a central rigid mass via flexural beam units. We derive 
lumped parameter models representing the mass and stiffness of the diaphragm flexure. 
The applications of compliant mechanisms using the simple flexural beam units studied 
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here span multiple scales from MEMS to meso-scale systems. In all these applications, it is 
desirable to develop accurate models since the mechanisms constitute the plant in the 
overall closed-loop control system. 

2.1 Modeling flexural beam 
To model bending of the flexural beam unit, shown in Fig. 2, we use a Timoshenko beam 
[17] model since a simple Euler-Bernoulli beam model cannot capture the effects of shear 
and rotational inertia. As will be shown later, these effects become significant for short 
beams, which are widely used in compliant mechanisms spanning multiple length scales. To 
model torsion of the flexural element, we use St. Venant's torsion formulation assuming that 
(i) the effects of restrained warping are negligible and (ii) bending and torsion are 
decoupled. Further, we assume that the deflections of the flexural beam element are small 
(an order of magnitude smaller than the beam thickness) and hence, neglect the effects of 
axial stretching and the resultant stress stiffening along the length of the beam element. 
 

 

Fig. 2. Schematic diagram showing a flexural beam element with deflection ω(x, t), slope  

θ(x, t), and twist about the X-axis by an angle φ(x, t). 

Under the above-mentioned assumptions, the distributed parameter model for the beam is 

well-documented in the literature [17] as being depicted by a set of partial differential 

equations in the deflection w(x, t), slope θ(x, t), and angle of twist φ(x, t) listed in Section A. 1 

of the Appendix. 
The infinite-dimensional behavior governed by the set of partial differential equations can 
be approximated to that arising for a one-element model using the method of assumed 
modes [18]. By this method, the infinite-dimensional behavior of the mechanism is 
approximated to a finite-series made up of spatially varying mode shape functions (or trial 
functions) with temporally varying mode amplitudes [19]. Since a one-element model is 
used for the beam, the distributed properties of the beam are lumped to the node at the 
guided end of the beam; the fixed node of the beam has no lumped mass or stiffness. Hence, 
from the three displacements assumed for the guided end of the beam, a three-DOF lumped 
parameter model can be derived.2 

The detailed application of the assumed modes method to the set of partial differential 

equations governing the motion of the Timoshenko beam can be found in parts in [20] and 

[21]. The key results used in this work are highlighted here. Under the geometric boundary 

conditions of (i) one end x = 0 of the flexural beam being grounded and (ii) the other end  

x = ` subject to generalized displacements V(t) = [w(`, t) θ(`, t) φ(`, t)]T , (where w(`, t) is the 

vertical deflection, θ(`, t) the slope, and φ(`, t) is the angle of twist), the corresponding 3×3 

matrices – mass Mf and stiffness Kf are as given below: 

                                                 
2 A many-element model can be used for each flexural beam to develop higher-order 
lumped parameter models, if desired. 
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(1) 

where the matrix values depend on material properties and geometry, and are tabulated in 
Section A. 1 of the Appendix. Zeroes in either matrix result from the decoupling assumed 
between bending and torsion. The lumped mass and stiffness matrices are used as building 
blocks for assembling dynamic models of mechanisms involving flexural beam units. Note 
that we need to restrict these matrix building blocks to parallel kinematic configurations 

since the geometric boundary conditions corresponding to x = 0 have been assumed to be all 

zero. Formulations for serial kinematic configurations can be developed by altering this set 
of geometric boundary conditions [20]. 

2.2 Assembling global lumped parameter model 
Here, we formulate the dynamics of parallel kinematic mechanisms that contain a rigid 

body connected to the ground through a multitude of flexural beam units. We integrate the 

lumped parameter model for the flexural beam in Section 2 with rigid body dynamical 

models using appropriate transformations to obtain the global model [15]. These 

transformations are chosen to ensure the continuity of nodal displacements at the interface 

between the rigid body and the flexures. 

Consider a parallel kinematic mechanism with a central rigid circular disk centered at the 

origin and parallel to the horizontal XY plane of the cartesian XYZ space, as shown in Fig. 

1. In the rest position, the principal axes of the disk X', Y', and Z' coincide with the 

cartesians axes X, Y, and Z, respectively. Let the disk be of radius R, thickness T, mass MR, 

and moments of inertia JRxx and JRyy about the X and Y axes respectively. A number n of 

slender beam flexures, each of width W, thickness H, and length `, are in the XY plane 

connecting every peripheral point Pi to the ground. The coordinates of Pi in the X'Y' plane 

are (RcosαI,Rsinαi) with angles αi ∈[0, 2π) for i = 1, 2, 3… n. 

Since the beams provide high axial (and hence in-plane XY) stiffness and low out-of-plane 

stiffness, we expect that the dominant modes correspond to the out-of-plane motion, namely 

vertical deflection, pitch, and roll. We hence assume that the out-of-plane motion of the disk 

is decoupled from the in-plane motion, i.e. the center of the disk always moves only 

vertically. For small vertical deflection z(t) of the center of mass, and small angular rotations 

θx(t) and θy(t) about the X and Y axes respectively, the principal plane X'Y' of the disk 

moves out of the XY plane to the one depicted by 

 (2) 

For continuity of displacement at each of the nodes Pi, Eq. (2) can be used to show that the 

end-displacements Vi(t) of every ith flexure are related to the global generalized (rigid body) 

displacements VR(t) as follows: 

 

(3) 
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where the transformation matrix ℜ= 

 

(4) 

2.3 Dynamics 

Based on the mass and stiffness properties of the individual flexural beam units connected 

to the central rigid body, we need to derive the mass M and stiffness K properties of the 

assembly. 

By formulating the Lagrangian of the assembly in terms of the rigid body displacements 

VR(t), we develop the lumped mass and stiffness matrices of the overall parallel kinematic 

mechanism as follows: 

 
(5) 

whereMfi and Kfi are the lumped mass and stiffness matrices, respectively, of the individual 

flexure building blocks given in Section 2.1, and Tables 4 and 5; MR is the mass matrix of the 

rigid body and is given by: 

 

(6) 

The equations of motion of the lumped parameter representation, for the free response case, 
is in the form given below: 

 (7) 

Note that we have not presented the modeling of damping matrix B in this chapter. Models 

such as proportional damping, given by B = bmM+bkK, are widely used in the literature [22], 

where bm and bk are constants that depend on material properties and are experimentally 

determined from sine-sweep frequency response measurements. For the design of active or 

passive damping in flexure mechanisms, a survey and foam-based methods are detailed in 

[23]. 

3. Dynamic performance of diaphragm flexures 

In this section, we use the dynamic models developed from Section 2.3 to examine (i) the 
influence of geometric arrangement of flexures on coupling between the global generalized 
displacements or modes, (ii) the best bandwidth possible for a given foot-print of a 
symmetric diaphragm flexure mechanism, and (iii) the performance trade-offs between 
parameters such as range, bandwidth, and load-capacity for the same. 

3.1 Coupling 

From the equations of motion of the diaphragm flexure derived in Section 2.3, the 

geometrical layout of flexural constraints that allow for static and dynamic decoupling of 
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the three DOFs can be determined. For static decoupling, the off-diagonal terms in the 

overall stiffness matrix K should be zero. For dynamic decoupling, the off-diagonal terms in 

both the mass M and stiffness K matrices should be zero. 
Static and dynamic decoupling is desirable, for instance, when the diaphragm flexure 

mechanism is controlled to vertically position the central rigid mass while ensuring low 

error motions in the other DOFs, namely pitch and roll. Stable decoupled systems tend to be 

more amenable to low error motions even under open-loop control. It should, however, be 

noted that perfect decoupling cannot be achieved in practice owing to non-uniformities 

arising from manufacturing or material properties. Nonetheless, designing a compliant 

mechanism to be as close to a decoupled dynamic system as possible is desirable [24]. Here, 

we examine conditions under which such decoupling is possible for a diaphragm flexure 

mechanism. 

Substituting the values of ℜ from Eq. (4) into Eqs. (5) and (5), and given Eqs. (1) and (6), the 

conditions necessary for the off-diagonal terms in the global mass M and stiffness K 

matrices to be zero are as follows: 

 
(8) 

Hence, the geometric arrangement of a number n ≥ 3 of flexures around the central rigid 

mass allows for the overall mechanism to be close to being statically and dynamically 

decoupled if the above conditions are satisfied. Note here that each individual flexure of the 

mechanism has its vertical deflection and slope coupled (both statically and dynamically), it 

is only the parallel combination of three or more of them that allow for the decoupling 

between the global modes to occur. Some possible design layouts that satisfy Eq. (8) are 

discussed in Section A. 2 of the appendix. The effect of deviations from perfect symmetry on 

design requirements such as maximum deflection, velocity, and acceleration are studied in 

Section 4. 

3.2 Natural frequencies 

The best –3 dB bandwidth possible for a closed-loop system depends on many factors, 

including the natural frequencies or poles of the open-loop plant. Fig. 3 shows the plots of 

undamped natural frequencies of the first three modes of the symmetric diaphragm flexure 

of Fig. 1. The plots show the variation corresponding to diaphragm flexure configurations 

with flexural beam length, `, varied in the range of about 0.5 in to 3 in, while keeping the 

footprint 2`+2R at a constant value of 7 in. This constant footprint is chosen as a scaling 

factor for the length dimension and will be used in Section 3.3 to normalize all lengths in the 

design to formulate a non-dimensional study. 
The plots of Fig. 1 show values of the undamped natural frequencies obtained from models 

based on St. Venant's torsion theory and one of two distinct beam bending theories – either 

(i) Timoshenko beam bending theory, or (ii) Euler Bernoulli beam bending theory. As 

explained earlier, the former beam bending theory accounts for shear and rotational effects 

versus, while the latter does not. In the plots of the figure, the frequency values obtained 

from a commercial FEA package are superimposed for comparison of the chosen models. 
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Fig. 3. Plot of undamped natural frequencies of first three modes of the symmetric diaphragm 

flexure of Fig. 1 for flexure beam length ` varying from about 0.2 in to 3 in, keeping foot-

print D0 = 2`+2R at a constant value of 7in. Other parameter values used in the simulation 

are: beam width W = 0.75 in, beam thickness H = 0.1 in, central rigid disk thickness T = 2.5 

in, poisson's ratio ν = 0.33, elastic modulus E = 69 GPa, density ρ = 2700 . 

The trends observed for the variation of natural frequencies for small flexural beam lengths 

is as expected, since small beam lengths result in large stiffness. Since the footprint is 

maintained constant, smaller beam lengths also imply large radius of the central disk and 

hence larger moving mass. However, the cubic dependence of stiffness on beam length 

dominates over the square dependence of mass on radius of the disk; hence the large natural 

frequencies at short beam lengths. For large beam lengths, the radius of the central disk is 

small, and hence the moving mass.3 This effect is marginally larger than the loss in stiffness 

and hence the slight increase in natural frequency at large beam lengths. 

For flexural beam lengths smaller than the shear approximation length factor c ≈ 0.6 in, the 

Timoshenko model matches the trend from the FEA data better than the Euler-Bernoulli 

model. This confrms the prediction that shear effects dominate at small beam lengths and 

agrees with similar observations supporting the Timoshenko beam bending models for 

depicting the natural frequencies of short AFM cantilevers in [25]. 

Closed-form expressions for the natural frequency of the first three-dominant modes in the 

decoupled case, for large flexure lengths, are presented in Table 1. These expressions can be 

used as part of formulating an optimization problem, or to gain useful insights from 

parametric dependencies in designing a precision angular alignment setup based on 

diaphragm flexures. 
 

                                                 
3 At the length scale of the diaphragm flexure discussed here, the moving mass is mainly 
composed of the central rigid disk. The lumped mass of the flexural beam is small at this 
length scale. However, it can be higher in other length scales, as in the case of a torsional 
MEMS mirror. 
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Table 1. Closed-form expressions for natural frequencies of first three modes of diaphragm 
flexure. 

3.3 Performance trade-offs 

The design space for utilizing flexure-based precision angular alignment mechanisms can be 

characterizing in terms of key parameters such as the range, payload capacity, and 

bandwidth. Fig. 4 shows the variation of the key non-dimensionalized performance 

parameters as a function of the non-dimensional flexural beam length ` for all diaphragm 

flexures with a constant footprint of D = 2` + 2R. The performance parameters plotted in 

the figure are (i) the natural frequencies of the first three modes, namely deflection z and the 

two rotations θx and θy, (ii) the maximum load-capacity, Fmax, defined as the load that causes 

the resultant axial stress in the flexural beams to reach the yield strength, σY , of the material 

within a safety factor η, and (iii) the maximum vertical deflection δmax, i.e. range under a 

given load. The normalization factors used for non-dimensionalizing the parameters are 

tabulated in Table 3, where ρ and E are the density and elastic modulus, respectively, of the 

material constituting the diaphragm flexure σ. 
 

 

Table 2. Flexural Building blocks Comparison 

 

Table 3. Normalization factors used for Design Parameters in Fig. 4. 

The trade-off between load-capacity and range at different flexural beam lengths is evident 
from the figure. Small beam lengths allow for large load capacity and low range, whereas 
large beam lengths allow for low load capacity and large range. Natural frequencies are 
relatively low for intermediate beam lengths. The trade-off between natural frequencies and 
range is evident for small beam lengths, since stiffer beams have smaller deflections. The 
compromise between natural frequency and range is relatively mild at large beam lengths. 
An extension of the dynamic performance tradeoff characterization to the case of n = 6 
flexural beams is presented in Fig. 5. From kinematic exact-contraint theory, it is known that 
only three constraints are needed to curb the three in-plane degrees of freedom of the rigid 
body. Thus for the case n = 6, three of the remaining constraints are redundant. 
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Fig. 4. Non-dimensional plots capturing the key dynamic performance parameters for 

diaphragm flexures of Fig. 3 with n = 3 flexural beams of the same footprint D, but different 

flexure lengths ranging in the approximate range 0-0.45 D. The parameters of interest are (i) 

the natural frequency of first three modes , all normalized by f0, (ii) load 

capacity Fmax normalized by F0 and (iii) static vertical range δmax normalized by δ0. 
 

 

Fig. 5. Design parameter variations (shown as solid lines) captured for the case of double the 

number of flexures, i.e. n = 6, as compared to the case of n = 3 (shown as dashed lines) 

captured in Fig. 4. 

The redundancy comes with added features which are desirable and facilitate improving the 
performance as follows. Since the load is distributed between larger number of flexures, the 

load-capacity envelope in this case is pushed higher to double that of the n = 3 case. The 
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stiffnesses sum up since the flexural beams are arranged in a parallel combination. The 

resultant range is hence unchanged from that of the case of n = 3. The added slight benefit is 

that there is no reduction in the natural frequencies. Instead, there is an almost  increase 
in the natural frequency of all the first three modes. This increase can be explained from the 
doubling of stiffness and constancy of mass, since the added mass of the flexures is small 
compared to the rigid body here. Therefore, increasing the number of flexural beams offers 
improved performance in terms of range, load-capacity, and natural frequencies. 

4. State-space performance analysis 

Characterization of parameters such as maximum displacement (or range), maximum 

velocity and acceleration is critical for precision motion control applications. A procedure 

for identifying the static (ω = 0) values of these parameters is developed for precision control 

of ball-screw drives in [26]. In this section, we present a state-space approach for 

determining the design performance parameters – maximum values of deflection (or range), 

velocity, and acceleration that are possible not only for static (ω = 0) but for a large range of 

operating frequencies. 
We follow the approach for the case of a diaphragm flexure used for precision angle 

alignment. To account for the case when symmetry cannot be ensured for the diaphragm 

flexure, we assume a coupled multi-input multi-output (MIMO) model, as against a 

collection of independent single-input single-output (SISO) models. We focus our analyses 

to parameters such as maximum vertical and angular displacement (range), velocity, and 

acceleration. The presented approach can be extended to map other design parameters to 

the state-space. Further, while the ideas presented here are general and applicable to the 

case when state or output feedback control is used as well, we focus our analysis on just the 

open-loop system. 

4.1 State space formulation 
We begin with a state vector x containing the generalized coordinates depicting the 
equations of motion of the system. One choice of state variables could be the generalized 
displacements and their first-order derivatives. 

 (9) 

 (10)

The goal here is to find the maximum values of displacements, velocities, and acceleration 

for any set of inputs (which can be oriented in any direction in the input space). That means 

we need to compute the upper bounds on the amplification of a scalar component xi, which 

is derived as: 

 (11)

where the ith element of the row vector Ei  is 1 and the rest of the m – 1 elements are zero. 

The component xi can be any design variable, such as angular velocity, or vertical deflection 

of the diaphragm flexure. 
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For a chosen control law, in the Laplace domain, the following relations hold between the 

state vector X(s)m×1, its ith component Xi(s), and the input vector U(s): 

 (12)

 (13)

The maximum amplification [27] of the component Xi(s) for a given input U(s) can be 

expressed as the 2-induced (Euclidean) norm of the gain matrix Ei1×mG(s)m×r. For the choice 

of Ei, the gain matrix reduces to the ith row of G(s). Hence, its 2-induced norm reduces to a 

vector norm, and is given by its lone singular value. This singular value of Ei1×mG(s)m×r is 

always smaller than or equal to the singular values of the matrix G(s) and hence provides a 

tighter bound on the amplification of Xi(s). 

4.2 Application to diaphragm flexure 
We now apply the above formulation to the case of the diaphragm flexure of Fig. 3 to derive 
tight upper bounds4 on the amplification of state vector components, such as vertical 
deflection, or say, maximum angular velocity of the diaphragm flexure in a given control 
situation. We do not consider the feedback control problem here; however, the proposed 
method can be extended to that case as well. 

The state vector x(t) and the input vector u(t) for a configuration with three linear actuators 

pushing down on the central rigid body at three locations Qi(RcosβI,Rsinβi), for i = 1, 2, 3, 

are given as: 

 

The matrix A is assembled from components of M-1
K from Eq. (5), and accounting for the 

derivative relationship pairs between the components of the state vector. By determining the 

force and moment components, the matrix B is given as 

 

With the choice of Ei as described earlier, the maximum bound on each of the components of 

the state vector are found as shown in Fig. 6 for the diaphragm flexure of Fig. 3 containing 

three flexural beam units arranged symmetrically around the central rigid mass, and with 

                                                 
4 The lower bound is zero, since for zero inputs, the components of the state vector are all 
zero. 
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linear actuators located at angles, β1 = 0, β2 = , β3 = . The system is decoupled as seen 

from the variation of the singular values. With zero damping at the resonance peak, the 

maximum values of all variables assume exceedingly large values at the resonance 

frequency. 
 

 

Fig. 6. The maximum amplification of states for an unit input vector (along any direction in 
the position space) is plotted for the case of three flexural beam units arranged 
symmetrically around the central rigid mass. 

4.3 Effect of deviation from symmetry 

The same analysis is repeated for the case when a 1º misalignment of one of the flexural 

beam units is caused by a manufacturing error. The system is now coupled, with deflection 

and angular position being dependent on each other, as seen from the two resonance peaks 

appearing in the variation of the singular values. This coupling implies that the angular 

position can assume exceedingly large values at a resonance frequency lower than that 

expected when perfect symmetry is ensured. The input directions that correspond to the 

maximum bound on a component Xi(jω) at a chosen frequency ω lie along the right eigen 

vectors of the matrix , where Gi(jω) is the ith row of the matrix G(jω). 
In summary, the benefits of using this approach for specifying the design performance 
variables are two fold – (i) it is applicable in case of deviations from perfect symmetry, 
allowing to analyze the effects of the deviations, and (ii) it gives the bounds not only for the 

static case (ω= 0) but also for the desired frequency range of interest. This approach can be 

incorporated into the design decision-making process, along with other important 
considerations, such as constraints imposed by physical limits, for example, saturation of the 
actuators, or limit stops in the path of a motion stage. 

5. Conclusions 

We have examined the need for diaphragm flexures in precision angular positioning 
applications. To accurately characterize the dynamics, we assembled lumped parameter 
models from mass and stiffness matrices for individual flexural building blocks and from 
the connected rigid body, as is done in typical finite element methods. Unlike previous  
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Fig. 7. The maximum amplification of states for an unit input vector (along any direction in 
the position space) is plotted for the case when a 1º misalignment of one of the flexural beam 
units is caused by a manufacturing error. Note that the system is now coupled as seen from 
the variation of the singular values. 

works on flexure modeling, we found that Timoshenko beam bending models capture shear 
effects that dominate for short flexural beam lengths. We identified the key performance 
trade-offs in range, load-capacity, and natural frequencies of the first three modes of the 
diaphragm flexure. Redundancy in constraints was exploited to improve on load-capacity 
while ensuring the range or natural frequency requirements are met. Further, a control 
analysis based on singular value decomposition was formulated to capture the maximum 
values of performance variables such as linear or angular position and their derivatives. 
While perfect symmetry ensures decoupling between the modes, it was found that the 
amplification signature changes significantly in the presence of slight asymmetry caused by 
manufacturing errors. The dynamic modeling and state-space performance analysis detailed 
in this chapter are intended to serve as design tools for implementing high-precision motion 
control applications, and in particular, angular alignment based on diaphragm flexures. 

APPENDIX 

A.1 Distributed parameter model and approximation 

The set of partial differential equations governing Timoshenko beam bending and St. 

Venant's torsion under the assumptions stated in Section 2.1 can be written in terms of the 

deflection w(x, t), slope θ(x, t), and angle of twist φ(x, t) as follows [21, 20]: 

 

(14)

 
(15)
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(16)

where ρ, E, GJxx are the density, elastic modulus, and torsional rigidity, respectively; A, Iyy, 

and κ are the cross-sectional area, area moment of inertia about the neutral axis Y, and a 

geometry-dependent shear-factor, respectively. For a rectangular cross-section κ assumes a 

value of 0.833 [25]. 

The component values of the mass M and stiffness K matrices are listed in Tables 4 and 5. The 

parameters used in the tables are  , where  

representing the length scale at which effects of shear dominate. For a flexural beam with 

rectangular cross-section of height H, c reduces to , where ν is the poisson's 

ratio of the material. 
 

 

Table 4. Mass matrix component values 

 
Table 5. Stiffness matrix component values 

A.2 Decoupled arrangements 
To identify the designs of diaphragm flexures that are close to being statically and 
dynamically decoupled, numerical methods can be used to solve the conditions given in Eq. 
(8). A geometric interpretation of the first two conditions of Eq. (8) is presented as: 

 
(17)

where j is the imaginary number . In the complex plane, the first two conditions of Eq. 

(8) hence represents a number n of unit vectors radiating from the origin and adding up to 

zero. An easy guess of a subset Γs of the solution space Γ is possible if we consider the case 

when the flexures are symmetrically arranged around the central rigid mass. Some possible 

solutions present in the symmetry solution subset  Γs are as follows: 

i. For odd values of n, n ≥ 3, a possible solution subset is  for i = 1, 2, 3, … 

n and 0 ≤ ϕ < . 

ii. For even values of n, n ≥ 4, there is an  -fold symmetry, i.e. there are  axes about 

which the flexural units are arranged symmetrically. A possible solution is one with all 
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unit vectors symmetrically arranged  apart, i.e.  for i = 1, 2, 3, …n and 

0 ≤ ϕ< . Another set can be obtained simply by rotating any two (or multiples of two) 

unit vectors adjacent to any axes of symmetry by the same angle, one in clockwise 

direction, and the other in counter-clockwise direction. This possible solution is 

illustrated in Fig. 8. 
 

 

Fig. 8. A solution subset to the case when n = 6, corresponding to three-fold symmetry with 

angle between any two constraints being 2α = 60º. The dashed lines denote the axes of 

symmetry. If the flexure beams on either side of the horizontal axis of symmetry are brought 

symmetrically closer by an angle Δα, they still satisfy the decoupling conditions of Eq. (8). 
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