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ABSTRACT
Motivation: The modeling of system dynamics of genetic
networks, metabolic networks or signal transduction
cascades from time-course data is formulated as a
reverse-problem. Previous studies focused on the estima-
tion of only network structures, and they were ineffective
in inferring a network structure with feedback loops. We
previously proposed a method to predict not only the
network structure but also its dynamics using a Genetic
Algorithm (GA) and an S-system formalism. However,
it could predict only a small number of parameters and
could rarely obtain essential structures. In this work, we
propose a unified extension of the basic method. Notable
improvements are as follows: (1) an additional term in its
evaluation function that aims at eliminating futile param-
eters; (2) a crossover method called Simplex Crossover
(SPX) to improve its optimization ability; and (3) a gradual
optimization strategy to increase the number of predictable
parameters.
Results: The proposed method is implemented as a
C program called PEACE1 (Predictor by Evolutionary
Algorithms and Canonical Equations 1). Its performance
was compared with the basic method. The comparison
showed that: (1) the convergence rate increased about
5-fold; (2) the optimization speed was raised about 1.5-
fold; and (3) the number of predictable parameters was
increased about 5-fold. Moreover, we successfully inferred
the dynamics of a small genetic network constructed with
60 parameters for 5 network variables and feedback loops
using only time-course data of gene expression.
Contact: kikuchi@sfc.keio.ac.jp

INTRODUCTION
Complex biological systems such as gene regulation
networks, metabolic pathways, and signal transduction

∗To whom correspondence should be addressed.

cascades are comprised of many interacting components.
In many cases, the detailed molecular mechanisms that
govern the interactions among system components are
not well understood. Generally, it is difficult to model
these complex processes mathematically. Since most of
them are nonlinear, their description requires a represen-
tation that is general enough to capture the essence of
experimentally observed responses.

Many gene regulation models have been proposed;
they are listed in the recent reviews (D’haeseleer et al.,
2000; Jong, 2002).The models can vary from the very
abstract, e.g. Boolean networks (Akutsu et al., 2000), to
the very concrete, such as fully biochemical interaction
models with stochastic kinetics (Arkin et al., 1998).
The former approach is mathematically tractable, and its
simplicity allows examination of large systems. However,
it cannot infer networks with feedback loops. The latter
approach is better suited to the biochemical reality and
may look realistic enough for the experimental biologists.
However, due to its computational complexity, analysis is
necessarily restricted to very small systems.

The Boolean approximation assumes highly cooperative
binding and/or positive feedback loops to make the
variables saturate in the ON or OFF position. However,
examination of real gene expression data shows that gene
expression levels tend to be continuous rather than binary.
Furthermore, important concepts in control theory that
seem indispensiable for gene regulation systems either
cannot be implemented with Boolean variables, or result
in radically different dynamic behavior.

Others have reported dynamic modeling methods of
gene expression data. Reinitz and Sharp (1995) em-
ployed their dynamic equation (connectionist model) and
simulated annealing. Holter et al. (2001) used a time
translational matrix for modeling these data within a lin-
ear framework. However, the character of such equations
is the topic of much current research.
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One of the well-studied dynamic and continuous ap-
proaches is the ‘S-system’ (Savageau, 1976; Voit, 2000).
It is a type of power-law formalism and is based on a
particular type of ordinary differential equation in which
the component processes are characterized by power-law
functions. The structure of the S-system is rich enough to
capture many relevant biological dynamics. For example,
Shiraishi and Savageau (1976) have developed a TCA
cycle model using the S-system, and others have also
addressed the S-system (Alves and Savageau, 2000; Voit
and Radivoyevitch, 2000). It provides a great advantage
in terms of system analysis and control design because it
allows the customizing of analytical and computational
methods. Using S-system parameters, steady-state evalu-
ation, control analysis, and sensitivity analysis of a given
system are established mathematically (Voit, 2000). On
the other hand, the S-system has a major disadvantage;
all of its large number of parameters must be estimated.
This number is 2n(n + 1), where n is the number of state
variables (ex. concentration). The estimation of these
parameters often causes bottlenecks, and fitting the model
to experimentally observed data is not simple.

We have proposed a technique for the dynamic modeling
of complex biosystems by combining a Genetic Algorithm
(GA) and the S-system (Tominaga and Okamoto, 1998;
Tominaga et al., 2000). GAs perform a global search
that avoids local minima, and they can estimate many
parameters simultaneously (Goldberg, 1989). In fact,
the GA has been applied to parameter estimations of
biosystems, and its usefulness and practicality have been
already documented (Gilman and Ross, 1995; Park et al.,
1997; Pinchuk et al., 2000). However, estimation of the
S-system parameters is too difficult for optimization with
the conventional simple GA. While the use of real-coded
GA (Tominaga et al., 2000) was a possible alternative, it
was suboptimal in that the convergence rates were low,
and only a very small number of parameters, i.e. 12
parameters for 2 variables, were predictable. Furthermore,
since it aimed mainly at reproducing given time-courses,
it was rare that correct ‘skeletal structures’ (the smallest
or almost smallest network structures in ones that can
reproduce the same time-course) were obtained.

In the work presented here, we modified the basic
method and achieved 3 remarkable improvements: (1)
We improved an evaluation function of GA that aims at
eliminating futile parameters by adding the sum of the
absolute values of model parameters to the conventional
error function. We show here that this resulted in an
approximately 5-fold increase in the convergence rate and
an approximately 1.5-fold increase in the optimization
speed. (2) We employed a novel crossover method, the
Simplex Crossover (SPX; Tsutsui et al., 1999). We show
that this improved the search ability, i.e. the number of
predictable parameters and the optimization speed. (3) We

introduced a gradual optimization strategy. Since the GA
is effective for global searches, we attempted to gradually
identify parameters unnecessary for modeling. This
strategy performs iterative identification of unnecessary
parameters, fixes them to 0, and reoptimizes the other
parameters.

By applying (2) and (3), we achieved an approximately
5-fold increase over the basic method in the number of pre-
dictable parameters. Moreover, we successfully inferred
the dynamics of a small genetic network constructed with
5 variables (60 parameters) and feedback loops automati-
cally from only time-course data of gene expressions.

BASIC METHOD
Here we briefly describe our previous modeling method
using the GA for the S-system (Tominaga and Okamoto,
1998; Tominaga et al., 2000).

S-system formalism
The S-system (Savageau, 1976; Voit, 2000) is a type of
power-law formalism described as follows:

d Xi

dt
= αi

n∏
j=1

X
gi j
j − βi

n∏
j=1

X
hi j
j , (1)

where n is the number of state variables or reactants Xi
(ex. concentration), and i, j (1 ≤ i, j ≤ n) are suffixes
of state variables. The terms gi j and hi j are the interactive
effect of X j to Xi . The first and second terms represent
all influences that increase and decrease Xi , respectively.
In the biochemical engineering context, the non-negative
parameters αi and βi are called rate constants, and the
real-value exponents gi j and hi j are referred to as kinetic
orders. Here, αi , βi , gi j , and hi j are parameters that must
be estimated. For numerical integration of the S-system,
there is a high-speed algorithm called ‘Evaluation and
Simulation of Synergistic Systems (ESSYNS)’ (Irvine and
Savageau, 1990).

Optimization of S-system parameters using GA
The model of the S-system, expressed by Equation (1),
contains many real-number parameters (αi , βi , gi j and
hi j ). Their total number is 2n(n + 1), where n is the
number of state variables. When the dynamic actions
of the model are calculated by the numerical solution
method from Equation (1), they cannot be determined
sequentially; all must be determined simultaneously
because the parameters affect others mutually. Moreover,
since the number of parameters that must be determined
is O(n2), optimization is almost impossible by analytical
methods, e.g. a conjugate gradient method, if the number
of parameters is large. We used the GA because it can
determine many parameters simultaneously with high
accuracy, and selected the real-coded GA (Jonikow and
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Michalewicz, 1991) because it improves the optimization
speed compared to the conventional binary GA.

Instead of the conventional binary- or Gray-expression,
the real-coded GA uses the real numerical value expres-
sion as a gene. One individual expresses one model, i.e.
one individual is expressed with a group of real-value pa-
rameters as 2n(n + 1) real-value parameters, representing
αi , βi , gi j and hi j . As an evaluation function of the basic
method to reproduce time-courses, the following relative
squared error E was employed:

E =
n∑

i=1

T∑
t=1

(
X ′

i (t) − Xi (t)

Xi (t)

)2

, (2)

where n is the number of experimentally observable state
variables, T is the number of sampling points of the
experimental data, X ′

i (t) is the numerically calculated
time-course at time t of a state variable Xi , and Xi (t)
represents the experimentally observed time-course at
time t of Xi . For convenience, when Xi (t) is 0 in the
calculation of E , the denominator is set to 0.1. The
fitness F of each individual is the reciprocal of E ;
the optimization strategy is to search for the individual
that maximizes F . In the next section, we describe our
improvement evaluation function.

Our previous GA for the S-system is described as
follows:

(1) Initialization
Generate P individuals and assign uniform random
numbers within the search space to each parameter
of all individuals.

(2) Evaluation
Calculate fitness F for each individual. Keep the in-
dividual with the maximum fitness (the elite indi-
vidual) separate and do not apply evolutionary op-
erations (3)–(5). This represents the elite strategy.
Complete optimization when the fitness of the elite
individual is considered sufficiently high. Finish op-
timization when the number of generations reaches
the upper limit Gmax.

(3) Selection
Select (P − 1) individuals from the group of
individuals based on probability determined by
fitness. Replace the group of individuals with (P−1)

selected individuals and the elite individual, using
ranking selection to choose these individuals. The
method selects each individual according to the
selection probability pi

pi = 1

P

(
η+ − (η+ − η−)

i − 1

P − 1

)
, (3)

where i is the fitness ranking of the individual,
and η+ and η− are the control parameters of the
selection procedure.

(4) Crossover
From the two selected parents, each matrix element
of the offspring is alternately chosen from the corre-
sponding elements of either parent at a probability.

(5) Mutation
Mutate all values according to a probability. Muta-
tion is realized by adding a normal distribution ran-
dom number with the average of 0 and the distribu-
tion of d. Set the distribution d to the initial value d1.
Change d to d2 (< d1) when the fitness of the elite
individual remains unchanged for G1 generations.
Next, change d to d3 (> d1) when the fitness re-
mains unchanged for G2 generations. Then change
d back to d1 when the fitness remains unchanged for
G3 generations. If the fitness is improved, change d
back to the base d1. Multiply the mutation rate by
k (> 1) when the fitness remains unchanged for Gk
generations. However, fix it when it reaches the up-
per limit for the optimization mmax. If the fitness is
improved, change it back to the base m0. Apply this
mutation to all offspring parameters.

(6) Back to (2)
As there are many parameters for optimization that
should be determined, set up suitable values by trial
and error depending on the given problem.

PROPOSED IMPROVEMENTS
Because the basic method could predict only a very small
number of parameters (Tominaga et al., 2000) and the
convergence rate was low, we applied our improvements;
improved evaluation function of the GA, the crossover
method, and our optimization strategy.

Pruning method
As the evaluation function of the basic method focuses on
reproducing given time-courses, it converges to multiple
local minima and rarely attains skeletal structures. Our
aim is not only at the reproduction of given time-courses
but also the detection of skeletal structures with the
expectation of finding unknown pathways.

We propose the following evaluation function E

E =
n∑

i=1

T∑
t=1

(
X ′

i (t) − Xi (t)

Xi (t)

)2

+ cnT

{∑
i, j

|gi j | +
∑

i, j,i �= j

|hi j |
}

, (4)

where c is the weighted coefficient that balances the
two evaluation terms. The first term on the right-hand
side of Equation (4) is the same evaluation function
as in the basic method described in Equation (2). The
second term is the sum of the absolute values of model
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parameters gi j and hi j . Using the second term, skeletal
structures are obtained. We call this the ‘pruning term’.
Our algorithm is comprised of the following two stages:
As the first step, optimize using Equation (4) for G f
generations, and obtain rough skeletal structures while
retaining optimization accuracy. As the second step,
improve the optimization accuracy, i.e. the fitness value
in the meaning of the relative error, keeping the skeletal
structure using Equation (2) for Gs generations.

Following is a discussion of the meaning of improved
evaluation function. The first term aims at the reproduction
of given time-courses. The pruning term, on the other
hand, expresses the futility of model parameters. Since the
value of the term is small when the sum of the absolute
value is small, the pruning term expresses that it is better
for almost all parameters to be 0. While the basic method
assumes all combinations so as not to decrease possibility,
most actual biological networks are sparse, and the S-
system precondition prepares many futile parameters.
Parameters with value 0 do not influence the other state
variables, so that the corresponding pathway can be cut
off in the pathway diagram. The pruning term realizes
this purpose using mathematical equations. Moreover,
under the concept of regularization, the pruning term is
equivalent to the Laplacian regularization term (Williams,
1995). Similarly, the sum of the squared parameter
value can also be considered. It is equivalent to the
Gaussian regularization term (Mackay, 1995). However,
parameter values do not truly become 0 by the Gaussian
regularization term; for this reason we employ the Laplace
regularization term. Our improved technique can prevent
over-fitting and improve the generalization ability because
it not only reproduces time-courses but also tries to
minimize and simplify the network structure by applying
the pruning method. It is effective for noisy real-world
data that have few sampling points. In this case study we
investigated whether skeletal structures can be obtained
using a regularization term. We propose that it is better
to choose regularization terms flexibly, depending on the
given problems.

Simplex crossover
Tsutsui et al. (1999) proposed SPX, and Higuchi et al.
(2000) showed that it improved the optimization speed.
We used the SPX to improve the optimization speed
compared with the basic method.

SPX operations are as follows:
(1) Choose m parents Pk (k = 1, 2, . . . , m) according to

the generational model used and calculate their center of
gravity G

G = 1

m

m∑
k=1

Pk . (5)

(2) Generate random numbers rk

rk = u
1

k+1 , (k = 1, 2, . . . , m − 1), (6)

where u is a uniform random number ∈ [0, 1].
(3) Calculate xk and Ck

xk = G + ε(Pk − G), (k = 1, 2, . . . , m) (7)

Ck =
{

0, (k = 1)

rk−1(xk−1 − xk + Ck−1), (k = 2, 3, . . . , m)

(8)
where ε is the expansion rate, a control parameter of SPX.

(4) Generate an offspring C

C = xm + Cm . (9)

SPX has the following features (Tsutsui et al., 1999):
(1) Since a simplex is basically independent of coordi-

nate systems, the SPX can inherit this independence.
(2) Since offspring vector values are uniformly sampled

around m parent vector values, they inherit the character-
istics of parents and sampling can be assumed to reflect a
certain linkage among the parameters.

(3) As a result, SPX balances between exploration and
exploitation in generating offspring, and it works well on
functions with multimodarity and/or epistasis among the
parameters.

(4) Since the uniform sampling in a simplex can be
performed with simple procedures, SPX is a simple and
non-time consuming operator.

Gradual optimization strategy
Although it is difficult to optimize all the parameters of
the S-system at once, parameters of comparatively lower
importance, which become almost 0, are detectable. If
these values are fixed to 0 and optimization is again done
from the beginning, more parameters of lower importance
are detected. The method of iteratively performing this
procedure is named the ‘gradual optimization strategy’.

The rule for judging unnecessary parameters in the grad-
ual optimization strategy is as follows: If the trials are re-
peated with different initial values, many solution candi-
dates are obtained as local minima. Therefore, it is diffi-
cult to determine deleted parameters automatically. One
solution is to use the result of best fitness in multiple tri-
als. However, this may delete necessary parameters. To
avoid this, we performed double optimization using multi-
ple elite individuals over a threshold from different trials.
In fact, although there were multiple local minima, the es-
sential parameters remained intact. Double optimization
could automatically detect the essential parameters by op-
timizing multiple local minima once again. This avoided
the deletion of necessary parameters based on one elite in-
dividual obtained by the first trial [see (P1) below].
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Table 1. Parameters that determine the dynamic action of the S-system. These values were determined artificially in order to realize the network of Fig. 1 as a
case study. For details, refer to (Hlavacek and Savageau, 1996)

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 5.0 0.0 0.0 1.0 0.0 −1.0 10.0 2.0 0.0 0.0 0.0 0.0
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
3 10.0 0.0 −1.0 0.0 0.0 0.0 10.0 0.0 −1.0 2.0 0.0 0.0
4 8.0 0.0 0.0 2.0 0.0 −1.0 10.0 0.0 0.0 0.0 2.0 0.0
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

The procedure of our gradual optimization strategy is as
follows:

(P1) Obtain skeletal structures by trials with different
initial values using the GA for the S-system. Collect
the higher-rank individuals. In our experience, they have
essential and common links.

(P2) Use the higher-rank individuals as the subsequent
initial individual groups. Apply the GA for the S-system to
them and obtain the elite solution by double optimization;
this detects common parameters from the multiple local
minima.

(P3) From the result of (P2), fix parameters judged
unnecessary to 0, and return to (P1). In this way, the
optimization procedure gradually becomes simpler. The
process is finished when no more parameters are judged
unnecessary.

A problem with the basic method lies in the fact that the
S-system contains many futile parameters with a value of 0
whose optimization is difficult. An important point in our
technique is that a given problem is divided into several
simple problems and the importance of each parameter
gradually becomes clear.

EXPERIMENTAL RESULTS
To confirm the validity of our improved algorithm, we
conducted an experiment, the modeling of the dynamics of
the small-scale gene network shown in Figure 1 (Hlavacek
and Savageau, 1996) as a case study. We described the
system shown in Figure 1 using the S-system notation
of Equation (1) with the numerical parameters shown in
Table 1.

Our computational experiment used 50 time-course
data. They were artificially prepared using the values of
Tables 1 and 2. An example of the data is shown in Figure
2. Other data are calculable using the values of Tables 1
and 2 with the same sampling points.

The conditions of our experiments were as follows:
n = 5, T = 10, P = 65, Gmax = 35 000, αi and βi ∈
[0, 15.0], gi j and hi j ∈ [−3.0, 3.0], η+ = 2.0, η− = 0.0,
G1 = 10, G2 = 5, G3 = 5, d1 = 3.0, d2 = 0.375
and d3 = 15.0 for αi and βi , d1 = 1.2, d2 = 0.15 and
d3 = 6.0 for gi j and hi j , m0 = 0.01, Gk = 2, k = 1.01,

X

X8 substrate X3 inducer

X2 enzyme

mRNA4NAX6 1X mRNANA6X
+

-

+

-

AAX7

-

+ -

X5 regulatorAA7X
+

Fig. 1. Genetic network used in our computational experi-
ments (Hlavacek and Savageau, 1996). This is a typical gene in-
teraction system consisting of two genes (genes 1 and 4). X1 is an
mRNA produced from gene 1, X2 is an enzyme protein it produces,
and X3 is an inducer protein catalyzed by X2. X4 is an mRNA pro-
duced from gene 4 and X5 is a regulator protein it produces. Pos-
itive feedback from the inducer protein X3 and negative feedback
from the regulator protein X5 are assumed in the mRNA production
processes of genes 1 and 4. This model has been developed to an-
alyze the interaction of regulator and effector genes. In our study,
this model was used an example that is well-studied and has feed-
back loops.

Table 2. 10 sets of initial concentrations used in our computational
experiments. These values were also prepared artificially

Trial X1 X2 X3 X4 X5

1 0.70 0.12 0.14 0.16 0.18
2 0.10 0.70 0.14 0.16 0.18
3 0.10 0.12 0.70 0.16 0.18
4 0.10 0.12 0.14 0.70 0.18
5 0.10 0.12 0.14 0.16 0.70
6 0.70 0.70 0.14 0.16 0.70
7 0.10 0.70 0.70 0.16 0.18
8 0.10 0.12 0.70 0.70 0.18
9 0.10 0.12 0.14 0.70 0.70

10 0.70 0.12 0.14 0.16 0.70

mmax = 0.5, G f = 5000, Gs = 30 000, ε = 1, and
m = 65. The applied values of c are shown in Table 3. The
computer environment was as follows: AIST CBRC Magi
Cluster with 1040 CPUs and Pentium III 933 MHz. Our
algorithms were implemented in C language. The time
required for one loop was approximately 10 h.
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X1
X2
X3
X4
X5

Time

Conc.

Fig. 2. Applied time-courses of trial 1. From each time-course, 10
points were sampled for optimization; dots denote sampling points.
These points were selected artificially as a case study. This system
is highly stable that converges on the same values at Time = 0.5. It
diverges when it strays from the convergence domain.

Table 3. Applied values of c in each application. These values are determined
over 50 trials started with different random seeds

Loop P1 P2

1 0.15 0.19
2 0.07 0.15
3 0.01 0.11
4 0.005 0.07
5 0.003 0.01
6 0.001 0.001
7 0.0007 0.0009

Parameters estimated by PEACE1 are shown in Table
4. We found that dynamics modeling was attained. This
result was obtained by applying the gradual optimization
strategy 7 times. The number of parameters inferred to
have value 0 was 17, 23, 26, 30, 33, 36 and 36 at the
sequential iterations. The first number, 17, reflects the
performance of SPX without application of the gradual
optimization strategy; the correct number is 37 as shown
in Table 1. The results in Table 5 show that both, the
convergence rate for obtaining skeletal structures and
the optimization speed, were improved by using our
technique. The pruning method is equivalent to having
the foreknowledge that general genetic network structure
are sparse by giving an evaluation function that aims at
skeletal structures. Not only was the ability to acquire
skeletal structures increased, but the convergence rate and
the optimization speed were also improved, and solutions
with high fitness values were obtained. This shows that
our technique is also useful for raising the convergence

rate and the optimization speed. Compared to the basic
method c = 0, the convergence rate using our technique
was increased about 5-fold and the number of generations
for convergence was decreased by about 1.5-times in cases
where the optimal coefficient was c = 0.15. The most
suitable values of c in each application are presented in
Table 3. Table 5 shows that if the value of c is too large,
the convergence rate falls because all parameter values
become 0. On the other hand, if the value is too small,
the effect decreases and becomes equivalent to the basic
method. Based on these considerations, we expect that a
certain optimal value exists for c.

DISCUSSIONS
Not only the improvement of the evaluation function but
also the introduction of the SPX were important factors in
this work. By the crossover of the basic method, prediction
was limited to 12 parameters for 2 variables (Tominaga
et al., 2000). However, introduction of the SPX expanded
the search ability to 60 parameters for 5 variables. We
previously tested the effects of the improvement of the
evaluation function using the crossover of the basic
method (Kikuchi et al., 2001) and found that although the
convergence rate improved, as was the case in the present
study, it was difficult to increase the number of predictable
parameters. Based on the data presented here, we conclude
that adding SPX and the gradual optimization strategy
contributed to the increase in the number of predictable
parameters, and that the pruning method played a role in
the observed improvement of the convergence rate and the
optimization speed.

When the application of our method to actual biotech-
nology systems is considered, the acquisition of multi-
ple time-courses becomes a problem in our strategy. In
fact, we observed no convergence when only a few time-
courses were given as input data, indicating that the re-
striction condition was too weak. One simple solution we
chose here is to use multiple time-courses with the same
dynamics and different initial concentrations.

The search performance can be expected to further
improve, if the range of each parameter value is restricted
by biological knowledge. Robustness, i.e. the ability to
bear noises, was not addressed in this study. Since we
generated the time-courses artificially, we did not consider
the observation noise. However, we posit that decreasing
the number of model parameters by the pruning method
will be effective. As over-fitting worsens generalization
ability, we will investigate the relationship between our
technique and robustness. At present, we suggest that the
number of sampling points and the optimization time are
not unrealistic if our method is applied to real problems.

To analyze such perturbations in reality, quantitative
analysis of biological dynamics will be required. Although
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Table 4. Parameters estimated by PEACE1. The relative error of time-courses produced by this matrix is 0.54%

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 5.9 0.0 0.0 0.9 0.0 −0.9 10.6 1.7 0.0 0.0 0.0 0.0
2 10.0 2.1 0.0 0.0 0.0 0.0 10.2 0.0 2.1 0.0 0.0 0.0
3 9.6 0.0 −0.9 0.0 0.0 0.0 9.7 0.0 −0.9 2.3 0.0 0.0
4 9.4 0.0 0.0 1.9 0.0 −0.9 11.5 0.0 0.0 0.0 1.8 0.0
5 10.2 0.0 0.0 0.0 2.1 0.0 10.2 0.0 0.0 0.7 0.0 1.9

Table 5. Changes in the convergence rate and the number of generations for
convergence in attaining a 5% relative error at the first application according
to structure parameter c. Here, since c = 0 is equivalent to not calculating
the second term, this case reflects the basic method. c = 0.15 was a suitable
value in this study

c Success rate No. of generations

0 14% 9537
0.03 38% 6619
0.09 58% 6488
0.15 72% 6346
0.21 60% 6927
0.27 66% 6439
0.33 54% 6742
0.39 70% 6520
0.45 66% 6757
0.51 64% 7166
0.57 44% 7574
0.63 36% 7789

conventional methods have aimed mainly at pathway-
finding (D’haeseleer et al., 2000), the future research
focuses more on dynamic changes and interactions among
biological objects. In this light, our work is considered a
good primer for the reconstruction of complex dynamics.
For example, our result can be imported to a kinetic cell
simulation system, such as the E-CELL system (Tomita
et al., 1999), to see the network behavior under different
perturbations. Although the ability of PEACE1 is still
short for inferring the dynamics of a large network, the
basic approach can be integrated with other systems to
enlarge the network size to be predicted.

AIGNET (Algorithms for Inference of Genetic Net-
works; Maki et al., 2001) is a system for large-scale
genetic network modeling. It represents a genetic network
as a directed graph where nodes and edges correspond
to genes and their relations, respectively. The network
prediction is based on the change in gene relations
between normal (wild-type) and abnormal conditions,
i.e. deletion or forcible expression of a particular gene.
The gene relation for each disruption experiment is
expressed by a matrix in which each element represents
the real-value intensity of a gene expression. Since

AIGNET conforms to Boolean networks, the top of the
loop cannot be determined, and loop structures cannot be
inferred. Our PEACE1 can be applied for the modeling of
loop structures as an additional component of AIGNET.
AIGNET is useful for obtaining a rough skeletal structure
and a large-scale network. PEACE1, on the other hand,
can be used to infer loop structures and estimate detailed
kinetics. We propose that in combination, PEACE1 and
AIGNET can be used effectively for detailed large-scale
network prediction such as TCA cycle.

CONCLUDING REMARKS
The basic method using the GA and the S-system can infer
skeletal structures rarely and can predict only a very small
number of parameters because it aims at reproducing given
time-courses and employs a simple genetic operation
strategy. We reported our improvement of an evaluation
function that eliminates futile model parameters. Since it
is aimed at a simple structure that is equal to an objective
structure, it forces model parameters into desirable values.
As a result, the convergence rate increased about 5-
fold and the optimization speed increased about 1.5-fold.
In addition, we employed a novel crossover SPX and
a gradual optimization strategy. Using this method, we
showed that the number of predictable parameters rose
about 5-fold. We successfully and automatically inferred
the dynamics of a small genetic network constructed with
60 parameters for 5 variables and the feedback loops from
only time-course data of gene expression.

To achieve the goal of predicting large-scale networks,
we propose that PEACE1 be included in a module of
AIGNET, and be applied to actual genetic network
prediction and kinetic cell simulation. Moreover, as the
predicted dynamics are expressed as the S-system for-
malism, we suggest that steady-state evaluation, control
analysis and sensitivity analysis be applied to the results
thus obtained.
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