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Abstract

A real-time cell electronic sensing (RT-CES) system has been used for label-free
dynamic measurements of cell responses to toxicant. Cells are grown onto the sur-
faces of the microelectronic sensors. Changes in cell number expressed as cell index
(CI) have been recorded on-line as time series. The CI data are used for dynamic
modeling or parameter estimation for cell cytotoxicity process. We consider two
dynamic modeling approaches, namely data based system identification and first
principle modeling. It is shown that data based system identification can provide a
quick solution for the cytotoxicity dynamic models and is effective for short term
predictions. It, however, can be poor for long term predictions, particularly if there
is no output correction, i.e. when the model is used for simulation. In view of this,
the first principle modeling approach by considering fundamental physical principles
such as toxicant transport is explored. For long term prediction or simulation, the
prediction performance for some of cytotoxicity process is dramatically improved
using the models obtained from the latter approach. This happens only if the un-
derlying mechanism is truly understood. Through several cytotoxicity modeling
and validation studies, it is shown that the blackbox modeling and first-principle
modeling both should be considered in challenging modeling problems such as the
cytotoxicity. Pros and cons of the two modeling approaches are discussed.
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INTRODUCTION

Cytotoxicity is the degree to which an agent possesses a specific toxic action
on living cell referring to cells killing, cell lysis and certain cellular pathological
changes, such as cellular morphological and adhesion change, induced by toxic
agents.

When exposing to toxic compounds, cells undergo physiological and patholog-
ical changes, including morphological dynamics, an increase or decrease in cell
adherence to the extracellular matrix, cell cycle arrest, DNA damage, apop-
tosis and necrosis (Xing et al., 2005). Such cellular changes are dynamic and
depend largely on cell types, the nature of a chemical compound, compound
concentration, and compound exposure duration. In addition, certain cellular
changes, such as morphological dynamics and adhesive changes, which may
not lead to ultimate cell death, are transient and occur only at early or late
stages of toxicant exposure. Modeling such diverse information sets is chal-
lenging at the analytical level. Understanding of underlying mechanism plus
experiments has to be resorted to.

Dynamic information of cells provides an additional dimension and insight into
explanation of cell behavior such as cytotoxicity comparing with conventional
fixed point observations method such as cell viability. Dynamic responses are
typically described by dynamic models. These models can take many different
forms, such as a state space model, transfer function, neural net, fuzzy logic
etc. To obtain the dynamic model, one usually has to perform dynamic exper-
iments, determine model structure, estimate model parameters, and validate
the model (Soderstrom and Stoica, 1989). This complete procedure is known
as system identification in systems and control literature (Ljung, 1999).

Time series expression experiments are an increasingly popular method for
studying a wide range of biological systems because the information of dy-
namic behavior in biological system provided by such experiments is essential
for biology system analysis. Time series analysis of biological system may be
classified into a hierarchy of four analysis levels: experimental design, data
analysis, pattern recognition and networks(Bar-Joseph, 2004). This paper will
focus on the data analysis aspect for dynamic modeling.

The first application of time series is for system identification. However, models
obtained from system identification have limit validity (Soderstrom and Sto-
ica, 1989). They are usually valid within the range of experiments and their
prediction performance can deteriorate quickly outside the experiment range,
particularly for highly nonlinear processes. These models give little physical
insight and in most cases the parameters of the model have no direct physical
meaning. The parameters are used only as tools to give a good description
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of the system’s overall behavior within certain range. Nevertheless, they are
relatively easy to construct and use, particularly for short term prediction or
for control purpose, and thus are widely used in systems and control.

For a long term prediction, the first principles of cytotoxicity and its dynamic
behavior have to be investigated, and the underlying mechanism has to be un-
derstood. However, most available contributions in cytotoxicity are empirical
and models developed often represent steady state or a few intermediate points
of the cytotoxicity process. In a related area of pharmacokinetics and phar-
macodynamics where the effect of drug is of main interest, however, several
mathematical models have been developed to predict the dynamic behavior
of drugs in vitro. In (El-Kareh and Secomby, 2005), a mathematical model is
presented for the cellular uptake and cytotoxicity of the anticancer drug dox-
orubicin. The model assumes sigmoidal, Hill-type dependence of cell survival
on drug-induced damage. Drug-induced damage is expressed as the sum of two
terms, representing the peak values over time of concentrations of intracellular
and extracellular drugs. Hill equation is an empirical relation representing cell
survival rate and peak values of cell concentration represent only single points
of the dynamic profile. In (Lankelma et al., 2003), cell proliferation is ex-
pressed dynamically as N = N0exp(kt), where N is cell papulation, N0 is cell
papulation at time 0. The parameter k has an expression k = b log(N∞/N0)
(b is a constant) without the presence of drug and k = k0 exp(−ξ) with the
presence of drug. With the presence of drug the term ξ is a complicated in-
tegral of drug accumulation in the cell. These expressions are derived on the
assumption that cell population is dependent on the accumulation of drug
inside the cells.

There are several other mathematical models for drug dynamics, but are sim-
ilar to either (El-Kareh and Secomby, 2005) or (Lankelma et al., 2003). The
basic principle is that cell population depends on the area under the concen-
tration curve. For example, in (Doroshow, 1996), antitumor effect of drugs is
assumed to be a function of Area Under the drug Concentration time curve
(AUC). In (Ozawa et al., 1980), it was proposed to fit an exponential (dy-
namic) model for cytotoxic effect of doxorubicin to data with the form of
S = exp(−ktce) where S is cell survival relative to control at time t, ce is
extracellular drug concentration. In (Millenbaugh et al., 2000), a cell-killing
mechanism dependent on cnt was proposed, where c is drug concentration.
There is evidence that drugs can kill cells without actually entering them;
intracellular drug is nevertheless believed to make a significant contribution
to cell killing (Gewirtz, 1999).

Instead of relying on empirical correlations, area under concentration curve
(AUC), or integration of cnt, in this paper, we consider cytotoxicity modeling
according to fundamental transport principles and mechanism of toxicant ef-
fect. We will first assume a mechanism according to certain a priori knowledge
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of cell killing pathway, and then model structures are derived analytically with
certain unknown parameters. The parameters are then estimated from exper-
iment data, and cross verified by independent data sets. The validity of the
mechanism can be determined through the cross validation. If the model fails
cross validation test, a new mechanism is assumed and the procedure repeats.

Regardless system identification or first-principle modeling with parameter
estimation, the dynamic experiment is the first step and the most important
step to ensure the quality of the modeling or parameter estimation. However,
the dynamic monitoring of cytotoxicity is difficult to achieve in most of con-
ventional cell based assays because they need chemical or radiation indicators
that may kill or disturb target cells. For dynamic detection of a broad range
of physiological and pathological responses to toxic agents in living cells, Xing
et al (2005) has developed an automatic, real-time cell electronic sensing (RT-
CES) system that is used for cell-based assay. This system has advantage
of greater precision of dynamic monitoring of cytotoxicity than experiments
performed in classical pharmacokinetics and pharmacodynamics.

In this paper, a dynamic modeling framework for the cytotoxicity will be estab-
lished. The cell index (CI) data obtained from several cytotoxicity experiments
based on RT-CES will be analyzed. According to the previous study (Xing et
al., 2005), the CI values as determined on the RT-CES system were found
to be linearly correlated with cell numbers over the range between 125 and
16000 cells, having a correlation coefficient of 0.995. For viable cell counting
and quantification, the data generated on the RT-CES system are consistent
with that obtained for the MTT assay. It will be shown in this paper that the
dynamic model can play an important role in analyzing intrinsic cell behavior
and predict the trajectory of its progress (growth or death) over considerable
time horizon.

DYNAMIC MODELS AND PREDICTIONS

There are numerous ways to represent dynamic models. In this paper the
following model structures are considered:

First-principle model: This is the most commonly used model based on
the first principles of underlying process. The model to be considered in this
paper takes the following form:

dy(t)

dt
= f(u(t), y(t), t) + e(t)

where f() is a nonlinear function and has to be derived from first principles,
and e(t) is the measurement noise.
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Nonlinear autoregressive with exogenous input (NARX): This is fre-
quently used dynamic model in data-based nonlinear system identification.
We consider the following form of NARX model in difference equation form:

yt = f(yt−1, · · · , yt−p, ut, · · · , ut−q) + et

where the structure of f() is unknown and has to be identified from data.

Two types of predictors will be considered, namely k-step ahead predictor and
infinite-step ahead predictor. Predictors are derived from dynamic models.
They serve for two purposes: 1) Used for dynamic prediction of future outputs
based on current available information. 2) The predicted outputs from the
predictors can be used to verify models. There are two types of model valida-
tions used in this work: 1) Validation using the same experiment data to verify
the model. This type of validation has been used frequently in the literature,
which, strictly speaking, is not validation. We call this type of validation as
self validation. 2) Validation using independent data to verify the model. We
call it cross validation.

Models can be verified according to either k-step ahead prediction or infinite-
step ahead prediction, with latter being a more rigorous criterion.

k-step ahead prediction is given by

ŷt+k|t = p(yt, yt−1, · · · ; ut+k, ut+k−1 · · · )

where ŷt+k|t is prediction of yt+k based on all information available at time
t. One may notice that the prediction has used measured output up to time
t, which may be considered as a correction/update of the prediction. Thus a
model is easier to pass this type of validations particularly when the prediction
horizon k is small and output response is smooth.

Infinite step ahead prediction or simulation is given by

ŷt+k = g(ut+k, ut+k−1, · · · )

where the prediction of yt+k does not use any information of the past outputs,
i.e. there is no correction from the measurement of the output. This predictor
is equivalent to

ŷt = g(ut, ut−1, · · · )
which is exactly a simulator. Infinite step ahead prediction is also known as
simulation. Model validation using infinite step ahead prediction is a more
rigorous validation of dynamic models if the objective of modeling is toward
a true model.
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CYTOTOXICITY EXPERIMENTS

Experiment Setup

The RT-CES system (ACEA Biosciences, CA, USA) has been used for this
study. The RT-CES system was described previously in (Xing et al., 2005).
Briefly, it consists of a 16x microelectronic sensor devices having 16 plastic
wells in microtiter plate format, a device station and an electronic sensor an-
alyzer. Cells will be grown onto the surfaces of microelectronic sensors. In
operation, the sensor devices with cultured cells will be mounted to a device
station placed inside a CO2 incubator. Electrical cables will connect the de-
vice station to the sensor analyzer. Under the control of RT-CES software,
the sensor analyzer will automatically select wells to be measured and contin-
uously conduct measurements on wells. The electronic impedance can then be
transferred to a computer and recorded.

A parameter termed CI is derived to represent cell status based on the mea-
sured electrical impedance. The frequency dependent electrode impedance (re-
sistance) without or with cells present in the wells is represented as Rb(f) and
Rcell(f), respectively. The CI is calculated by

CI = max
i=1,...,N

[
Rcell(fi)

Rb(fi)
− 1]

where N is the number of the frequency points at which the impedance is mea-
sured. Several features of the CI can be derived: (i) Under the same physiolog-
ical conditions, if more cells attach onto the electrodes, the larger impedance
value leading to a larger CI value will be detected. If no cells are present on
the electrodes or if the cells are not well-attached onto the electrodes, Rcell(f)

is the same as Rb(f), leading to CI = 0. (ii) A large Rcell(f) value leads to a
larger CI. Thus, CI is a quantitative measure of the number of cells attached to
the sensors. (iii) For the same number of cells attached to the sensors, changes
in cell status, such as morphological change, will lead to a change in CI.

Except for cell numbers, the impedance also depends on the extent to which
cells attach to the electrodes. For example, if cells spread, there will be a
greater cell/electrode contact area, resulting in larger impedance. Thus, the
cell biological status including cell viability, cell number, cell morphology, and
cell adhesion will all affect the measurement of electrode impedance that is re-
flected by cell index (CI) on the RT-CES system. Therefore, a dynamic pattern
of a given CI curve can indicate sophisticated physiological and pathological
responses of the living cells to a given toxic compound (Xing et al., 2005).

Three environmental toxicants, sodium arsenite [As (III)], mercury (II) chlo-
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Fig. 1. The RT-CES system and cytotoxicity experiment.

ride, and sodium dichromate [chromium (VI)], were used for cytotoxicity as-
sessment on the 16 sensor device. The cell line NIH 3T3 was tested. The
starting cell number was 10000 cells per sensor wells. The cell growth on the
sensor device was monitored in real time by the RT-CES system. When the
CI values reached a range between 1.0 and 1.2, the cells were then exposed
to either As(III), mercury(II) chloride, or chromium(VI) at different concen-
trations. After compound addition, the cell responses to the compounds were
continuously and automatically monitored every hour by the RT-CES sys-
tem. The schematic diagram of the instrument for cytotoxicity experiments is
shown in Fig.1.

Dynamic Growth With Toxicity

In the cytotoxicity experiments the NIH 3T3 cells were treated with As (III),
mercury (II) chloride, and chromium (VI), respectively, at different concen-
trations. After treatment, the CI was recorded in real time every hour for up
to 24 h. Notably, the dynamic CI patterns of the NIH 3T3 cells in response
to three toxicants are distinct and shown in Fig.2.

The left panel of Fig 2 shows dynamic cytotoxic response to different doses
of As (III). The data in the figure indicates that, higher dose toxicant yields,
smaller CI at the steady state, as expected. Cells treated with As (III) showed
a significant but transient increase in the CI during the first 5 h after the
treatment, this phenomenon has been explained as cell fusion (Xing et al.,
2005), followed by gradually declining in the CI induced by cell apoptosis. The
middle panel shows dynamic cytotoxic response to different doses of chromium
(VI). Chromium (VI) triggered cell apoptosis so that the initial cell killing is
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Fig. 2. Dynamic responses of cells to As (III), mercury, and chromium(VI). NIH
3T3 cells were seeded into the 16x sensor device, and cell proliferation was then mon-
itored. Once the cells entered the exponential growth phase, cells were treated with
As (III), mercury, or chromium(VI) at different doses as indicated. The cytotoxi-
city was then monitored dynamically. Left panel is the dynamic cytotoxic response
to different doses of As (III) in the unit of µM : 0; 1.25; 4.06; 6.21; 9.20; 13.58;
20.01; 29.64. Middle panel is the dynamic cytotoxic response to different doses of
chromium(VI): 0; 0.62; 0.91; 1.97; 2.89; 4.25; 5.78. Right panel is the dynamic
cytotoxic response to different doses of mercury: 0; 10.43; 15.2; 22.35; 32.8; 48.3;
71.

relatively slow. Lower doses of chromium (VI) triggered apoptosis slower and
the target cells continually grew in early stage inducing a slight initial increase
of CI; unlike As (III) however, there is no sharp initial increase of CI. The
right panel shows dynamic cytotoxic response to mercury. A quick decrease in
the CI with strictly dose-dependence, which occurred at the first hour of the
treatment, was induced by mercury that induced cytotoxicity due to quick
apoptosis and necrosis mediated by reactive oxygen species with increasing
membrane permeability.

The nonlinearity of cytotoxicity is clearly shown by the fact that the responses
are bounded (stable) for small doses of the toxicant but unbounded (unstable)
for large doses of the toxicant. For example, in left panel of Fig 2, the cytotox-
icity response to As(III) is bounded for the doses of 9.20; 13.58; 20.01; 29.64,
but unbounded for the rest of the doses. Similar phenomena can be observed
for cytotoxicity responses of mercury, or chromium.

NONLINEAR BLACKBOX MODELING

The theory of system identification has been well documented in (Ljung, 1999).
The algorithms for nonlinear system identification have also been presented
in detail in (Norgaard et al., 2003). In this section, we will focus on the ap-
plication of nonlinear system identification in cytotoxicity modeling, but not
system identification theory and algorithms.

For As (III) experiments, data consist of eight different doses of toxicant in-
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cluding one zero dosing, each dose having 25 dynamic data points recorded
after the injection of the toxicant with 1hr sampling period. Among the eight
experiments corresponding to eight As (III) doses, four of them will be used
for nonlinear blackbox modelling (identification data set) and the remaining
four for validation (validation data set).

Neural networks with hyperbolic tangent activation functions and NARX
model structures are applied to the identification data set, and the dynamic
model and parameters are trained through Nonlinear System Identification
Toolbox (Norgaard et al., 2003). Through a number of identification trials,
the following parameters are found appropriate: 1 hidden layer, 3 nodes, 3rd
order lagged input/output (i.e. yt, . . . , yt−3, ut, . . . , ut−3), and zero time de-
lay (owing to large sampling interval). Fig.3 shows comparison of model fit
based on one-step ahead prediction, while Fig.4 shows comparison of model
fit based on five-step ahead prediction. The left panel is self validation, and
right panel is cross validation; the results indicate a good fit of the model
if one-step ahead prediction is the criterion for model validation. However,
the model performance deteriorates for the five-step prediction, and one can
safely expect that prediction performance deteriorates further with increase of
prediction horizon. Fig.5 shows comparison of model fit based on simulation
(infinite step ahead prediction). One can observe that the estimated model
has deteriorated performance no matter in self validation or cross validation,
indicating that a good short term prediction does not necessarily mean a good
model for long term prediction or for simulation.

Note that in NARX simulation shown in Fig.5, there are no data for the first
few points. How many initial data points are missing depends on how many
lags of the inputs in the NARX model. As an example, consider a model of
the form:

ŷt = aŷt−1 + but−2

If the available input data are u0, u1, . . ., then the first simulated point that
can be calculated by the model is ŷ2 since

ŷ2 = aŷ1 + bu0

and ŷ0, ŷ1 can not be simulated from the model. When calculating ŷ2, both ŷ0

and ŷ1 will be replaced by actual measurements at the first two points. This
practice is adopted in this paper.

In terms of k-step ahead prediction, obviously the previous k outputs must be
known for the prediction. Therefore, the prediction plots do not have the first
k points.

For mercury experiments, data consists of seven different doses of toxicant
including one zero dosing, each dose having 25 dynamic data points recorded
after the addition of the toxicant with 1hr sampling period. Among the seven
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Fig. 3. Model fit based on one-step ahead prediction for As(III) toxicant; solid line
is prediction; solid circle is actual measurement of CI; left panel is self validation;
right panel is cross validation.
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Fig. 4. Model fit based on five-step ahead prediction for As(III) toxicant; left panel
is self validation; right panel is cross validation.
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Fig. 5. Model validation based on simulation for As(III) toxicant; left panel is self
validation; right panel is cross validation.

experiments corresponding to seven mercury doses, four of them will be used
for nonlinear blackbox modeling and the remaining three for validation.

Similar to the As (III) modeling, the NARX model has been applied to the
identification data set. Fig.6 shows comparison of model fit based on one-step
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Fig. 6. Model fit based on one-step ahead prediction for mercury toxicant; left panel
is self validation; right panel is cross validation.
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Fig. 7. Model fit based on five-step ahead prediction for mercury toxicant; left panel
is self validation; right panel is cross validation.

ahead prediction, while Fig.7 shows comparison of model fit based on five-
step ahead prediction. The selection of one and five step predictions here is
arbitrary and they are used to indicate the increase of the prediction horizon.
As expected, one-step prediction indicates good performance but the five-
step prediction does not deteriorate too much in this example. Fig.8 shows
comparison of model fit based on simulation. One can observe once again that
the estimated model does not have good simulation validation.

For chromium experiments, number of experiments, duration of experiments,
and sampling rate are all the same as those of mercury experiments. The
NARX model has been applied to the identification data set. Fig.9 and 10 show
comparison of model fit based on one-step and five-step ahead predictions,
respectively. Fig.11 shows comparison of model fit based on simulation. One
can observe that the five-step ahead prediction has similar performance as
that of simulation; overall they are reasonable well fitted but some bias is also
observed from the simulation plot.

Remark 1 A number of approaches for improving nonlinear blackbox model-
ing of cytotoxicity have been tried, including determination of lags in the model
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Fig. 8. Model validation based on simulation for mercury toxicant; left panel is self
validation; right panel is cross validation.

through a comprehensive search, selection of optimal model structure through
regularization, pruning through the optimal brain surgeon algorithm (Norgaard
et al., 2003). No significant difference in terms of long term prediction or sim-
ulation has been observed.

To summarize, the advantages of blackbox modeling are clearly its simplicity,
no priori knowledge of underlying process needed, and good performance in
short term prediction. Depending on the dynamics of the process, however,
long term prediction can deteriorate quickly. For faster underlying dynamics
such as As (III), five-step ahead prediction deteriorates quicker. Both mercury
data and chromium data are, however, relatively smooth (slower dynamics),
its five-step ahead prediction as well as simulation does not deteriorate as fast
as that of As (III). This is expected since all finite step ahead predictions
are based on corrections of the available measurements, i.e. there are correc-
tions of future prediction by the current measurements. Smoother the data is,
more dependent the future data is on the current data. However, no matter
how good fit of the short term prediction, two of the three blackbox models
do not seem to have satisfactory simulation tests, indicating that good short
term prediction does not mean that the model has captured the true pro-
cess mechanism. The underling cytotoxicity mechanism is a complex process
and appears not to be easily captured by blackbox modeling. To obtain a dy-
namic cytotoxicity model for long term prediction, the underlying mechanism
should be understood, first-principle models should be established, and this is
considered in the next section.
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Fig. 9. Model fit based on one-step ahead prediction for chromium toxicant; left
panel is self validation; right panel is cross validation.
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Fig. 10. Model fit based on five-step ahead prediction for chromium toxicant; left
panel is self validation; right panel is cross validation.
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Fig. 11. Model validation based on simulation for chromium toxicant; left panel is
self validation; right panel is cross validation.

FIRST-PRINCIPLE MODELING AND PARAMETER ESTIMA-
TIONS

Uptake Mechanism Of Toxicant

Certain assumptions about mechanisms of cytotoxicity in vitro have been
considered in literature, which have been discussed in the introduction section.
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Fig. 12. Transport process of toxicant to cell

They can be summarized as a a two-step process: 1) uptake of toxicant by cells
and 2) killing of cells. It has also been pointed out that cells may be killed
even before toxicant has entered the cells. In this section, we will investigate
two distinct cytotoxicity mechanisms and verify the mechanisms through the
cytotoxicity experiments.

The transport process of toxicant into a cell is illustrated in Fig.12. The tox-
icant uptake dynamics has been discussed in (El-Kareh and Secomby, 2005)
where the uptake rate is considered to be a combination of a linear diffusive
component and a saturable, carrier-mediated component (Michaelis-Menten
like kinetics):

dci

dt
= k3(k1ce +

k2ce

Ki + ce

− ci) (1)

where k1, k2, k3, Ki are constants, and the inclusion of k1 is for the sake of
possible different units between the measurements of intracellular and extra-
cellular concentrations. k1ce reflects the linear diffusive component while k2ce

Ki+ce

is the saturable, carrier-mediated component. This equation is explored fur-
ther next.

For a given extracellular concentration ce, integration of eqn.(1) yields

ci = (k1ce +
k2ce

Ki + ce

)(1− exp(−k3t)) (2)

which has a linear dynamics but is nonlinear in ce. Note eqn.(2) is valid un-
der the assumption of constant ce, which is approximately true during the
cytotoxicity experiments conducted for this work.

With both intracellular and extracellular toxicant concentrations available, we
are ready to develop a dynamic model for cell population dynamics. To this
end, we shall understand underlying cytotoxicity mechanism. There are two
cell-killing mechanisms by toxicant, namely necrosis and apoptosis, and they
are discussed next.
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Cytotoxicity Mechanism: Necrosis And Apoptosis

There are two different types of cell death: necrosis and apoptosis. Necrosis
is also called “accidental cell death”, and can be caused, for example, by a
chemical or physical assault to the cell. This event leads to swelling of the
cell and disruption of the cell membrane. Organelles, such as the mitochon-
dria or the nucleus, remain intact throughout the process, and all of the cell
contents are released into the surrounding tissue. In contrast, apoptosis is a
highly regulated process, and is described as programmed cell death. Upon
receiving specific signals instructing the cells to undergo apoptosis a number
of distinctive biochemical and morphological changes occur in the cell. A fam-
ily of proteins known as caspases are typically activated in the early stages
of apoptosis. These proteins breakdown or cleave key cellular substrates that
are required for normal cellular function. The caspases can also activate other
degradative enzymes such as DNases, which begin to cleave the DNA in the
nucleus. Necrosis causes cell death by direct disrupting cell membrane and
cell killing is usually faster than apoptosis. The effects of necrosis mainly de-
pend on the extracellular concentration of the toxicant that affects the cell
membrane directly. The effects of apoptosis depend on the intracellular con-
centration of the toxicant that triggers the signal transduction pathway of
apoptosis. The cell killing induced by apoptosis is slower according to activa-
tion or synthesis of the proteins in the signal transduction pathway.

In summary, cell killing can go through necrosis, apoptosis, or both. It appears
that apoptosis undergoes several more complicated biochemical and morpho-
logical processes, and is more challenging in modeling as will be seen shortly.

Cell Population Dynamics

For apoptosis mechanism that mainly depends on intracellular toxicant con-
centration for cell killing, we consider the rate of cell population given by
(Eliaz et al., 2004):

1

N

dN

dt
= (−kci + ks) (3)

i.e. the relative cell killing rate in the presence of toxicant is kci, and its
proliferation rate without the toxicant is ks.

Substituting eqn.(1) into (3) and then integrating eqn.(1) , we obtain

N(t)
N0

= exp{[K4 − (K1ce + K2ce

K5+ce
)]t} exp{ 1

K3
(K1ce + K2ce

K5+ce
)(1− exp(−K3t))}

(4)
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where

K1 = kk1 K2 = kk2 K3 = k3 K4 = ks K5 = Ki

Eqn.(4) consists of two exponents. Noting that

lim
t→∞ 1− exp(−K3t) = 1

we see that the second exponent is bounded, i.e.

exp{ 1

K3

(K1ce +
K2ce

K5 + ce

)(1− exp(−K3t)} ≤ exp{ 1

K3

(K1ce +
K2ce

K5 + ce

)}

The first exponent of eqn.(4) is, however, not necessarily finite. For it to ap-
proach zero (i.e. cell to be eventually killed), the following inequality should
be satisfied:

k4 − (K1ce +
K2ce

K5 + ce

) < 0 (5)

Solving inequality (5) yields the extracellular toxicant concentration needed
for the cells to be killed:

ce >
−(K1K5 + K2 −K4) +

√
(K1K5 + K2 −K4)2 + 4K1K4K5

2K1

(6)

This equation shall be useful for the advanced prediction of toxicant killing
effect on the cells.

Parameter Estimation And Model Validation For Apoptosis Mechanism

Eqn.(4) contains five unknown parameters and we call it 5-parameter model in
the sequel. These parameters can be estimated from experiment data through
nonlinear regression.

Chromium(VI) induces apoptosis by p53-dependent or -independent pathways
(Bagchi et al., 2001). The chromium-induced gradual cell death has led to the
observed CI curves (middle panel of Fig.2) in which the CI values decreased
slowly after the toxicant treatment, which were dose-dependent.

The experiment data consists of seven different doses including one zero dosing
as discussed previously. Among the seven experiments corresponding to seven
chromium doses, four of them will be used for parameter estimation and the
remaining three for validation exactly as we did for blackbox modeling.

The estimated parameters for the chromium toxicant are shown in Table 1.
The graphic comparisons of model fitting and validation are shown in Fig. 13.
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Fig. 13. 5-parameter model validation based on simulation for chromium experi-
ments; left panel is self validation; right panel is cross validation.

Note that the validation shown in Fig. 13 does not use any output measure-
ments to correct the prediction, i.e. it is a validation based on pure simulation.
According to 5-parameter model in Table 1, it appears that the Michaelis-
Menten uptake is not significant since the estimated K2 is zero. Thus we may
exclude Michaelis-Menten uptake kinetics from the model to yield

N(t)
N(0)

= exp{(K4 −K1ce)t} exp{K1

K3
ce(1− exp(−K3t))} (7)

We call this model as 3-parameter model. Parameters in eqn.(7) are re-estimated
following the same procedure. The three parameters of eqn.(7) are shown in
Table 1, where one can see they are very close to their counterparts estimated
from the 5-parameter model, indicating no significant Michaelis-Menten up-
take in these experiments. Instead, the linear diffusion of toxicant has been
the dominant toxicant uptake in these experiments. The comparisons of model
fitting and validation are similar to that of 5-parameter model (Fig. 13) and
omitted here.

Comparing to blackbox model validation shown in Fig. 11, results in Fig. 13
show a similar performance. The results are overall satisfactory. There is a
slight bias in both fits, particularly in the initial response. It has been stated
that the initial increase of the cell number is due to the cell fusion process
during the initial response of cell to the toxicant, which can occur in apopto-
sis process (Xing et al., 2005). The lack of fit in the initial phase can certainly
propagate into long term fit. Apart from other possible mechanisms in apopto-
sis that are not known, our model has not considered cell fusion phenomenon
as it is not well understood yet, and consequently some mismatch in the model
is expected. The difficulty in modeling cell fusion will be elaborated shortly.
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Table 1
Parameters estimated

K1 K2 K3 K4 K5

5 parameter model 0.078 0.000 0.093 0.035 4.687

3 parameter model 0.077 N/A 0.094 0.035 N/A
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Fig. 14. 5-parameter model validation based on simulation for mercury experiments;
left panel is self validation; right panel is cross validation.

Modelling And Parameter Estimation For Necrosis Dominant Mechanism

For mercury experiments, the right panel of Fig.2 shows that mercury caused
a sharp initial decrease in the CI, which occurred at the first hour of the
treatment and was strictly dose-dependent. Mercury-induced cytotoxicity is
due to apoptosis and necrosis mediated by reactive oxygen species with in-
creasing membrane permeability (Kim and Sharma, 2003; Herr et al., 1981) .
The quick drop of the CI values in cultured cells treated with mercury appears
to reflect the cell necrosis and quick apoptosis, which is consistent with the
previous reports (Kim and Sharma, 2003; Herr et al., 1981).

Thus, the mercury induces mainly the necrosis mechanism but also apoptosis
to some extent and the 5-parameter model appears not to be valid. Neverthe-
less, as a test the 5-parameter model, eqn.(4), has also been applied to the
mercury data. The results are shown in Fig.14, where we can see a poor fit
of the data, confirming that an incorrect mechanism has been assumed. By
visualizing Fig.14, it is clear that the initial killing of cells is quite fast while
the 5-parameter model can not achieve this fast dynamics initially since it
depends on intracellular toxicant concentration only. The intracellular cellu-
lar concentration follows the first order dynamics, eqn.(2), where immediate
increase of intracellular concentration is not possible.

As we have already known, with mercury as toxicant, the cell experiences
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Fig. 15. 6-parameter model validation based on simulation for mercury experiments;
left panel is self validation; right panel is cross validation.

Table 2
Parameters estimated

K1 K2 K3 K4 K5 K6

6 parameter model 0.332 1.897 2.139 0.031 37.07 -0.381

mainly a necrosis process plus a quick apoptosis. Therefore, the cell killing
rate depends on both intracellular toxicant and extracellular toxicant. Thus,
instead of eqn.(3), consider a cell population dynamics:

dN

dt
= f(ci, ce)N (8)

where f(ci, ce) is an unknown nonlinear function. As a first order approxima-
tion, it is written as

dN

dt
= (a0 + a1ci + a2ce)N (9)

Now combining (9) with (2), after integration, yields

N(t)
N(0)

= exp{[K4 + (K1 + K6)ce + K2ce

K5+ce
)]t} exp{− 1

K3
(K1ce + K2ce

K5+ce
)(1− exp(−K3t))}

(10)
where

K1 = a1k1 K2 = a1k2 K3 = k3 K4 = a0 K5 = Ki K6 = a2

This model is called 6-parameter model in the sequel. Now applying the 6-
parameter model, eqn.(10), to the mercury data. The results are shown in
Fig.15. Comparing to the 5-parameter model shown in Fig.14, a clear im-
provement of the model has been observed, indicating a more appropriate
underlying cytotoxicity mechanism has been found. By comparing with the
performance of the blackbox model shown in Fig.8, a dramatic improvement
is observed.
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Fig. 16. 6-parameter model validation based on simulation for chromium experi-
ments; left panel is self validation; right panel is cross validation.

A natural question is whether the 6-parameter model can also improve the sim-
ulation performance of chromium experiments in which the apoptosis mecha-
nism has played the role. By applying the 6-parameter model to the chromium
data, the model validation results are shown in Fig.16. By comparing with
the 5-parameter validation shown in Fig.13 one can see that the 6-parameter
model does not help, confirming a non-necrosis mechanism of chromium as a
toxicant.

Cell Fusion Mechanism

Both 6-parameter model and 5-parameter model are limited to modeling cell
killing dynamics. The mechanism of initial cell fusion shown in As (III) ex-
periments (and partially shown in chromium experiments) has not been well
understood and thus has not been included in the models.

To show this, applying the 6-parameter model to As (III) data anyway yields
results shown in Fig.17. Clearly, the 6-parameter model can not capture the
cytotoxicity of As (III), and its performance is worse than that of the blackbox
model shown in Fig.5.

The initial cell fusion occurred in apoptosis has not been reported until very
recently and its mechanism remains largely unknown (Xing et al., 2005) . In a
analysis of As(III) experiments, it was observed through confocal microscope
(Xing et al., 2005) that after 3 h of As(III) treatment, individual NIH 3T3 cells
fused together forming huge multinuclear cell bodies. The multinuclear cells
began to dissociate into smaller multinucleated cells after 8 h of compound
addition. These cells appeared to be undergoing nuclear condensation and
showed the morphology of the early stage of nuclear fragmentation. After
23 h of As(III) treatment, only a few cells can be detected. The most cells
treated with As(III) died most likely through apoptosis. The As(III)-induced
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Fig. 17. 6-parameter model validation based on simulation for As (III) experiments;
left panel is self validation; right panel is cross validation.

cell fusion increased electrode impedance and resulted in higher CI. Thus,
in addition to the need for further confirmation of cell fusion mechanism, any
mechanistic modeling of As(III) cell killing needs to consider geometry of cells,
nuclear condensation, nuclear fragmenation, and apoptosis simultaneously.

In summary of this section, one can see that the advantage of the first-principle
modeling for the cytotoxicity is the significant improvement of the model if
the underlying mechanism is truly captured. However, the complexity results
if there exist some unknown (or not well known) mechanisms. In contrast,
blackbox modeling does not have this limitation. It can fit a model without
understanding the underlying mechanism such as the modeling of As (III)
experiments, but typically has poor performance in long term prediction and
simulation. Therefore, the blackbox modeling and first-principle modeling are
not mutually exclusive. Both should be considered in challenging modeling
tasks such as the cytotoxicity modeling. Specifically, as far as the underly-
ing cytotoxicity mechanism is known, we have achieved a significantly better
model for the necrosis induced cytotoxicity by using first-principle modeling
than the blackbox modeling, but the same conclusion does not apply to the
apoptosis induced cytotoxicity model. In fact, if there is significant initial cell
fusion, then the blackbox approach gives a better model.

CONCLUSION

In this paper, we have considered dynamic modeling of cytotoxicity. The CI
data from a real-time cell electronic sensing (RT-CES) system have been used
for dynamic modeling. Two types of modeling approaches have been consid-
ered, namely blackbox nonlinear dynamic modeling and first-principle model-
ing plus parameter estimation. The developed models are verified using data
that do not participate in the modeling. It has been observed that the balck-
box type of nonlinear models can provide a good short term prediction but
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may fail long term prediction and simulation; the first-principle model plus
parameter estimation does provide a significantly improved dynamic models
for long term prediction as well as simulation of cytotoxicity if the underly-
ing mechanism is truly captured in the model structure. The latter models
can also provide certain parameters that are useful for prediction such as the
necessary doses for cell killing. However, some phenomena observed in cyto-
toxicity experiments, such as initial cell fusion, have not been well understood
and can not be explained from first-principle models. For the modeling dis-
cussed in this paper, we find that the necrosis mechanism can be modelled
well by the first-principle approach, while the apoptosis mechanism has been
modelled better by the blackbox model. Our conclusion is that the blackbox
modeling and first-principle modeling are not mutually exclusive. Both should
be considered in challenging modeling tasks such as the cytotoxicity problem.
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