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Abstract— The Combined-Cycle Gas Turbine (CCGT) power 

plants are increasingly required to provide the service for 

balancing the load demand and power supply with the 

increase of the intermittent power generation from 

renewable energy sources. To ensure CCGT power plants to 

operate flexibly and efficiently, it is necessary to find the 

suitable strategy. This paper presents the feasibility of a 

CCGT power plant combined with the Thermal Energy 

Storage (TES) to improve the plant operation flexibility. The 

dynamic simulation models of a 420MW CCGT power plant 

and TES system are presented in this paper. The TES 

charging and discharging strategies are investigated. The 

simulation results show that TES charging or discharging 

processes provide the additional mechanisms for regulating 

the output power of the CCGT power plant.  

Keywords-Combined-cycle gas turbine power plant; 

dynamic model; thermal energy storage.  

I.  INTRODUCTION  

The renewable energy sources are increasingly 
considered for electrical power generation, which makes 
the instant match between power supply and load demand 
more challenging. The imbalance between power 
generation and consumption will have a significant impact 
on the grid stability. This leads to a role change for 
conventional fossil fuel thermal power plants: from base 
load supply to peak load generation and services. Gas 
turbine based power plants are flexible so they are required 
to operate passively with the load change, but this operation 
could cause three issues: low plant efficiency, low load 
factors, and short life time. 

The key advantage of Combined-Cycle Gas Turbine 
(CCGT) power plant is that the efficiency is higher than the 
non-combined cycle gas turbine power plants, since the 
heat from the exhaust gas of the gas turbine is recovered via 
Heat Recovery Steam Generator (HRSG) to produce the 
steam which is then fed into steam turbines for electricity 
generate. This paper is using the Aspen Plus software to 
host CCGT power plant and TES modelling and 
simulation. Recently, Aspen Plus has been used for power 
plant design and optimization. A techno-economic analysis 
about integrating biomass thermal conversion with existing 
CCGT power plant is presented in [1] by using the software 

Aspen Plus. Aspen Plus also have been used for optimal 
design of the combination of CCGT power plant and carbon 
capture system [2, 3]. The energy efficiency estimation of 
a Combined Heat and Power (CHP) plant using Aspen Plus 
is published by François [4]. However, all of these studies 
are based on steady state models. To assess the efficiently 
flexible plant operation, it is essential to present the plant 
dynamic behavior of variable load demand. Therefore, the 
core of the study is to derive the CCGT power plant 
dynamic model.  

As presented by Benato [5], the flexible operation of 
CCGT power plant could guarantee the stability of gird and 
high profit in short term, however results in a significant 
reduction of the lifetime of the power plant devices. 
Therefore, it is important to investigate the feasible 
strategies to enhance the power plant flexibility and 
improve the efficiency and lifetime. The idea of hybrid PV 
system, battery and gas turbine power plant is pointed out 
by Afanasyeva [6], which could solve the issue of 
intermittent power generation of solar energy. This study is 
to explore the potential of a new technology: introducing 
Thermal Energy Storage (TES) system into thermal power 
plant generation processes to improve the plants dynamic 
performance for plant flexible operation, to smooth the gap 
between demand and supply, and to maximize the power 
plant rated load operation time periods. This paper will 
present the dynamic modelling of the CCGT power plant 
and TES, and their integration. This paper also introduces 
a novel method to achieve whole system dynamic 
simulation in Aspen Plus.  

II.  MODELLING OF COMBINED-CYCLE GAS TURBINE 

POWER PLANT AND TES 

 The CCGT power plant consists of the gas turbine, 

heat recovery steam generator, and steam turbines. A 

420MW CCGT power plant dynamic model with triple 

levels of steam was developed in Aspen Plus, which is 

shown in Fig. 1.  

 The CCGT power plant combines two 

thermodynamic cycles: gas cycle and steam cycle. The 

choice of an appropriate physical property method is 

significant for the accuracy of the simulation. In this 

model, the PR-BM property method was chosen for the gas 

cycle calculation [7], and STEAMNBS property method 

was chosen for the water-steam cycle calculation [8]. The 

parameters in the measurement points when the CCGT 

power plant works at the rated state are listed as following:  
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• Gas turbine power =284MW 

• Steam turbine power=137MW 

• Exhaust gas mass flow rate=685kg/s 

• Exhaust gas temperature=859K 

• Feed water flow rate=108kg/s 

• High pressure steam turbine pressure=140bar 

• Intermediate pressure steam turbine 

pressure=25bar 

• Low pressure steam turbine pressure=6bar 

 In Aspen Plus, there is a function called “calculator”, 

where the user can define a new function for the system 

modelling. In the calculator, there are three kinds of 

information flows: import variable, export variable, and 

tear variable. Based on tear variable, the recycle loop could 

be created, and then whole system dynamic simulation 

could be achieved.  

 

A. Gas turbine section 

 The gas turbine section can be separated into three 

subsections: compressor, combustion chamber, and the 

turbine. For the compressor, the compression type is 

chosen as polytrophic compression, and the power 

requirement is calculated by [9]:  
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where, W  is the power, P  is the pressure, V  is the molar 

volume, n  is the polytrophic index, and 
c  is the 

compressor efficiency. The subscripts in  is an inlet 

stream, out  is the outlet stream, and ideal  represents the 

calculation is under the ideal polytrophic conditions.  

The composition of air is shown in Table 1.  

It is important to note that the nature gas is not 100% 

methane, it is composed of methane, ethane, propane, 

nitrogen, carbon dioxide, and so on. However, the methane 

and ethane account for more than 99% of the total volume 

[11]; therefore, only two reactions are considered in the 

combustion chamber:  
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Table 1: The molar fraction of the air[10]. 

Components Molar Fraction (%) 

2N  75.67 

2O  20.35 

2H O  3.03 

2CO  0.345 

Others 0.915 

 

 For the turbine model, the expansion type is 

considered as isentropic process, and the output power of 

the turbine is calculated by [9]: 
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where, k  is the heat capacity ratio, 
t  is the turbine 

efficiency.  

 

 B. HRSG section 

 Several heat exchanger models are used to develop the 

HRSG section. In this part, the exhaust gas from gas 

turbine flows into HRSG, where three levels steam (HP, 

IP, LP) are produced with the thermal energy from the 

exhaust gas. Heat exchanger dynamic model is developed 

based on the energy and mass balance equations.  

  The energy conservation equation is given by [12, 

13]: 
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where, A  is the exchange area,   is the density of the 

working fluid, h  is the enthalpy, m  is the mass flow rate, 

Q  is the heat flux of the working fluid, W  is the work 

down on the fluid, t  is the time, and z  is the length.  

  Mass balance principle gives [14]:  
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Fig. 1: 420MW CCGT power plant 

 



where, v  is the working fluid velocity.  

 The heat flux can be calculated by: 

 Q UA T=  , (9) 

where, U  is the heat transfer coefficient, and T  is the 

temperature difference between hot side and cold side.  

  In order to get the proper dynamic behavior of the 

heat exchanger, the heat exchanger is discretized into 

several cells, where the energy and mass conservation 

equation are applied [12], as shown in Fig. 2. The pressure 

is assumed as constant, therefore, the momentum balance 

is neglected.  
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Fig. 2: Cell model of the counter current heat exchanger. 

  Cold side temperature change is computed by: 
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  Hot side temperature change is computed by: 
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where, 
pc  is the heat capacity, subscripts i  represents cell 

i , the subscripts h  and c  are hot side and code side 

respectively.  

 

C. Steam turbine section 

 There are three levels of steam is generated by the 

HRSG, which is used to spin three steam turbines: high 

pressure turbine (HPTB), intermediate pressure turbine 

(IPTB), and low pressure turbine (LPTB). The steam 

turbine models are based on the same thermodynamic 

principles which are used by the gas turbine model. The 

full load isentropic efficiencies are 0.88, 0.88 and 0.85 for 

HPTB, IPTB, and LPTB respectively, and mechanical 

efficiency is 0.998. The steam turbine efficiency 

characteristic curve is shown in Fig. 3, it can be seen, the 

isentropic efficiency achieves maximum, when the steam 

turbine running on the rated load condition.  

 
Fig. 3: Steam turbine efficiency characteristic. 

D. Thermal energy storage 

 In the TES system, the thermal energy is transferred 

to storage media during the charging period, and released 

during the discharging step at the later stage. There are 

mainly three types of thermal energy storage, sensible heat 

storage, latent heat storage, and chemical heat storage [15]. 

The latent heat storage system will be used for this paper, 

due to the energy density of latent heat storage is much 

higher than sensible heat storage [16], and the cost is less 

than chemical heat storage. The NaNO3 is chose as the 

phase change material, and the melting temperature of 

NaNO3 is 580K [15].  

 
Fig. 4: Phase change Profile of PCM [17]. 

 The structure of the TES system consists of the vessel 

packed in the vertical direction with cylindrical tubes, the 

details of the structure are presented in [18]. The model for 

one cylinder is shown in Fig 5 (a), it is a two concentric 

cylinder where the volume between them is filled with 

phase change material. For this TES system, there are 2500 

cylinders.  

 In the TES system, the heat transfer process is coupled 

with heat convection and heat conduction. The heat 

transfer fluid (HTF) transfers heat to the inner side tube 

through heat convection. For the heat transfer from inner 

side tube to PCM and the thermal energy exchange inside 

of PCM, the heat transfer mode is heat conduction. The 

thermal losses through the outer cylinder of the TES are 

assumed negligible. A portion of a three-dimensional heat 

conduction grid is shown in Fig. 5 (b).  
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Fig. 5: (a) TES structure (b) Three dimensional heat conduction 

  The three-dimensional heat conduction equation in 

cylindrical-coordinate system is given by [19]:  
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where, r  is radius,   is angle, z  is height, and k  is the 

heat-conduction coefficient, and the subscript P  

represents point P . Due to this cylinder is a symmetric 

system,  the unique temperature in   direction are 

assumed. Therefore, the heat conduction equation for this 

cylinder is given by [20]:  
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 During the phase changing, the temperature of PCM 

maintains at melting temperature, and the thermal energy 

will be stored as the latent heat, as shown in Fig. 4, and 

then the enthalpy of the PCM is calculated by [15]:  
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where, H  is the enthalpy.  

III.  CCGT POWER PLANT MODEL VALIDATION 

 The experimental data were collected from an 

operating CCGT power plant, which is presented in [21], 

and these data are used for model validation. The 

specifications of this CCGT power plant are shown in 

Table 2.  

 
Table 2: Power plant specifications 

Number of gas turbine 2 

Gas turbine power rating 280MW 

Steam turbine 320MW 

  

Some test data for different operating conditions are 

presented in [21], and the output power of the plant for two 

step changes are used for model validation. For the 

developed CCGT power plant model, the total capacity is 

420MW, and the gas turbine capacity is 280MW. For the 

test CCGT power plant, there are two gas turbines and the 

capacity of each of them is 280MW.  

 Fig. 7 shows the CCGT power plant output power 

during the load increment. Fig. 8 shows the power plant 

output power during the load reduction. The black dash 

line is the simulation power, and the red circle is the 

experimental power from [21].  

 
 

Fig. 7: Power output increase 

 
Fig. 8: Power output decrease 

IV.  CCGT POWER PLANT COUPLING WITH TES 

 With this CCGT power plant model, the study of TES 

integration with CCGT power plant can be conducted. The 

idea of TES charging strategy is to extract part of exhaust 

gas from gas turbine to warm up TES during the off peak 

period, as shown in Fig. 6 (①), and then the steam turbine 

output power will decrease but the gas turbine part is still 

running at the rated load. This TES model is a symmetric 

system, therefore, one layer temperature distribution can 

be used to present whole cylinder temperature distribution, 

 
Fig. 6: TES charging and discharging strategies 

 



as shown in Fig. 9 (a). The initial temperature of TES is 

shown in Fig. 9 (b).  

 For the rated load condition, the mass flow rate of 

exhaust gas of the gas turbine is about 685kg/s, at 100 

second, 12.8% of exhaust gas (87.7kg/s) is extracted to 

charge TES. After 1000 seconds charging, the temperature 

of TES is shown in Figure 11. The generated power of the 

steam turbines decreases to about 121MW from 137MW 

within 8 minutes and then maintains at 121MW, as shown 

in Fig. 10.  
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Fig. 9: (a) TES structure (b) TES initial temperature 

 
Fig. 10: Steam turbine output power 

 
Fig. 11: TES temperature distribution after charging 

 After 1000 seconds charging, the TES temperature is 

shown in Fig. 11. In theory, the stored thermal energy 

should be 2700MJ and the real stored energy is 2695MJ, 

so that the error is less than 0.2%.  

 During the discharging process, the feed water flows 

into the top of TES, evaporates into high temperature 

steam and then leaves the TES as superheated steam, as 

shown in Fig. 6 (②). Heat is transferred from TES to 

increase the temperature of the steam, and results in 

increases of electricity output. The water flow direction 

and the initial temperature of TES are shown in Fig. 12 (a) 

and (b), respectively. The initial temperature of PCM is 

581K.  

 The outlet temperature of TES is shown in Fig. 13. 

The total generated steam is 20kg/s, the pressure is 25 bar, 

and the temperature finally maintains at 580 K, which is 

the melting temperature of PCM (NaNO3).  
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Fig. 12: (a) TES structure (b) Initial temperature 
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Fig. 13: Outlet steam temperature  

 
Fig. 14: Steam turbine output power 

 When the TES outlet is pure steam, it will be fed 

into IPTB to increase the output power, as shown in Fig.14. 

The output power of the steam turbines is increase to 

145MW from 137MW. After 1000 seconds discharging, 

the temperature is shown in Fig. 15. It can be seen that the 

inner side layer of PCM is phase changing, and the PCM 

in the top and inner side layer is already become solid.  

 



 
Fig. 15: TES temperature distribution after discharging 

V.  CONCLUSION 

 In this paper, a 420MW CCGT power plant and TES 

dynamic model have been developed in Aspen Plus. The 

developed CCGT power plant is validated by the 

experiment data from a real CCGT power plant, and the 

model presents an expected performance. The simulation 

results clearly indicate that it is possible to extract the 

exhaust gas from the gas turbine to reduce the CCGT 

power plant output power. The extracted exhaust gas is 

used to charge the TES.  The stored heat will be used to 

generate high temperature and pressure steam for IPTB to 

increase the generated power. Meanwhile, the gas turbine 

part is still running at the rated load condition.  
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