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Abstract: In this paper, a new dynamic model for con-

tinuum robot manipulators is derived. The dynamic model

is developed based on the geometric model of extensible

continuum robot manipulators with no torsional effects. The

development presented in this paper is an extension of

the dynamic model proposed in [20] (by Mochiyama and

Suzuki) to include a class of extensible continuum robot

manipulators. Numerical simulation results are presented for

a planar 3-link extensible continuum robot manipulator.

I. INTRODUCTION

In most engineered systems, the behaviour of the system

is required to be accurately modelled to improve the perfor-

mance of the system. In many applications, design simulation

and proposed control algorithms require more than just a

simple kinematic or dynamic model [2]. Not only an accurate

model but a real-time calculation of the dynamic model is

also needed for control algorithms or simulations.

The desire to enhance the performance of robot manip-

ulators resulted in a renewed interest in continuum robots

[23]. To our best knowledge, the concept of continuum robot

was first introduced in the 1960’s [1]. Numerous designs

of continuum robots were presented in [4], [6], [9], [12],

and [16]. Recently, there has been an increasing interest in

designing ‘biologically inspired’ continuum robots. Some of

these designs are mimicking trunks [8], [27], tentacles [18],

[22], [25] and snakes [9]. Several commercial implementa-

tions have appeared (i.e., [3] and [10]).

The results in this paper are motivated by and are applica-

ble to the OCTARM continuum manipulator. The OCTARM

manipulator is a biologically inspired soft robot manipulator

resembling an elephant trunk or an octopus arm [19]. The

OCTARM, shown in Figure 1, is a three-section robot with

nine degrees of freedom. Aside from two axis bending with

constant curvature, each section is also capable of extension.

The bending and extension capabilities of OCTARM makes

it suitable for a wide variety of physical applications ranging

from whole arm grasping of various shapes of payloads to

navigation of unstructured environments [18] and provides

an increased workspace compared to its inextensible counter-

parts [28]. In [13], Jones and Walker presented a kinematic

model for a general class of continuum robots. While the

This work is supported in part by a DOC Grant, an ARO Automotive
Center Grant, a DOE Contract, a Honda Corporation Grant, and by the
Defense Advanced Research Projects Agency (DARPA), Contract Number
N66001-C-8043.

The authors are with the Department of Electrical & Computer Engineer-
ing, Clemson University, Clemson, SC 29634-0915.
E-mail: [etatlic,ianw,ddawson]@ces.clemson.edu
†Corresponding Author: Phone: 864-656-7209; Fax: 864-656-7220

kinematic model proposed in [13] is applicable to OCTARM,

none of the dynamic models proposed in current literature

meets the demands. The modelling of dynamic behaviour of

extensible (variable length) continuum robot manipulators is

an important open research area.

There has been previous research in dynamic modelling of

biologically inspired robot manipulators. In two recent papers

[15], [17], the authors presented dynamic models for snake-

like robots. However, in both cases, hyper-redundant serial

rigid-link systems are considered. This does not model the

continuous nature of continuum robots. In [29], researchers

presented a 2-D dynamic model for the octopus arm. How-

ever, while allowing extensibility, the model is based on

an approximation (by a finite number of linear models)

to the true continuum case. In [6], Chirikjian and Burdick

considered extensibility of hyper-redundant manipulators. A

kinematic model was presented based on the modal approach

introduced in [7] and a dynamic model was proposed in

[5]. In [11], Ivanescu et. al proposed a dynamic model for

an extensible tentacle arm. However, the dynamic model

proposed in [5] for 3-D case remains in integral differential

form, which makes it problematic for real-time control

and the dynamic model in [11] was derived based on the

restrictive assumption that the manipulator does not bend

past a small-strain region. In [20] and [21], Mochiyama

and Suzuki presented a three-dimensional dynamic model

for an inextensible (constant length) continuum manipulator,

considering the continuum robot as a combination of slices

where each slice is a rigid link. To derive the dynamic model,

limit of a serial rigid chain model is obtained as the kinematic

degrees of freedom goes to infinity. However, the dynamic

model does not include extensible manipulators.

In this paper, the work in [20] is modified and extended

in order to include the important class of extensible con-

tinuum robot manipulators. A geometric model of a 3-link

extensible continuum robot manipulator with a circular cross-

section is considered (see Figure 2). For simplicity, the

geometric model is assumed to have no torsional effects.

After presenting the system model and model properties, the

kinetic energy of a slice of the continuum robot is evaluated.

The total kinetic energy of the manipulator is obtained by

utilizing a limit operation (i.e., sum of the kinetic energy

of the slices). By utilizing a Lagrange representation, the

dynamic model of a planar 3-link extensible continuum robot

manipulator is obtained. It is also proved that the skew-

symmetry property is satisfied for the presented dynamic

model (i.e., (Ṁ (q) − 2V (q, q̇)) is skew-symmetric). Nu-

merical simulation results are presented for a planar 3-link

extensible continuum robot manipulator.
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II. SYSTEM MODEL AND PROPERTIES

The geometric model of a 3-link extensible continuum

robot manipulator utilized in this paper is presented in Figure

2. This geometric model is a good model of OCTARM, a

soft continuum robot manipulator, which is shown in Figure

1.

The following convention, which is adopted from [20],

will be adhered throughout the following development1. The

matrix, 0Φ (0) ∈ SO (3) represents the orientation matrix of

the base frame, and 0p (0) ∈ R
3 represents the position vec-

tor of the origin. The matrices, 0Φ (σ, t) , ξΦ (σ, t) ∈ SO (3)
represent the orientation matrices of the extended Frenet

frame at σ relative to the base frame and ξΦ (ξ, t) ∈ SO (3),
respectively. The vectors, 0p (σ, t) , ξp (σ, t) ∈ R

3 represent

the position vectors of the point σ relative to the origin

as viewed from the base frame and ξΦ (ξ, t), respectively.

For simplicity, the notation of Φ (σ, t) and p (σ, t) will be

preferred instead of σΦ (σ, t) and σp (σ, t) throughout the

rest of the paper. The section lengths of the manipulator

are denoted as di (t) ∈ R+, i = 1, 2, 3, and κ (σ, t) ∈ R

represents the curvature of the point σ. The total length of

the robot manipulator, denoted as d (t) ∈ R+, is equal to the

following

d (t) , d1 (t) + d2 (t) + d3 (t) . (1)

The system model is assumed to satisfy the following prop-

erties.

Property 1: The curvature κ of each point σ of the

manipulator is a function of both time and σ. Consistent

with the OCTARM, it is assumed that the curvature of a

link is only function of time (i.e., κ (σ, t) = κi (t) if σ is a

point on Link i, i = 1, 2, 3). It is assumed in the analysis that

the curvature is always non-zero2 (i.e., κ (σ, t) 6= 0 ∀ (σ, t)).

Property 2: In Figure 2, p (ξ, t) ∈ R
3 is the position

vector of point ξ of the backbone curve and pc (ξ, t) ∈ R
3

is the position vector of the center of mass of the slice at

ξ. Again consistent with the OCTARM, it is assumed that

p (ξ, t) and pc (ξ, t) coincide (i.e., ∆p (ξ) =
[

0 0 0
]T

).

Property 3: The mass density of the robot manipulator

is uniform. The line mass density of the slice, denoted as

m (σ, t) ∈ R, is defined as follows

m (σ, t) =
m

d (t)
(2)

where m ∈ R is the total mass of the manipulator.

Property 4: Since the system is assumed to be planar with

no torsional effects, then the system has no gravitational

potential energy.

1To set a basis for our future work three-dimensional space is preferred
for representing the orientation and velocity instead of their two-dimensional
counterparts.

2It should be noted that straight out (i.e., when the links are straight) is
a kinematic singularity as well. The reader is referred to [14] for a detailed
analysis to overcome this singularity.

Fig. 1. Octarm Continuum Robot (ver. 5.2) in Clemson University
Mechatronics Laboratory

III. DYNAMIC MODELLING

The orientation matrix of the extended Frenet frame at σ

with respect to the base frame, denoted as 0Φ (σ, t), is given

as follows

0Φ (σ, t) =





cos (σκ (σ, t)) 0 − sin (σκ (σ, t))
0 1 0

sin (σκ (σ, t)) 0 cos (σκ (σ, t))



 (3)

The orientation matrix given in (3) is equal to the orientation

matrix provided in Equation (8) of [13] with the angle of

curvature is equal to zero (i.e., φ (σ, t) = 0). The change of

the orientation matrix along the manipulator is characterized

by the following equation

∂ 0Φ (σ, t)

∂σ
= 0Φ (σ, t) a× (σ, t) (4)

where a× (σ, t) ∈ R
3×3 is the skew-symmetric matrix of the

frame rate vector a (σ, t) ∈ R
3. After utilizing (3) and (4),

a (σ, t) and a× (σ, t) can be defined as follows

a (σ, t) =





0
−κ (σ, t)

0



 , (5)

a× (σ, t) =





0 0 −κ (σ, t)
0 0 0

κ (σ, t) 0 0



 .

The position vector of the point σ from the origin p (0) with

respect to the base frame, denoted as 0p (σ, t), is evaluated

as follows

0p (σ, t) =

∫ σ

0

0Φ (η, t) e×dη (6)

where e× ,
[

1 0 0
]T

. The orientation matrix of the

extended Frenet frame at σ relative to Φ (ξ, t), denoted as
ξΦ (σ, t), is calculated as follows

ξΦ (σ, t) , 0ΦT (ξ, t) 0Φ (σ, t) . (7)

The position vector of the point σ relative to the origin as

viewed from Φ (ξ, t), denoted as ξp (σ, t), is evaluated as

follows
ξp (σ, t) , 0ΦT (ξ, t) 0p (σ, t) . (8)

The internal variable vector at σ which is denoted as

θ (σ, t) ∈ R
2 is defined as follows

θ (σ, t) ,

[

l (σ, t)
κ (σ, t)

]

(9)
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Fig. 2. Geometry of a 3-Link Extensible Robot Manipulator

where l (σ, t) and κ (σ, t) reflect the extension and curvature

of the model. The extended axis matrix A (θ (σ, t)) ∈ R
6×2

is defined as follows

A (θ (σ, t)) ,

[

1 0 0 0 0 0
0 0 0 0 −1 0

]T

. (10)

So far, the main extension of this development over [20] is

the definition of the internal variable vector. The extensibility

of our model is reflected by designing θ (σ, t) to include

l (σ, t). This design allows the model to extend in each

section, which results in a variable total length, while the ge-

ometric model presented in [20] had a constant total length.

As a consequence of this new design for the internal variable

vector, the extended axis matrix is modified accordingly. The

adjoint matrix Adg(σ,η,t) ∈ R
6×6 in terms of the rigid body

transformation g (σ, η, t) ∈ SE (3) is defined as follows

Adg(σ,η,t) ,

[

σΦ (η, t)
03×3

(11)

(σp× (η, t) − σp× (σ, t)) σΦ (η, t)
σΦ (η, t)

]

where 03×3 ∈ R
3×3 is a matrix of zeros. The kinetic energy

of the slice at σ (see Figure 2) is given as follows [20]

K (σ, t) ,
1

2

σ
∫

0

σ
∫

0

∂θT (η, t)

∂t
A

T
(η, t)AdT

g(σ,η,t) (12)

M (σ, t)Adg(σ,ξ,t)A (ξ, t)
∂θ (ξ, t)

∂t
dηdξ

where M (σ, t) ∈ R
6×6 is the inertia matrix of the slice at

σ which is defined as follows

M (σ, t) ,

[

m (σ, t) I3 −m (σ, t)∆p× (σ)
m (σ, t)∆p× (σ) I (σ)

]

(13)

where m (σ, t)∆p (σ) ∈ R
3 is the first moment of inertia of

the slice, I (σ) ∈ R
3×3 is the inertia tensor of the slice, and

I3 ∈ R
3×3 is the standard identity matrix. The inertia tensor

of the slice is assumed to be of the following form

I (σ) ,
mr2

2d





1 0 0
0 0 0
0 0 0



 (14)

where r is the radius of the circular cross-section of the robot

manipulator. After utilizing Properties 1 and 2, the inertia

matrix of the slice at σ can be evaluated as follows

M (σ, t) = diag

{

m

d
,

m

d
,

m

d
,

mr2

2d
, 0, 0

}

. (15)

Due to the piecewise definition of the curvature (see Property

1), the kinetic energy of the slice at σ which is formulated by

(12) will not be evaluated explicitly. However, by sliding the

slice at σ over every section of the manipulator, the kinetic

energy of every slice at σ can be calculated. The expression

in (12) can be rewritten as follows

K (σ, t) =

σ
∫

0

σ
∫

0

I (σ, η, ξ, t) dηdξ (16)

where I (σ, η, ξ, t) is the integrand defined as follows

I ,
m

2d

{

l̇ (ξ, t) l̇ (η, t) cos (ξκ (ξ, t) − ηκ (η, t)) (17)

+l̇ (ξ, t) κ̇ (η, t)

[(

1

κ (η, t)
−

1

κ (σ, t)

)

cos (ξκ (ξ, t))

+
1

κ (σ, t)
cos (ξκ (ξ, t) − σκ (σ, t))

−
1

κ (η, t)
cos (ξκ (ξ, t) − ηκ (η, t))

]

+κ̇ (ξ, t) l̇ (η, t)

[(

1

κ (ξ, t)
−

1

κ (σ, t)

)

cos (ηκ (η, t))

+
1

κ (σ, t)
cos (σκ (σ, t) − ηκ (η, t))

−
1

κ (ξ, t)
cos (ξκ (ξ, t) − ηκ (η, t))

]
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+κ̇ (ξ, t) κ̇ (η, t)
[

1

κ (σ, t)

(

1

κ (ξ, t)
+

1

κ (η, t)
−

2

κ (σ, t)

)

cos (σκ (σ, t))

+
1

κ (ξ, t)

(

1

κ (σ, t)
−

1

κ (η, t)

)

cos (ξκ (ξ, t))

−
1

κ (ξ, t)

1

κ (σ, t)
(1 + cos (ξκ (ξ, t) − σκ (σ, t)))

−
1

κ (η, t)

1

κ (σ, t)
(1 + cos (σκ (σ, t) − ηκ (η, t)))

+
1

κ (η, t)

(

1

κ (σ, t)
−

1

κ (ξ, t)

)

cos (ηκ (η, t))

+
2

κ2 (σ, t)

]}

.

The total kinetic energy of the system is defined as follows

K (t) ,

d(t)
∫

0

K (σ, t) dσ (18)

where K (σ, t) is the kinetic energy of the slice at σ. The

upper limit of the integral in (18) is the total length of the

manipulator, which is a function of time as a result of the

extensible nature of our geometric model. However, the total

length of the manipulator in [20] was constant. To facilitate

the subsequent development, the total kinetic energy of the

system will be rewritten as follows

K (t) =

d1(t)
∫

0

K1 (σ, t) dσ +

d2(t)
∫

d1(t)

K2 (σ, t) dσ

+

d3(t)
∫

d2(t)

K3 (σ, t) dσ (19)

where Ki (σ, t) is the kinetic energy of slice σ when σ is

a point on Link i, i = 1, 2, 3. To facilitate the subsequent

development Iijk (σ, η, ξ, t) is defined as follows

Iijk (σ, η, ξ, t) , I (σ, η, ξ, t)|σ ∈ Link i,η ∈ Link j,ξ ∈ Link k

(20)

where for any s ∈ Link i means l̇ (s) = ḋi (t) and κ (s) =
κi (t). After utilizing (16), (19), (20) along with Property 1,

Ki (σ, t), i = 1, 2, 3 can be evaluated as follows3

K1 =

σ
∫

0

σ
∫

0

I111dηdξ (21)

K2 =

d1(t)
∫

0

d1(t)
∫

0

I211dηdξ +

d1(t)
∫

0

σ
∫

d1(t)

I221dηdξ

+

σ
∫

d1(t)

d1(t)
∫

0

I212dηdξ +

σ
∫

d1(t)

σ
∫

d1(t)

I222dηdξ (22)

3For simplicity, Iijk is preferred instead of Iijk (σ, η, ξ, t), in (21), (22),
and (23).

K3 =

d1(t)
∫

0

d1(t)
∫

0

I311dηdξ +

d1(t)
∫

0

d2(t)
∫

d1(t)

I321dηdξ

+

d1(t)
∫

0

σ
∫

d2(t)

I331dηdξ +

d2(t)
∫

d1(t)

d1(t)
∫

0

I312dηdξ

+

d2(t)
∫

d1(t)

d2(t)
∫

d1(t)

I322dηdξ +

d2(t)
∫

d1(t)

σ
∫

d2(t)

I332dηdξ

+

σ
∫

d2(t)

d1(t)
∫

0

I313dηdξ +

σ
∫

d2(t)

d2(t)
∫

d1(t)

I323dηdξ

+

σ
∫

d2(t)

σ
∫

d2(t)

I333dηdξ. (23)

To facilitate the subsequent development the joint position

vector q (t) ∈ R
6 is defined as follows

q ,
[

d1 d2 d3 κ1 κ2 κ3

]T
. (24)

After utilizing (17), (19)-(23), the total energy of the system

can be evaluated as follows

K (t) = Kḋ1ḋ1

(

ḋ1

)2

+ Kḋ1ḋ2
ḋ1ḋ2 + Kḋ1ḋ3

ḋ1ḋ3 (25)

+Kḋ1κ̇1
ḋ1κ̇1 + Kḋ1κ̇2

ḋ1κ̇2 + Kḋ1κ̇3
ḋ1κ̇3

+Kḋ2ḋ2

(

ḋ2

)2

+ Kḋ2ḋ3
ḋ2ḋ3 + Kḋ2κ̇1

ḋ2κ̇1

+Kḋ2κ̇2
ḋ2κ̇2 + Kḋ2κ̇3

ḋ2κ̇3 + Kḋ3ḋ3

(

ḋ3

)2

+Kḋ3κ̇1
ḋ3κ̇1 + Kḋ3κ̇2

ḋ3κ̇2 + Kḋ3κ̇3
ḋ3κ̇3

+Kκ̇1κ̇1
(κ̇1)

2
+ Kκ̇1κ̇2

κ̇1κ̇2 + Kκ̇1κ̇3
κ̇1κ̇3

+Kκ̇2κ̇2
(κ̇2)

2
+ Kκ̇2κ̇3

κ̇2κ̇3 + Kκ̇3κ̇3
(κ̇3)

2
.

In (25), the terms Kq̇iq̇j
with qi and qj being entries of q (t),

are presented in [26].

IV. LAGRANGIAN REPRESENTATION

The Lagrangian of the system is defined as follows

L (t) , K (t) (26)

where Property 4 was utilized. Euler-Lagrange equations of

motion are defined as follows [24]

d

dt

∂L

∂q̇i

−
∂L

∂qi

= τ i , i = 1, 2, ..., 6. (27)

After utilizing (27), the dynamic model of the system is

developed as follows

M (q) q̈ + V (q, q̇) q̇ = τ (t) (28)

where M (q), V (q, q̇) ∈ R
6×6 are the inertia matrix and

centripetal-coriolis terms, respectively, and τ (t) ∈ R
6 is the

control input. The inertia matrix M (q) and the centripetal-

coriolis terms V (q, q̇) are defined as follows
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M (q) , (29)

















2Kḋ1ḋ1
Kḋ1ḋ2

Kḋ1ḋ3
Kḋ1κ̇1

Kḋ1κ̇2
Kḋ1κ̇3

Kḋ1ḋ2
2Kḋ2ḋ2

Kḋ2ḋ3
Kḋ2κ̇1

Kḋ2κ̇2
Kḋ2κ̇3

Kḋ1ḋ3
Kḋ2ḋ3

2Kḋ3ḋ3
Kḋ3κ̇1

Kḋ3κ̇2
Kḋ3κ̇3

Kḋ1κ̇1
Kḋ2κ̇1

Kḋ3κ̇1
2Kκ̇1κ̇1

Kκ̇1κ̇2
Kκ̇1κ̇3

Kḋ1κ̇2
Kḋ2κ̇2

Kḋ3κ̇2
Kκ̇1κ̇2

2Kκ̇2κ̇2
Kκ̇2κ̇3

Kḋ1κ̇3
Kḋ2κ̇3

Kḋ3κ̇3
Kκ̇1κ̇3

Kκ̇2κ̇3
2Kκ̇3κ̇3

















V (q, q̇) ,

















V11 V12 V13 V14 V15 V16

V21 V22 V23 V24 V25 V26

V31 V32 V33 V34 V35 V36

V41 V42 V43 V44 V45 V46

V51 V52 V53 V54 V55 V56

V61 V62 V63 V64 V65 V66

















(30)

where the entries of the inertia matrix and centripetal-coriolis

terms are presented in [26].

Remark 1: The inertia matrix M (q) and the centripetal

coriolis terms V (q, q̇) satisfy the following property:

ξT
(

Ṁ − 2V
)

ξ = 0, ∀ξ ∈ R
6. (31)

When, the matrix (Ṁ −2V ) is skew-symmetric, then (31) is

satisfied. The proof of (Ṁ − 2V ) being skew-symmetric is

provided in [26].

V. NUMERICAL RESULTS

To underline the validity of the proposed dynamic model,

two numerical simulations are presented4. In both simu-

lations, the model presented in (28)-(30) is utilized. The

model is implemented in Matlab 7.0. In the first simulation,

to illustrate the extensibility in the model, the system is

fed with τ3 (t) being a step function with an amplitude of

10−4 [Nm] for a duration of 5 seconds, while the other

entries of τ (t) are set to zero. While the changes in the

curvatures are negligible, the section lengths are presented

in Figure 3. From Figure 3, it is clear that the third section

extends appropriately as expected. In the second simulation,

to illustrate both bending and extending capabilities as well

as the dynamic behaviour of the model, the system is fed with

the control input presented in Figures 4 and 5. From Figure

6, it can easily be seen that the third section is extended,

and from Figure 7, it is clear how the third section is bent

(i.e., the radius of curvature is approximately 0.85 [m] at

the end of the simulation run). The changes in d2, κ1 and

κ2 illustrate the results of the dynamic input and coupling

between the sections. However, it should be noted that the

movements observed in κ1 and κ2 are negligible (i.e., the

radii of curvature are approximately 10 [m] for both cases).

Aside from the presented results, also the dynamic model

is observed for commonly used properties in the performed

simulations. In both cases, the dynamic model satisfied the

skew-symmetry property, and the inertia matrix always has

a positive determinant as expected.

4It should be noted that for the initial conditions utilized in this section
the robot manipulator never goes to a straight out singular configuration.
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Fig. 3. The section lengths for the first simulation
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)
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[N
m

]

τ
3
 (i.e., control on d

3
)

Fig. 4. The control inputs for section lengths (i.e., τ1 (t), τ2 (t), τ3 (t))

VI. CONCLUSIONS

A novel dynamic model for planar extensible continuum

robot manipulators was derived. First, the kinetic energy of

a slice of the continuum robot was evaluated. Then, the

total kinetic energy of the manipulator was obtained by

utilizing a limit operation (i.e., sum of the kinetic energy

of all the slices). Finally, the dynamic model of a planar 3-

link extensible continuum robot manipulator was derived, by

utilizing the Lagrange representation. Numerical simulation

results were presented.
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