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Introduction 

In recent years, there has been a considerable interest in the area 
of mobile robotics and educational technologies [1-7]. For control 
engineers and researchers, there is a wealth of literature dealing 
with wheeled mobile robots (WMR) control and their applications. 
However, while the subject of kinematic modeling of WMR is 
well documented and easily understood by students, the subject of 
dynamic modeling of WMR has not been addressed adequately in the 
literature. �e dynamics of WMR are highly nonlinear and involve 
non-holonomic constraints which makes di�cult their modeling 
and analysis especially for new engineering students starting their 
research in this �eld. �erefore, a detailed and accurate dynamic model 
describing the WMR motion need to be developed to o�er students 
a general framework for simulation analysis and model based control 
system design. 

In the case of a di�erential drive mobile robot (DDMR), for 
example, there is no textbook available that investigates thoroughly 
the dynamic modeling approach taking into consideration the non-
holonomic constraints in a step by step procedure. �e analysis is 
available mainly in journals, conference papers, and technical reports 
[8]. Moreover, the material presented di�ers from one paper to 
another with di�erent variables and reference frames used, and various 
assumptions. In addition, some papers present di�erent results for the 
same DDMR used, which adds to the confusion of dynamic modeling.

For the case of DDMR, the methods used are either the Lagrangian 
approach [9-15] or the Newton-Euler approach [16-19]. Other 
formalisms such as the Kane’s method have been also suggested as 
viable approaches of modeling DDMR [20]. �erefore, it is not clear 
for new engineering students and researchers which concept to use and 
which method o�ers a better physical insight on the dynamic behavior 
of the system and the e�ect of the non-holonomic constraints. Also, it 
is not clear if both methods will lead to the same �nal dynamic model. 

In the Newton Euler method, one has to take into account two 
kinds of forces applied to a system: the given forces and the constraint 
forces. �e given forces include the externally impressed forces by 
the actuators while the constraint forces are the forces of interaction 
between the robot platform and ground through the wheels. Moreover, 
in a system with interconnected elements, the components may 

interact with each other through gears, springs, and frictional elements. 
�erefore, we need to take into account all of these forces. It is clear that 
the Newtonian approach includes a few practical di�culties since in 
most cases these forces are not easily quanti�able. 

�e methodology developed by Lagrange overcomes these problems 
by expressing the forces in terms of the energies in the system, i.e., the 
kinetic energy and the potential energy, which are scalar quantities 
easily expressible in terms of the system coordinates. �e derivation of 
the Lagrange equations requires also that the generalized coordinates 
be independent. 

�e Lagrangian approach usually provides a powerful and versatile 
method for the formulation of the equations of motion for holonomic 
systems. However, for non-holonomic systems, the usual method is to 
introduce the motion constraint equations into the dynamic equations 
using the additional Lagrange multipliers. �ese multipliers are not 
constants and are usually functions of all the generalized coordinates 
and o�en of time as well. �ey represent a set of unknowns whose 
values should be obtained as a part of the solution. To solve this 
computational complexity, additional methods have been suggested to 
remove the presence of the multipliers from the dynamic equations of 
the given system [21,22]. 

�e focus of this paper is to derive simple and well-structured 
dynamic equations of the DDMR taking into account the non-
holonomic constraints. First, the Lagrange formulation is presented. 
Coordinates transformation is used to cancel the Lagrange multipliers 
to obtain well-structured equations. Second, the Newton-Euler method 
is used to derive the dynamic equations of the DDMR. Major di�culties 
experienced in using both methods are illustrated and procedures are 
outlined to o�er a systematic approach to the dynamic modeling of 

*Corresponding author:  Rached Dhaouadi, College of Engineering, American

University of Sharjah, P.O. Box 26666, Sharjah, UAE, E-mail: rdhaouadi@aus.edu 

Received June 19, 2013; Accepted September 16, 2013; Published September 

19, 2013

Citation: Dhaouadi R, Hatab AA (2013) Dynamic Modelling of Differential-Drive 

Mobile Robots using Lagrange and Newton-Euler Methodologies: A Unified 
Framework. Adv Robot Autom 2: 107. doi: 10.4172/2168-9695.1000107

Copyright: © 2013 Dhaouadi R, et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited.

Abstract

This paper presents a unified dynamic modeling framework for differential-drive mobile robots (DDMR). Two 
formulations for mobile robot dynamics are developed; one is based on Lagrangian mechanics, and the other on 

Newton-Euler mechanics. Major difficulties experienced when modeling non-holonomic systems in both methods are 
illustrated and design procedures are outlined. It is shown that the two formulations are mathematically equivalent 

providing a check on their consistency. The presented work leads to an improved understanding of differential-

drive mobile robot dynamics, which will assist engineering students and researchers in the modeling and design of 

suitable controllers for DDMR navigation and trajectory tracking.

Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and 
Newton-Euler Methodologies: A Unified Framework
Rached Dhaouadi* and Ahmad Abu Hatab

College of Engineering, American University of Sharjah, Sharjah, UAE

Advances in Robotics 

& AutomationA
d

v
a
n
c
e
s
 i

n
Robotics&

A
u
to

m
a
tio

n

ISSN: 2168-9695



Citation: Dhaouadi R, Hatab AA (2013) Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and Newton-Euler Methodologies: A 
Unified Framework. Adv Robot Autom 2: 107. doi: 10.4172/2168-9695.1000107

Page 2 of 7

Volume 2 • Issue 2 • 1000107J Adv Robot Automat
ISSN: 2168-9695 ARA, an open access journal 

DDMR with no major mathematical complexity. It is shown that both 
methods reach equivalent dynamic equations for the mobile robot 
providing a check on their consistency.

Coordinate Systems 

In order to describe the position of the WMR in his environment, 
two di�erent coordinate systems (frames) need to be de�ned.

1. Inertial Coordinate System: �is coordinate system is a global 
frame which is �xed in the environment or plane in which the WMR 
moves in. Moreover, this frame is considered as the reference frame 
and is denoted as {X

I
 ,Y

I
} . 

2. Robot Coordinate System: �is coordinate system is a local 
frame attached to the WMR, and thus, moving with it. �is frame is 
denoted as {X

r
,Y

r
}.

�e two de�ned frames are shown in Figure 1. �e origin of the 
robot frame is de�ned to be the mid-point A on the axis between the 
wheels. �e center of mass C of the robot is assumed to be on the axis 
of symmetry, at a distance d from the origin A. 

As shown in Figure 1, the robot position and orientation in the 
Inertial Frame can be de�ned as 

θ

 
 =  
  

a

I

a

x

q y                              (1)

�e important issue that needs to be explained at this stage is the 
mapping between these two frames. �e position of any point on the 
robot can be de�ned in the robot frame and the inertial frame as follows. 

Let 

θ

 
 =  
  

r

r r

r

x

X y , and 

θ

 
 =  
  

I

I I

I

x

X y  and be the coordinates of the given point 

in the robot frame and inertial frame, respectively. 

�en, the two coordinates are related by the following 
transformation: 

( )θ=I rX R X                       (2)

Where R(θ) is the orthogonal rotation matrix 

( )
cos sin 0

sin cos 0

0 0 1

θ θ
θ θ θ

− 
 =  
  

R                  (3)

�is transformation will enable also the handling of motion 
between frames. 

( )θ= I rX R X                      (4)

It will be seen in the next section that equation (4) is very important 
in deriving the DDMR kinematic and dynamic models as it describes 
the relationship between the velocities in the Inertial Frame and the 
Robot Frame.

Kinematic Constraints of the Di�erential-Drive Robot

�e motion of a di�erential-drive mobile robot is characterized by 
two non-holonomic constraint equations, which are obtained by two 
main assumptions:

• No lateral slip motion: This constraint simply means that the 
robot can move only in a curved motion (forward and backward) but 
not sideward. In the robot frame, this condition means that the velocity 
of the center-point A is zero along the lateral axis: 

0= r
ay                      (5)

Using the orthogonal rotation matrix R(θ), the velocity in the 
inertial frame gives 

sin cos 0θ θ− + = 
a ax y                       (6)

• Pure rolling constraint: 

�e pure rolling constraint represents the fact that each wheel 
maintains a one contact point P with the ground as shown in Figure 
2. �ere is no slipping of the wheel in its longitudinal axis (x

r
) and no 

skidding in its orthogonal axis (y
r
). �e velocities of the contact points 

in the robot frame are related to the wheel velocities by: 

ϕ
ϕ

=
 =




pR R

pL L

v R

v R
                       (7)

In the inertial frame, these velocities can be calculated as a function 
of the velocities of the robot center-point A: 

cos

sin

θ θ
θ θ

 = +
 = +

 
 
pR a

pR a

x x L

y y L
                 (8)

cos

sin

θ θ
θ θ

 = +
 = +

 
 

pL a

pL a

x x L

y y L
                    (9)

Using the rotation matrix R(θ), the rolling constraint equations are 
formulated as follows: 

cos sin

cos sin

θ θ ϕ
θ θ ϕ
+ =
+ =

 
 

pR pR R

pL pL L

x y R

x y R
                     (10)

Using the contact points velocities from equation (x,y) and 

Figure 1: Differential Drive Mobile Robot (DDMR). Figure 2: Pure Rolling Motion Constraint.
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substituting in (x ,y), the three constraint equations can be written in 
the following matrix form: 

( ) 0Λ =q q                    (11)

Where 

( )
sin cos 0 0 0

cos sin 0

cos sin 0

θ θ
θ θ
θ θ

− 
 Λ = − 
 − − 

q L R

L R

                 (12)

and

θ ϕ ϕ =  
    

T

a a R Lq x y                   (13)

ϕ
ϕ

=
 =




R R

L L

v R

v R
                   (14)

�e above constraints matrix ( )Λ q  will be used in the next section 
for the DDMR dynamic modeling.

Kinematic Model 

Kinematic modeling is the study of the motion of mechanical 
systems without considering the forces that a�ect the motion. For the 
DDMR, the main purpose of kinematic modeling is to represent the 
robot velocities as a function of the driving wheels velocities along with 
the geometric parameters of the robot. 

�e linear velocity of each driving wheel in the Robot Frame is 
therefore, the linear velocity of the DDMR in the Robot Frame is the 
average of the linear velocities of the two wheels 

( )
2 2

ϕ ϕ++
= =

 
R LR Lv v

v R               (15) 

and the angular velocity of the DDMR is 

( )
2 2

ϕ ϕ
ω

−−
= =

 
R LR Lv v

R
L

                (16)

�e DDMRs velocities in the robot frame can now be represented 
in terms of the center-point A velocities in the robot frame as follows: 

( )

( )

2

0

2

ϕ ϕ

ϕ ϕ
θ ω

+
=

 =
 + = =


 



 

R Lr

a

r

a

R L

x R

y

R
L

                    (17)

�us 

2 2

0 0

2 2

ϕ
ϕ

θ

 
  
     =     

     − 
 







r

a

Rr

a

L

R R

x

y

R R

L L

                   (18)

�e DDMR velocities can be obtained also in the inertial frame as 
follows: 

cos cos
2 2

sin sin
2 2

2 2

θ θ

ϕ
θ θ

ϕ
θ

 
 

   
    = =           

 −
  




 


r

a

RI r

a

L

R R

x
R R

q y

R R

L L

                 (19)

Equation (19) represents the forward kinematic model of the 

DDMR. Another alternative form for the kinematic model can be 
obtained by representing the DDMR velocities in terms of the linear 
and angular velocities of DDMR in the Robot frame. 

cos 0

sin 0

0 1

θ
θ

ω
θ

   
    = =            


 



r

a

I r

a

x
v

q y                     (20)

Dynamic Modeling of the DDMR 

Dynamics is the study of the motion of a mechanical system 
taking into consideration the di�erent forces that a�ect its motion 
unlike kinematics where the forces are not taken into consideration. 
�e dynamic model of the DDMR is essential for simulation analysis 
of the DDMR motion and for the design of various motion control 
algorithms. 

A non-holonomic DDMR with n generalized coordinates (q
1
,q

2
,…

,q
n
) and subject to m constraints can be described by the following 

equations of motion: 

( ) ( ) ( ) ( ) ( ) ( ),
λτ τ+ + + + = −Λ    T

dM q q V q q q F q G q B q q        (21)

where: 

M(q) an nxn symmetric positive de�nite inertia matrix, ( ), V q q  is 
the centripetal and coriolis matrix, ( )F q  is the surface friction matrix, 
G(q) is the gravitational vector, τ d  is the vector of bounded unknown 
disturbances including unstructured unmodeled dynamics, B(q) is the 
input matrix, τ is the input vector, ( )ΛT q  is the matrix associated 
with the kinematic constraints, and λ is the Lagrange multipliers vector 
[21,22]. 

Lagrange dynamic approach 

Lagrange dynamic approach is a very powerful method for 
formulating the equations of motion of mechanical systems. �is 
method, which was introduced by Lagrange, is used to systematically 
derive the equations of motion by considering the kinetic and potential 
energies of the given system. 

�e Lagrange equation can be written in the following form: 

( )λ ∂ ∂
+ = −Λ ∂ ∂ 

T

i i

d L L
F q

dt q q
                 (22)

Where L=T-V  is the Lagrangian function, T, is the kinetic energy of 

the system, V is the potential energy of the system, q
i
 are the generalized 

coordinates, F is the generalized force vector, Λ is the constraints 
matrix, and λ is the vector of Lagrange multipliers associated with the 
constraints.

�e �rst step in deriving the dynamic model using the Lagrange 
approach is to �nd the kinetic and potential energies that govern the 
motion of the DDMR. Furthermore, since the DDMR is moving in the 
X

I
-Y

I
 plane, the potential energy of the DDMR is considered to be zero. 

For the DDMR, the generalized coordinates are selected as 

[ ]θ ϕ ϕ= T

a a R Lq x y                    (23)

�e kinetic energies of the DDMR is the sum of the kinetic energy 
of the robot platform without wheels plus the kinetic energies of the 
wheels and actuators. 

�e kinetic energy of the robot platform is 

2 21 1

2 2
θ= + 

c c c cT m v I                    (24)
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While the kinetic energy of the right and le� wheel is 

2 2 21 1 1

2 2 2
θ ϕ= + + 

wR w wR m w RT m v I I                  (25)

2 2 21 1 1

2 2 2
θ ϕ= + + 

wL w wL m w LT m v I I                (26)

where, m
c
 is the mass of the DDMR without the driving wheels and 

actuators (DC motors), m
w
 is the mass of each driving wheel (with 

actuator), I
c
 is the moment of inertia of the DDMR about the vertical 

axis through the center of mass, I
w
 is the moment of inertia of each 

driving wheel with a motor about the wheel axis, and I
m

 is the moment 
of inertia of each driving wheel with a motor about the wheel diameter.

All velocities will be �rst expressed as a function of the generalized 
coordinates using the general velocity equation in the inertial frame. 

2 2 2= + 
i i iv x y                     (27)

�e X
i
 and Y

i
 components of the center of mass and wheels can be 

obtained in terms of the generalized coordinates as follow 

cos

sin

θ
θ

= +
 = +

c a

c a

x x d

y y d
                 (28)

sin

cos

θ
θ

= +
 = +

wR a

wR a

x x L

y y L
                 (29)

sin

cos

θ
θ

= −
 = +

wL a

wL a

x x L

y y L
                 (30)

Using equations (24)-(26) along with equations (27- (30), the total 
kinetic energy of the DDMR is 

( ) ( ) ( )2 2 2 2 21 1 1
cos sin

2 2 2
θ θ θ ϕ ϕ θ= + − − + + +     

a a c a a w R LT m x y m d y x I I

                       (31)

where the following new parameters are introduced 

2= +c wm m m  is the total mass of the robot, 2 2
2 2= + + +c c w mI I m d m L I  

and is the total equivalent inertia.

Using equation (22) along with the Lagrangian function, L=T the 
equations of motion of the DDMR are given by 

2

1
sin cosθ θ θ θ− − = 

amx md md C                  (32)

2

2
cos sinθ θ θ θ− − = 

amy md md C                  (33)

3
sin osθ θ θ− + =  

a aI mdx mdy c C                  (34)

4
ϕ τ= +
w R RI C                     (35)

5
ϕ τ= +
w L LI C                     (36)

where (C
1
, C

2
, C

3
, C

4
, C

5
), are coe�cients related to the kinematic 

constraints, which can be written in terms of the Lagrange multipliers 
vector λ and the kinematic constraints matrix Λ introduced in section 3. 

( )

1

2

3

4

5

 
 
 
 Λ =
 
 
  

T

C

C

q C

C

C

                     (37)

Now, the obtained equations of motion (32)-(36) can be represented 
in the general form given by equation (21) as 

( ) ( ) ( ) ( ),
λτ+ = −Λ   TM q q V q q q B q q                    (38)

Where 

( )

0 sin 0 0

0 cos 0 0

sin cos 0 0 ,

0 0 0 0

0 0 0 0

θ
θ

θ θ

− 
 
 
 = −
 
 
  w

m md

m md

M q md md I

I

                              
( )

0 cos 0 0 0

0 sin 0 0 0

, 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

θ θ
θ θ

 −
 − 
 =
 
 
  






md

md

V q q

  ( )

0 0

0 0

,0 0

1 0

0 1

 
 
 
 =
 
 
  

B q and  ( )

1

2

3

4

5

sin cos cos

cos sin sin

0

0 0

0 0

λθ θ θ
λθ θ θ

λ λ
λ
λ

−   
  
  
  Λ = ×−
  −   
  −   

T q L L

R

R

Next, the system described by equation (38) is transformed into 
an alternative form which is more convenient for the purpose of 
control and simulation. �e main aim is to eliminate the constraint 

term ( )λΛT q  in equation (88) since the Lagrange multipliers λ
i
 are 

unknown. �is is done �rst by de�ning the reduced vector 

ϕ
η

ϕ
 

=  
 





R

L

                     (39)

Next, by expressing the generalized coordinates velocities using the 
forward kinematic model (19). �en we have 

cos cos

sin sin

1

2

2 0

0 2

θ θ
θ θ

ϕ
θ

ϕ
ϕ
ϕ

             = −                










a

a

R

L

R

L

R R
x

R R
y

R R

L L
                  (40)

�is can be written in the form 

( )η=q S q                     (41)

It can be veri�ed that the transformation matrix S(q) is in the null 
space of the constraint matrix  Λ(q). �erefore we have 

( ) ( ) 0Λ =T TS q q                    (42)

Next, taking the time derivative of equation (41) gives 

( ) ( )η η= + q S q S q                    (43)

Substituting equations (41) and (43) in the main equation (38) we 
obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ),η η η τ λ + + = −Λ   
   TM q S q S q V q q S q B q q

                    (44)
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We start the derivation by representing the robot position using 
polar coordinates. Assuming that the robot is a rigid body, its polar 
coordinates in the inertial frame can be represented using a complex 
vector 

ˆ θ= jr re                                  (48)

Di�erentiating the above position vector with respect to time will 
give us the velocity and acceleration of the robot in the inertial frame. 

ˆ θ θθ= +  j jr re jr e                      (49)

2ˆ 2
θ θ θ θθ θ θ= + + −    j j j jr re jr e jr e r e                  (50)

Simplifying and writing the velocity and acceleration terms in 
radial and tangential terms, we have 

[ ] 2ˆ

πθ
θ θ

 + 
  = +  

 
j

jr r e r e                    (51)

2 2ˆ 2

πθ
θθ θ θ

 + 
    = − + +   

    
j

jr r r e r r e                   (52)

�e radial and tangential velocity and acceleration terms are 
de�ned as 

= 
uv r                      (53)

θ= 
wv r                     (54)

2θ= − 
ua r r                      (55)

2 θ θ= + 
wa r r                    (56)

From the above four equations, we can write the following relations 
between the radial and tangential components of the robot velocity and 
acceleration 

θ= − 
u u wa v v                       (57)

 θ= − 
w w ua v v                    (58)

�e above equations (57) and (58) are the fundamental acceleration 
equations that can be also obtained using the theorem of motion of a 
rigid body in a rotating reference frame [21,22]. 

�e next step is to write the Newton’s second law of motion in the 
robot frame and �nd the relationship between the forces, torques, and 
accelerations. �e DDMR exhibits two types of motion: translations in 
the radial and tangential directions, and rotation around the vertical 
axis at the center of mass. Let M be the total mass of the robot including 

Next, rearranging the equation and multiplying both sides by leads 
to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),η η + + 
 T TS q M q S q S q M q S q V q q S q

              ( ) ( ) ( ) ( )τ λ= − ΛT T TS q B q S q q (45)

where the last term is identically zero. Now de�ning the new matrices 

( ) ( ) ( ) ( )= TM q S q M q S q

( ) ( ) ( ) ( ) ( ) ( ),= + T TV S q M q S q S q V q q S q ,

( ) ( )= TB S q B q

�e dynamic equations are reduced to the form 

( ) ( ) ( ),η η τ+ = M q V q q B q                   (46)

Where 

( )
( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2 2

2 2

4 4

4 4

 
+ + − 

 =
 − + +  

w

w

R R
I mL I mL I

L L
M q

R R
mL I I mL I

L L

( ) ( )

2

2

0
1 02

, ,
0 1

0
2

θ

θ

 
   
 = =  
   −  






c

c

R
m d

L
V q q B q

R
m d

L

Equation (46) shows that the DDMR dynamics are expressed only 

as a function of the right and le� wheel angular velocities ( ),ϕ ϕ 
R L , the 

robot angular velocity θ  and the driving motor torques ( ),τ τR L . �e 

equations of motion (46) can be also transformed into an alternative 
form which is represented by the linear and angular velocities (v,w)of 
the DDMR. Using the kinematic model equations (15) and (16), it can 
be easily shown that the model equations (46) can be rearranged in the 
following compact form 

( )

( )

2

2

2

2

2 1

2

ω τ τ

ω ω τ τ

  + − = +   

  + + = −  





w
c R L

w c R L

I
m v m d

R R

L L
I I m d v

R R

                 (47)

Newton-Euler approach 

�e �rst and most important step in Newton-Euler dynamic 

modeling is to draw the free body diagram of the system and to analyze 

the forces acting on it. �e free body diagram of the di�erential drive 

mobile robot is shown in Figure 3. Using the robot local frame {xr, yr}, 

the following notations are introduced. 

(v
u
,v

w
) represents the velocity of the vehicle center of mass C in the 

local frame; v
u
 is the longitudinal velocity and v

w
 is the lateral velocity; 

(a
u
,a

w
) represent the acceleration of the vehicle's center of mass C; 

( ),
R Lu uF F  are the longitudinal forces exerted on the vehicle by the le� 

and right wheels; ( ),
R Lw wF F  are the lateral forces exerted on the vehicle 

by the le� and right wheels; θ is the orientation of the robot; ω is the 

angular velocity; m is the mass of the robot; and is the yaw moment of 

inertia with respect to the center of mass. 

As it can be seen from the above free body diagram, the only forces 

acting on the robot are actuator forces acting on the robot wheels. 

Figure 3: Robot free body diagram for Newtonian dynamic modeling.
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the wheels and actuators and J the moment of inertia with respect to 
the center of mass. �en the dynamic equations are 

 = +u uL uRMa F F                   (59)

= −w wL wRMa F F                  (60)

( ) ( )θ = − + −
uR uL wR wLJ F F L F F d                   (61)

Substituting the acceleration terms from (57) and (58) we get 

θ +
= + uL uR

u w

F F
v v

M
                     (62)

θ −
= − + wL wR

w u

F F
v v

M
                   (63)

( ) ( )θ = − + −
uR uL wR wL

L d
F F F F

J J
                (64)

�e absence of slipping (pure rolling) in the longitudinal direction 
and no sliding in the lateral direction creates independence between the 
longitudinal, lateral and angular velocities and simpli�es the dynamic 
equations. �ese non-holonomic constraints are taken into account 
by de�ning the velocity of the center-point A in the local frame and 
forcing it to be zero. Using the transformation matrix R(θ), we �rst �nd 
the velocity of the center of mass C in the inertial frame as 

 
cos sin

sin cos

θ θ
θ θ

−    
= ×    
    



c u

c w

x v

y v
                  (65)

Next, using equation (28), we can �nd the velocity of the center-
point A in the inertial frame. It can then be shown that the lateral 
velocity of point A in the local frame is θ− 

wv d . �erefore, in the 
absence of lateral slippage we have θ= 

wv d  (66)

Next, substituting (66) in (62), (63), and combining with (64) we 
obtain 

( )2 1θ= + +
u uL uRv d F F

M
                     (67)

( )
2 2

θ θ= − −
+ +

 u
uR uL

MdvL
F F

Md J Md J
                    (68)

�e above two equations are the dynamic equations of the robot 
considering the non-holonomic constraints. �ese equations can 
now easily be transformed to show the actuator torques applied to the 
wheels similar to the notations used in the Lagrangian approach. 

( )2 1θ θ τ τ− = + 
u R LMv Md

R
                    (69)

( ) ( )2 θ θ τ τ+ + = − 
u R L

L
Md J Mdv

R
                    (70)

Next, these two equations can be written in matrix form as follows 

2

0 1 10 1

0 0

τθ
τθ θθ

   −       
+ =          + −          

 
 

Ru u

L

M v vMd

Md J L LRMd
                      (71)

As it can be observed, equation (62) is similar to equation (47), 
which was obtained using the Lagrangian approach. Note that in the 
Newton-Euler approach the mass and inertias of the wheels were not 
taken into consideration, and the robot is considered as one rigid body. 
�erefore both formulations are equivalent if the inertia and mass 
parameters are de�ned as 

 M = m
c                            

(72)

J = I
c
                        (73)

Next, using the forward kinematics equations (15) and (16), we can 

easily rewrite the general dynamic equations (71) in terms of the wheels 
rotational velocities and actuator torques. �e leads to the following 
formulation 

( ) ( )2 2

2 2
4 4 4 4

ϕ ϕ
   + +
   + + − +
      

 
R L

R Md J R Md JMR MR

L L
 

                        
2 2

2

2 2

1

4 4
ϕ ϕ ϕ τ

   
− + =   
   

  
L R L R

MdR MdR

L L R
(74)

( ) ( )2 2

2 2
4 4 4 4

ϕ ϕ
   + +
   + + − +
      

 
L R

R Md J R Md JMR MR

L L
 

                        
2 2

2

2 2

1

4 4
ϕ ϕ ϕ τ

   
− + =   
   

  
R R L L

MdR MdR

L L R
 (75)

�e above equations are also equivalent to those derived using the 
Lagrangian approach as given by equation (46). 

Figure 4 shows the dynamic model of the DDMR representing 
the equations of motion (69) and (70). �is model shows clearly the 
coupling between the motor torques, the linear and angular velocities 
of the robot, and the wheels velocities. �is model can be adequately 
used for DDMR simulation and analysis.

Actuator Modeling 

�e dc motors which are generally used to drive the wheels of a 
di�erential drive mobile robot system are considered to be the servo 
actuators. In an armature-controlled dc motor which is the case for 
our DDMR system, the armature voltage v

a
 is used as the control input 

while keeping the conditions in the �eld circuit constant. In particular, 
for a permanent-magnet dc motor, we have the following equations for 
the armature circuit 

ω
τ
τ τ

 = + +
 =
 =


=

a
a a a a a

a b m

m t a

m

di
v R i L e

dt

e K

K i

N

                    (76)

where, i
a
 is the armature current,(R

a
,L

a
) is the resistance and inductance 

of the armature winding respectively, e
a
 is the back emf, w

m
 is the rotor 

angular speed , τ
m

 is the motor torque, (K
t
,K

b
) are the torque constant 

and back emf constant respectively, N is the gear ratio, and is τ the 
output torque applied to the wheel.

Since in the DDMR the motors are mechanically coupled to the 
robot wheels through the gears, the mechanical equations of motion 
of the motors are linked directly with the mechanical dynamics of the 
DDMR. �erefore each dc motor will have 

ω ϕ
ω ϕ

=
 =




mR R

mL L

N

N
                    (77)

The total dynamic equations of the DDMR with the actuators 

Figure 4: DDMR Dynamic Model. 
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are obtained by combining equation (76) for each motor with the 
mechanical dynamics of the DDMR. Additional torque disturbances 
acting on the wheels can be included as additive terms to the motor 
torques. Figure 5 shows a block diagram representation of the overall 
system. �e forward kinematic model (19) can be added as a cascade 
to the dynamic model to form a complete model for simulation and 
analysis of the DDMR.

Conclusion

We have presented a detailed derivation of the dynamic model of a 
di�erential-drive mobile robot using the Lagrange and Newton-Euler 
methods. �ey were shown to be mathematically equivalent providing 
a check on their consistency. �e equations of motion of DC motors 
actuators were also added to form the complete dynamic model of the 
DDMR. �e insight gained in this study will assist engineering students 
and researchers in the modeling and design of suitable controllers for 
DDMR navigation and trajectory tracking.
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