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Abstract

This paper presents a first-order autoregressive distributed lag model in both space and time. It

is shown that this model encompasses a wide series of simpler models frequently used in the

analysis of space-time data as well as models that better fit the data and have never been used

before. A framework is developed to determine which model is the most likely candidate to

study space-time data. As an application, the relationship between the labor force participation

rate and the unemployment rate is estimated using regional data of Germany, France and the

UK derived from Eurostat, 1983-1993.
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1 INTRODUCTION

Econometric modeling of space-time data calls for quite complex stochastic

specifications. Two particular problems one must deal with are serial dependence

between the observations on each spatial unit over time, and spatial dependence

between the observations on the spatial units at each point in time. These problems

might occur, for example, when the error term of a model formulated in static form

and estimated by OLS is tested for serial and spatial autocorrelation. Frequently, the

null hypotheses of no serial and no spatial autocorrelation must be rejected under

these circumstances. This is problematic since failing to account for serial and spatial

autocorrelation when present causes the OLS estimator to lose its property of

efficiency. One remedial reaction could be to re-estimate the model using methods

that assume the errors are generated by a first-order serial and spatial autoregressive

process. Major textbooks present this approach as an appropriate reaction, either for

serial autocorrelation (Greene, 1993, Ch.15; Griffiths et al., 1993, Ch.16) or spatial

autocorrelation (Anselin, 1988, Ch.8; Odland, 1988). By contrast, this approach has

also been highly criticized. Hendry and Mizon (1978) were among the first to point

out that serial autocorrelation correction cannot be considered a serious effort to find

the ‘correct’ equation.2 Instead of improving an initial econometric model when it

appears to be unsatisfactory, one better starts with a more general model containing,

nested within it as special cases, a series of simpler models that ideally should

represent all the alternative economic hypotheses requiring consideration. The general

model Hendry and Mizon have recommended as a generalization of the first-order

serial autocorrelation model is the first-order serial autoregressive distributed lag

model; a linear dynamic regression model in which Yt is regressed on Yt-1, Xt and Xt-1

and the error term is Gaussian white noise.

Hendry and Mizon’s model is a typical time series model. Its counterpart in the

spatial regression literature, the first-order spatial autoregressive distributed lag model

covering the first-order spatial autocorrelation model as a special case, has been

                                                
2See also Gilbert (1986) on professor Hendry’s econometric methodology, Mizon (1995) for a
recent update, and Hendry (1995, Ch.7) for a recent update and related work.
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discussed by Burridge (1981), Bivand (1984), Blommestein and Nijkamp (1986),

Anselin (1988: 226-230), and Florax and Folmer (1992).

This paper presents a first-order autoregressive distributed lag model in both

space and time. It is shown that this model encompasses not only a wide series of

simpler models frequently used in the analysis of space-time data, but also models

that better fit the data and have not yet been used. In addition, it should be stressed

that while most previous studies in the analysis of space-time data are oriented toward

spatial cross-section analysis, especially books dedicated to developments in spatial

econometrics (Anselin, 1988; Anselin and Florax, 1995; Fischer and Getis, 1997; and

Griffith et al., 1998), this paper shifts the emphasis to time series modeling

techniques.

We hasten to stress that models with serial and spatial dynamic effects are not

totally absent from the literature; short overviews can be found in Cressie (1991: 449-

452) and Robinson (1998: 319-328). The point is that previous studies are rather

restrictive. Bronars and Jansen (1987) have specified a spatiotemporal model by

starting from lattice data, the two-dimensional analogue of a time series, but this type

of data is rather unusual in that it oversimplifies the spatial arrangement of the data.

In space, there is typically no natural order for arranging sample data. The same holds

for a recent study by Pace et al. (1998). In this study it was assumed that the spatial

weight matrix is lower triangular, which is rather unusual in that it implies that two

spatial units cannot mutually affect each other. Earlier textbooks on spatial

econometrics also dealt with autoregressive specifications in which the regressand is

lagged in both space and time, but on further consideration not together in estimation

unlike OLS, a method that does not take into account that lagged dependent variables

can create bias problems (Cliff et al., 1975; Bartels, 1979; Bennett, 1979; Wrigley and

Bennett, 1981). Other studies have struggled with the initial values of lagged

variables. If the process generating the data in the sample period is stationary, or can

be made so by a suitable transformation of the data, the initial values convey a great

deal of information about this process since they reflect how it has operated in the

past. Conditioning on those initial values or simply setting the initial values at zero
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(Pfeifer and Deutsch, 1980: 41) is an undesirable feature, especially when the time

dimension of the space-time data set is short.

The plan of this paper is as follows: Along with the first-order autoregressive

distributed lag model in both space and time, nine simpler econometric models are

presented that are subsumed by this model, some of which are frequently used in

applied research. These models are then arranged in a framework to determine which

is the most likely candidate to study space-time data. As an application, the

relationship between the labor force participation rate and the unemployment rate is

estimated using regional data of Germany, France and the UK derived from Eurostat,

1983-1993. We conclude this paper with a number of important implications for

econometric modeling of relationships based on space-time data.

2 DYNAMIC MODELS IN SPACE AND TIME

2.1 A GENERAL FIRST-ORDER SERIAL AND SPATIAL AUTOREGRESSIVE

DISTRIBUTED LAG MODEL

This paper focuses on a first-order serial and spatial autoregressive distributed lag

model. The model is considered in vector form for a cross-section of observations at

time t

Yt� � <t-1� :<t� :<t-1� 1Xt� 2Xt-1� 3WXt� 4WXt-1+ut, (1)

where Yt denotes a n×1 vector consisting of one observation for every spatial unit

(i=1,...,n) of the dependent variable in the tth time period (t=1,...,T); Xt denotes a n×1

vector of the independent variable. For reasons of simplicity, only one regressor X is

considered, leaving the generalization to a set of UHJUHVVRUV�DV�DQ�H[HUFLVH�� �� �� �� 1,

2�� 3�DQG� 4 are the response parameters; ut is a n×1 vector containing the error terms

and is normally distributed with E(ut)=0 and E(utut
� 
2In; W denotes an n×n weight

matrix describing the spatial arrangement of the spatial units; a variable with
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subscript t-1 denotes its serially lagged value, and a variable premultiplied by W

denotes its spatially lagged value. In addition, we maintain the following assumption:

Assumption 1: (a) W is a matrix of known constants. (b) All diagonal elements of W

DUH� ]HUR�� �F�� 7KH� FKDUDFWHULVWLF� URRWV� RI�:� ^ 1,..., n`� DUH� NQRZQ�� �G�� �� min� �� � �

�� max ( min<0, max>0).

Assumption 1(a) excludes the possibility that the spatial weight matrix is parametric.

Assumption 1(b) implies that no spatial unit can be viewed as its own neighbor.

Assumption 1(c) is needed to ensure that the log-likelihood function of the model can

be computed and presupposes that the characteristic roots of W can be computed

accurately based on computing technology typically available to empirical

researchers. Kelejian and Prucha (1999) have pointed out that this might be

problematic even for moderate sample sizes (n=400). The explanation behind

assumption 1(d) is as follows: Basically, the spatial weight matrix is symmetric.

Consequently, all its characteristics roots are real, while the largest characteristic root

is greater than zero and the smallest characteristic root is smaller than zero. If a

spatial weight matrix is row-normalized, these properties retain (Ord, 1975). Kelejian

DQG� 5RELQVRQ� ������� KDYH� SRLQWHG� RXW� WKDW� WKH� UHVWULFWLRQ� �� min� ��� max may

nonetheless be unnecessarily restrictive since any first-order spatial model is defined

IRU� HYHU\� � VR� ORQJ� DV� WKH� PDWUL[� �,� :�� LV� QRQVLQJXODU�3 Note that this matrix is

VLQJXODU�LI� �ZRXOG�EH�HTXDO�WR�WKH�UHFLSURFDO�RI�MXVW�RQH�RI�WKH�FKDUDFWHULVWLF�URRWV�RI

WKH� VSDWLDO�ZHLJKW�PDWUL[�:��7KH�PDLQ� UHDVRQ� WR� UHVWULFW� � WR��� min� ��� max is to

IDFLOLWDWH� WKH�PD[LPXP� OLNHOLKRRG� HVWLPDWLRQ�RI� � DQG� WR� HQVXUH� invertibility of the

matrix (I- :���Ord, 1981).

Figure 1 summarizes nine econometric models subsumed by (1), some of which

are frequently used in applied research. These models are briefly discussed below in

                                                
3One simple example may illustrate this. Let t : t+at and W a spatial weight matrix of two
spatial units whose off-GLDJLRQDO�HOHPHQWV�DUH�XQLW\��DV�D�UHVXOW�RI�ZKLFK� min ���DQG� max=1.
If ata1���

2In), then ta1������ ����� 2� 2In), which shows that the variance of t is finite
when the variance of at�LV�ILQLWH�IRU�HYHU\� �XQOHVV�  �� min�RU�  �� max.
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conjunction with the properties of the proposed general model. In section 2.2 we give

an explanation for introducing lags in both space and time. In section 2.3 we discuss

the conditions under which autoregressive lag models reduce to autocorrelated-error

models. In section 2.4 we show that each model can be rewritten as an equilibrium

correction model, a notation which is useful for interpretation. In section 2.5 we

introduce a new type of model that we call a spatial equilibrium correction model. In

section 2.6 we derive the maximum likelihood functions of the models in figure 1. In

section 2.7 we present the conditions under which these models are stationary.

Finally, we explain in section 2.8 how the likelihood function of the proposed general

model might be maximized computationally.

2.2 THE EXPLANATION OF LAGS

There are a number of reasons why serial lags appear in econometric equations. First,

a household may not change its consumption level and labor supply immediately in

response to a change in prices or its income. Similarly, a firm may react with some

delay to changes in costs and to changes in the demand for its product. Second, lags

can arise because of imperfect information. Economic agents require time to gather

relevant information, and this delays the making of decisions. There are also

occasions when institutional factors can result in lags. Households may be

contractually obliged to supply a certain level of labor hours, even though other

conditions would indicate a reduction or increase in labor supply.

Similarly, there are a number of reasons why spatial lags appear in econometric

equations. The main reason that one observation associated with a location depends

on observations at other locations is that distance affects household and firm

behavior. Each household may change its location, consumption and labor supply

decisions, and each firm may change its location, input demand and output supply

decisions, depending on the market conditions in the home region compared to other

regions and on the distance to these regions. These notions have been formulated in

regional science theory that relies on notions of spatial interaction and diffusion

effects, hierarchies of place and spatial spillovers.
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Another reason to expect both serial and spatial lags is that data collection of

observations associated with spatial units over time might reflect measurement error.

This would occur if the administrative boundaries for collecting information � WKH

arbitrary delineation of space into different units (countries, states, provinces,

countries, tracts or zip codes), and of time into different units (years, quarters or

months) �GR�QRW�DFFXUDWHO\� UHIOHFW� WKH�QDWXUH�RI� WKH�XQGHUO\LQJ�SURFHVV�JHQHUDWLQJ

the sample data. As an example, consider the relationship between the labor force

participation rate and the unemployment rate. Since laborers may travel up and down

daily from one spatial unit to another, labor force participation and unemployment

rates measured on the basis of where people live could exhibit spatial dependence.

Similarly, as unemployed people may find a job that starts the next time period, labor

force participation and unemployment rates measured on the basis of people’s labor

market status at a particular point in time could exhibit serial dependence.

One crucial practical question is the order of the lag structure that should be

assigned to each variable. One may look to economic theory for guidance, but while

economic theory is often quite helpful to entail long-run equilibrium relationships it

often has little to say about the short-run dynamics of how this equilibrium is

approached. In practice, dynamic factors can often only be uncovered by allowing

actual data to determine the appropriate structure. This paper is restricted to lag

structures of the first-order. As the emphasis in this paper is on models with both

serial and spatial effects, higher order lag structures are not discussed. Nevertheless,

the specified model already covers a broad range of econometric models commonly

used in empirical time series analysis and spatial econometrics (see Hendry, 1995,

Ch. 7; Anselin, 1988, Ch. 4).

It should be noted that some analysts have been troubled with the idea that the

spatial autoregressive interaction between Y and WY is instantaneous (see Upton and

Fingleton, 1985: 369). Instead, they suggest a model in which the autoregressive

response is allotted a period in which to take effect, Yt :<t-1. The advantage of this

specification is that the Jacobian term, |I- :_��ZKLFK�LV�WKH�UHVXOW�RI�WUDQVIRUPLQJ�WKH

estimation model from the error term into the dependent variable, disappears. This

considerably simplifies estimation of the model by maximum likelihood. By contrast,
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many other analysts do not seem to have problems with the idea that Yt in one spatial

unit is regressed on Yt in other spatial units depending on a spatial weight matrix W,

Yt :<t. For that reason we do not wish to preclude this specification in advance.

Instead, we start with Yt :<t� :<t-1 and try to determine whether the data can

help to determine the most appropriate model.

2.3 AUTOCORRELATED-ERROR MODELS

Each first-order autoregressive distributed lag model with E(ut)=0 and E(utut
� 
2In

may, when a common factor is present, be reduced to a simpler regression model with

fewer parameters and autocorrelated errors. This is shown below for the four models

in figure 1 that satisfy these conditions:

(i) The first-order serial autoregressive distributed lag model is Yt�  � <t-1� 1Xt+

2Xt-1+ut, which is a typical time series model. This model reduces to [In- /@Yt =

[In- /@ 1Xt+ut�� ZKHQ� 2 � 1 (L is defined such that LYt=Yt-1), so that the terms

involving Yt and Xt have a common factor of (In- /��� 'LYLGLQJ� ERWK� VLGHV� RI� WKLV

equation by this common factor yields Yt 1Xt� t�ZLWK� t t-1+ut, from which it is

seen that t is generated by a first-order serial autoregressive process.

(ii) The first-order spatial autoregressive distributed lag model is Yt =

:<t� 1Xt� 3WXt+ut, which is a typical spatial cross-section model. This model

reduces to [In- :@Yt = [In- :@ 1Xt+ut��ZKHQ� 3 � 1, so that the terms involving Yt

and Xt have a common factor of (In- :���0XOWLSO\LQJ�ERWK�VLGHV�RI�WKLV�HTXDWLRQ�E\

the inverse of this common factor yields Yt 1Xt� t with t : t+ut, from which it is

seen that t is generated by a first-order spatial autoregressive process.

(iii) The combined first-order serial and spatial autoregressive distributed lag model

is Yt� � <t-1� :<t� 1Xt� 2Xt-1� 3WXt+ut. This model reduces to [In� /� :@Yt =

[In� /� :@ 1Xt+ut��ZKHQ� 2 � 1�DQG� 3 � 1, so that the terms involving Yt and Xt

have a common factor of (In� /� :���0XOWLSO\LQJ�ERWK�VLGHV�RI�WKLV�HTXDWLRQ�E\�WKH
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inverse of this common factor yields Yt 1Xt� t�ZLWK� t t-1� : t+ut, from which it

is seen that t is generated by a first-order serial and spatial autoregressive process.

(iv) The general first-order serial and spatial autoregressive distributed lag model is

Yt� � <t-1� :<t� :<t-1� 1Xt� 2Xt-1� 3WXt� 4WXt-1+ut. This model reduces to

[In- /@Yt = [In- /@ :<t+[In- /@ 1Xt+[In- /@ 3WXt+ut��ZKHQ�  � �� 2 � 1 and

4 � 3, so that the terms involving Yt, WYt, Xt and WXt have a common factor of

(In- /���0XOWLSO\LQJ�ERWK�VLGHV�RI�WKLV�HTXDWLRQ�E\�WKH�LQYHUVH�RI�WKLV�FRPPRQ�IDFWRU

yields a first-order spatial autoregressive distributed lag model Yt :<t� 1Xt+

WWXt� t with first-order serial DXWRFRUUHODWLRQ� t t-1+ut. Similarly, this model

reduces to [In- :@Yt = [In- :@ <t-1+[In- :@ 1Xt+[In- :@ 2Xt-1+ut��ZKHQ�  � �

3 � 1�DQG� 4 � 2, so that the terms involving Yt, Yt-1, Xt and Xt-1 have a common

factor of (In- :��� 0XOWLSO\LQJ� ERWK� VLGHV� RI� WKLV� HTXDWLRQ� E\� WKH� LQYHUVH� RI� WKLV

common factor yields a first-order serial autoregressive distributed lag model

Yt :<t� 1Xt� WWXt� t with first-order spatial autocorrelation t : t+ut.

The reason to consider the combined, as well as the general, first-order serial and

spatial autoregressive distributed lag model becomes clear by listing these cases.

Whereas the combined model may be reduced to a first-order serial and spatial

autocorrelation model when a common factor is present, the general model may not.

Conversely, whereas the general model may be reduced to an autoregressive

distributed lag model with first-order serial or spatial autocorrelation model when a

common factor is present, the combined model may not.

Obviously, autoregressive distributed lag models are more general than

autocorrelated-error models. One reason to test for autocorrelated-error models is that

a gain in statistical efficiency results when the number of parameters to be estimated

reduces. At the same time, it should be stressed that the rejection of a restricted model

in favor of a more general model, when it is true, is a less serious error than using a

restricted model when the restrictions imposed are incorrect.
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2.4 REPARAMETERIZING THE MODELS TO EQUILIBRIUM CORRECTION

MODELS

While equilibrium economic theories often entail static equations, imposing a static

equation on data restricts short-run and long-run response of Y to X to be identical

across space and instantaneous in time. Nevertheless, it seems preferable to require

that a dynamic model reproduces the static equation under equilibrium conditions;

this restricts the type of model but not the range of dynamic responses. For this

purpose, we consider a reparameterizing of the non-stochastic part of equation (1),

known as an equilibrium correction model.

As the principle of the equilibrium correction model is a product of the

econometric time series literature, it is helpful to first consider the equilibrium

correction model of a first-order serial autoregressive distributed lag model. The first-

order serial autoregressive distributed lag model is Yt�  � <t-1� 1Xt� 2Xt-1+ut. This

equation may be equivalently reformulated as

).u
-1

1
(+ X+X+Y = X

-1
-X

-1

+
+Y

-1
- = Y tt

*
2t

*
1t

*
t

2
t

21
tt (2)

This equation demonstrates that ‘short-run dynamics’ have been added to the static

equation. There still exists a static long-run equilibrium relationship between Y and

X, but short-run dynamics of how equilibrium is approached are explicitly taken into

DFFRXQW�� 1
*�UHIOHFWV�WKH�ORQJ�UXQ�HIIHFW�RI�<�ZLWK�UHVSHFW�WR�;��ZKLOH� 2

* reflects the

short-run or immediate response of Y to a change in X. Wickens and Breusch (1988)

KDYH�VKRZQ�WKDW�D�SRLQW�HVWLPDWH�RI�WKH�ORQJ�UXQ�FRHIILFLHQWV�� 1
*) and its covariance

matrix can be obtained directly by using an instrumental variables estimator.

However, as this property does not hold in a spatial econometric model due to the

Jacobian term |I- :_��ZH�OHDYH�WKLV�DVLGH�

The first-order spatial autoregressive distributed lag model,

Yt :<t� 1Xt� 3WXt+ut, may be equivalently reformulated as

).u):-(+(I X W]):-I(+):-I([ = Y t
-1

t
-1

NW
-1

N1t (3)

From this equation it can be seen that a spatial unit in a spatial autoregressive

distributed lag model is not only influenced by its local conditions, but also by those
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of its neighbors dependent on the structure of the spatial weight matrix W.

Furthermore, the impact of these conditions is not necessarily uniform across spatial

units. Assuming that there are n spatial units and k regressors, we get n×k different

‘long-run’ parameter estimates and n×k different standard errors or t-values. It is clear

that the amount of output might be a problem of this model. Even for small values of

n and k, it may already be rather difficult to report the estimation results compactly.

Furthermore, due to this variety in the ‘long-run’ coefficients, spatial autoregressive

distributed lag models are difficult to compare with static or serial autoregressive

distributed lag models, as in these models the effect of X on Y can be represented by

just one long-run coefficient to be valid for all spatial units. In sum, whereas the

preference for a model with a spatially lagged dependent variable may improve the

plausibility of the estimation results, the preference for a model without a spatially

lagged dependent variable may improve the surveyability of the estimation results.

The equilibrium correction model of the general first-order serial and spatial

autoregressive distributed lag model is

.XW-X-WX)+(+X)+(+Y:�+(- = Y :�-:-/-(I t4t2t43t21tt (4a)

This model implies the following static long-run equilibrium relationship between Y

and X,

,X W]):-:-I-I)(+( + ):-:-I-I)(+[( = Y t
-1

nn43
-1

nn21t (4b)

whose properties can best be compared with those of the spatial autoregressive

distributed lag model.

2.5 A SPATIAL EQUILIBRIUM CORRECTION MODEL

$QRWKHU� LQWHUHVWLQJ� PRGHO� RFFXUV� ZKHQ� ERWK� �  �� DQG� 3� 4=0. When these

restrictions hold, the general first-order serial and spatial autoregressive distributed

lag model reduces to Yt <t-1� : <t� 1Xt� 2Xt-1� 3: ;t+ut. Consequently, the

static long-run equilibrium relationship between Y and X reduces to

.X = X 
-1

+
 = Y t

*
1t

21
t (5)
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Although this static long-run equilibrium relationship is equivalent to that of the first-

order serial autoregressive distributed lag model, the equilibrium correction model is

different. Whereas one spatial unit in a time series model is said to be in equilibrium

ZKHQ� <�DQG� ;�ERWK�FRQYHUJH�WR�]HUR��D�VSDWLDO�XQLW�LQ�WKLV�PRGHO�LV�VDLG�WR�EH�LQ

HTXLOLEULXP�RQO\�ZKHQ� <�DQG� ;�LQ�DOO�VSDWLDO�XQLWV�ZLWKLQ�WKH�UDQJH�RI�LQIOXHQFH�RI

that spatial unit converge to zero. Despite this generalization, the long-run effect of X

on Y can still be represented by just one coefficient to be valid for all spatial units.

This has the advantage that this model is better comparable with a static or serial

autoregressive distributed lag model. To distinguish this model from an equilibrium

correction model, which in the time series literature is usually associated with serial

autoregressive distributed lags, it is called a spatial equilibrium correction model.

2.6 LIKELIHOOD FUNCTIONS

The way to estimate the static model, the first-order serial and the first-order spatial

autocorrelation models, as well as the first-order serial and the first-order spatial

autoregressive distributed lag models has been widely discussed in the literature. The

way to estimate the other models in figure 1 has not been (widely) discussed before.

All models given in figure 1 can best be estimated by maximum likelihood. We

have two reasons for that. The first is that estimation by OLS should not be

recommended. The time series literature has shown that the inclusion of a serial

lagged dependent variable among the regressors causes the OLS estimator to lose its

property of unbiasedness. By contrast, the OLS estimator remains consistent.4 The

spatial econometric literature has shown that the inclusion of a spatial lagged

dependent variable among the regressors not only causes the OLS estimator to lose its

property of unbiasedness, but also its consistency. By far the most commonly

suggested method to overcome this problem is to estimate the model by maximum

likelihood (see Anselin, 1988, pp. 181-182; Anselin and Hudak, 1992).

To be able to compare the estimation results of the different models in figure 1,

they should be estimated, preferably, on the same set of observations and by the same

                                                
4Provided the sample size is large enough (usually over 30 d.f., see Ramanathan, 1995: 545).
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estimation method. Regression equations that include variables lagged one period in

time are often estimated by OLS conditional upon the first observation(s). By

contrast, when estimating these models by ML it is also possible to obtain

unconditional results. Additionally, it is also possible to test restricted against

unrestricted models with the help of the Lagrange Multiplier (LM) test, the Wald test

and the Likelihood Ratio (LR) test. The models 0,1,2,3 and 5 in figure 1 include

explanatory variables lagged one period in time. If these models are estimated

conditional upon the first observations, while the models 4,6,7,8 and 10 are estimated

upon all observations, we create a dividing line in figure 1 which makes it more

difficult to use these tests. This, taken together, is the second reason to choose ML.

Below, we derive the unconditional log-likelihood function of the general first-

order serial and spatial autoregressive lag model. After that, the log-likelihood

functions of the other models are derived by setting the right restrictions (see figure

1).

The log-likelihood function conditional upon the vector Y1 of first observations

is

,ee
2

1
-|:-I|1)log-(T+)1)log(2-n(T

2

1
- = f Log tt

T

2=t
2

2
Y|Y,...,Y,Y 121-TT ′∑πσ (6)

where the second log at the right-hand side corresponds to the Jacobian term from the

error term to the dependent variable and et=Yt� <t-1� :<t� :<t-1� 1Xt� 2Xt-1� 3WXt-

4WXt-1. To obtain the unconditional log-likelihood function, we rewrite the general

first-order serial and spatial autoregressive distributed lag model as

BYt X+AYt-1+ut,   with B=I- :��$ ,� :��DQG� X 1Xt� 2Xt-1� 3WXt� 4WXt-1. (7)

To proceed, we repeatedly lag this equation by one period. For m≥1 we get

BYt-m X+AYt-(m+1)+ut-m   or   Yt-m=B-1
X+B-1AYt-(m+1)+B-1ut-m. (8)

Then, by substitution of Yt-1 into (7), next Yt-2 into (7) up to Yt-m into (7), we get
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BYt=( X+ut)+AB-1� X+ut-1)+(AB-1)2� X+ut-2)+...+(AB-1)m( X+ut-m)+(AB-1)mAYt-(m+1). (9)

If |AB-1|<1, the term (AB-1)mA of the last right-hand side variable approaches zero as

m approaches infinity. Thus, if we assume that |AB-1|<1 and that the process started a

very long time ago,

BYt=(I+AB-1+(AB-1)2+...) X+(ut+AB-1ut-1+(AB-1)2ut-2+...), (10)

which implies that E(BYt)=(I-AB-1)-1
X and that E(Yt)=(B-A)-1

X. Since the

successive values of ut are uncorrelated, the variance of BYt under these assumptions

is

Var(BYt) =E(BYt-E(BYt)(BYt-E(BYt))’=

=E(utut’)+AB-1E(ut-1ut-1’)(AB-1)’+(AB-1)2E(ut-1ut-1’)((AB-1)’)2+...

 2(I+AB-1(AB-1)’+(AB-1)2((AB-1)’)2����� 2(I-AB-1(AB-1)’)-1, (11)

which implies that

Var(Yt)=B-1 2(I-AB-1(AB-1)’)-1(B-1�
 2(B’B-B’AB-1(B’AB-1)’)-1. (12)

It further follows that the jth autocovariance is

E(Yt-E(Yt))(Yt-j-E(Yt-j))’=(AB-1)j 2(B’B-B’AB-1(B’AB-1)’)-1. (13)

In sum, the vector process Yt has a constant unconditional mean and a constant

unconditional variance, independent of time, while the autocovariances depend only

on the length of time separating the observations, and not on the date of observation.

A process satisfying these conditions is said to be covariance stationary.

Consider the probability function of Y1, the vector of first observations in the

sample. Under the model assumptions Y1 is a random variable with mean E(Y1)=
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(B-A)-1
X and variance Var(Y1� 

2(B’B-B’AB-1(B’AB-1)’)-1. Hence, the log-likelihood

function of the vector of first observations takes the form

+|)’AB(B’ABB-BB|log
2

1
+) nlog(2

2

1
- = f Log 1-1-2

Y1
′′σ

),)A-(B-Y)()ABB(ABB-BB())A-(B-Y(
2

1
-           X

1-
1

1-1-
X

1-
12

′′′′′
σ

(14)

where X � 1� 2)X1�� 3� 4)WX1 and the log of |B’B-B’AB-1(B’AB-1)’| corresponds to

the Jacobian term from u1 to Y1.

The determinants of the matrices |I- :_ _%_� LQ� HTXDWLRQ� ���� DQG� _%
%�%
$%-1

(B’AB-1)’| in equation (14) can be expressed in function of the characteristic roots of

the spatial weight matrix W. To see this, we make use of five matrix properties taken

from Griffith (1988: 44, table 3.1): (i) if a matrix is multiplied by some scalar

constant, then its characteristic roots are also multiplied by this constant; (ii) if bI is

added to a matrix, where b is a real scalar, then b is added to each of the characteristic

roots of that matrix; (iii) the characteristic roots of a matrix and its transpose are the

same; (iv) the characteristic roots of a matrix and its inverse are inverses of each

other; and (v) if a positive definite matrix is powered by some real number, each of its

characteristic roots is powered by this same real number (see also Greene, 1993: 34-

�����7DNHQ�WRJHWKHU��WKH�FKDUDFWHULVWLF�URRWV�RI�WKH�PDWUL[�%�DUH��� i (i=1,...,n) and of

the matrix B’B-B’AB-1(B’AB-1�
�DUH���� i)
2-( � i)

2 (i=1,...,n).

The unconditional log-likelihood function of the complete sample of size T is

thus seen to be

+))+(-)-log((1
2

1
+)nTlog(2

2

1
- = f Log 2

i
2

i

n

1=i

2
Y,...,Y 1T

ωωπσ ∑

++ ′
=

∑∑ ee
2

1
-)-log(1 1)-(T                      tt

T

2=t
2

n

1i
iδω

,eA)(B))’AB(B’ABB’B(B’)A)’((Be
2

1
                      ’

1
11111’

12
−−−−− −−−− (15)

where e1=(B-A)Y1� X=Y1� :<1-( � :�<1�� 1� 2)X1�� 3� 4)WX1 and et=Yt� <t-1-

:<t� :<t-1� 1Xt� 2Xt-1� 3WXt� 4WXt-1 (t>1).
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Table 1 reports the log-likelihood functions of the restricted models.

2.7 STATIONARITY AND STABILITY

Since a space-time data set has two dimensions, it is possible to consider asymptotic

behavior as n→∞, T→∞, or both. Generally speaking, it is easier to increase the

cross-section dimension of a space-time data set. If as a result n→∞ is believed to be

the most relevant asymptotics, it is not necessary to assume |AB-1|<1 as long as T is

fixed. By contrast, Nerlove (1999) has pointed out that the cross-section of first

observations conveys a great deal of information about the process generating the

data since these observations reflect how that process has operated in the past. Thus,

conditioning on the cross-section of first observations is an undesirable feature,

especially when the time dimension of the space-time data set is short.

When it is assumed that |AB-1|<1, the process generating the data is stationary in

time. A more detailed description of this condition is given in table 2, which also

reports the stationarity conditions for the restricted models. It can be seen that these

conditions are also captured by the log-likelihood functions in that these functions are

not defined for parameter values that do not satisfy these conditions.

In contrast to stationarity in time, stationarity in space is quite difficult to

impose. Quite recently, Kelejian and Prucha (1998, 1999) formulated one necessary

condition which must be satisfied: the row and column sums of the spatial weight

matrix W must be bounded uniformly in absolute value as n→∞. When the spatial

weight matrix is a binary contiguity matrix, this condition is satisfied. Normally, no

spatial unit is assumed to be a neighbor to more than a given number, say q, of other

spatial units. When the spatial weight matrix is an inverse distance matrix, this

condition is not automatically satisfied. Consider an infinite number of spatial units

that are linearly arranged. The distance of each spatial unit to its first left and right

neighbor is 1, to its second left and right neighbor is 2, and so on. When W is an

inverse distance matrix and all its off-diagonal elements are 1/dab where dab is the

GLVWDQFH�EHWZHHQ�WZR�VSDWLDO�XQLWV�D�DQG�E��WKH�VXP�RI�HDFK�URZ�RI�:�LV� ��G��D�VHULHV

ZKLFK�LV�LQILQLWH��1RWH�WKDW� ��G �ZRXOG�FRQYHUJH�LI�DQG�RQO\�LI� !���,Q�VXP��ZKHQ�Q
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is fixed and T→∞, the vector process Y is stationary, but when n→∞ and T is fixed

the weights formulated as a function of distance between spatial units must decline

rapidly; otherwise standard large sample theory may not be applied. In addition, it

should be realized that a spatial process, though stable, may not be stationary (see

Haining, 1990: 82; Kelejian and Robinson, 1995: 78). This is a separate problem

beyond the scope of this paper.

2.8 ON MAXIMIZING THE LOG-LIKELIHOOD FUNCTION

Since direct estimation of the log-likelihood function with respect to the full set of

parameters failed, an iterative two-step procedure has been adopted. A problem is that

this procedure is not applicable when the spatial weight matrix is asymmetric due to

row-normalization.5

Divide the parameWHU�VHW�LQWR� �� �DQG� �RQ�WKH�RQH�KDQG��DQG�  � 1� 2� 3� 4) and
2�RQ�WKH�RWKHU��)LUVW��DQ�LQLWLDO�HVWLPDWH�RI� �DQG� 2 is needed. This can be obtained by

estimating equation (1) by OLS conditional upon the first observations or,

alternatively, upon all observations and by setting Y0=Y1 and X0=X1. This initial

estimate should satisfy the conditions stated in table 2; otherwise another initial

HVWLPDWH�PXVW�EH�FKRVHQ��2Q�LQVHUWLQJ�WKH�PD[LPL]LQJ�YDOXHV�RI� �DQG� 2 into the log-

OLNHOLKRRG�IXQFWLRQ��WKH�FRQFHQWUDWHG�ORJ�OLNHOLKRRG�IXQFWLRQ�RI� �� �DQG� �LV�REWDLQHG�

which then is maximized. Next, the first observations must be transformed to obtain

WKH� PD[LPXP� OLNHOLKRRG� HVWLPDWHV� RI� � DQG� 2�� JLYHQ� �� � DQG� �� 7KHVH� FDQ� EH

obtained by applying feasible GLS. Finally, these successive steps must be repeated

until convergence.

The most difficult step is to maximize the concentrated log-likelihood function

RI� �� � DQG� �� ,Q� PRVW� FRPPHUFLDO� HFRQRPHWULF� VRIWZDUH�� WKH� EXLOW�LQ� PD[LPXP

likelihood procedure expresses the log-likelihood function in terms that correspond to

each observation. The overall log-likelihood is then simply the sum of these terms,

/RJ/ t ilogLti. From equation (15) it can be seen that the characteristic roots of the

                                                
5This problem only holds for the general first-order serial and spatial autoregressive
distributed lag model and for the spatial equilibrium correction model.
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matrices B and B’B-B’AB-1(B’AB-1)’ can be expressed in this form by introducing

them as additional pseudo variables; the order in which these characteristic roots are

listed is irrelevant, since they appear separately from the other variables in the log-

likelihood (see Anselin and Hudak, 1992: 532). However, the transformation on the

vector of first observations is more difficult to express in this form.

When the spatial weight matrix is symmetric, W=W’, we get A=A’, B=B’ and

B’B-B’AB-1(B’AB-1)’=B2-A2=(B+A)(B-A). Consequently, the last right-hand side term

of equation (15) reduces to

).A)Y-A)((B+(B)A-(B)-YA)-((B
2
1

- X1
1-

X12
−′ (16)

As (B-A)Y1� X=Y1� <1-( � �:<1�� 1� 2)X1�� 3� 4)WX1, the variables Y1, WY1, X1

and WX1 must be multiplied by P=[(B-A)-1(B+A)]½. One important property of the

matrix P is that it has the same characteristic vectors as the matrix W (see Griffith: 44,

table 3.1, and Greene, 1993: 34-36). Let C be a n×n matrix whose ith column is the

characteristic vector ci of the spatial weight matrix W, C=[c1 c2 ... cn@��DQG�OHW� �EH�D

diagonal matrix whose ith diagonal element is ri where ri is the ith characteristic root of

P that corresponds to ci, i.e., ri�LV�WKH�VTXDUH�URRW�RI���� i)/( � i). Then we may also

XVH�WKH�WUDQVIRUPDWLRQ�PDWUL[� &
�LQVWHDG�RI�3��7KLV�LV�EHFDXVH�WKH�GHWHUPLQDQW�RI� &


HTXDOV�WKH�GHWHUPLQDQW�RI�3�DQG�3
3 � &
�
 &
 �& 
 &
 �& 2C’=(B-A)-1(B+A). Since

WKH� PDWUL[� RI� FKDUDFWHULVWLF� YHFWRUV� &� LV� LQGHSHQGHQW� RI� �� � DQG� �� SDUW� RI� WKH

WUDQVIRUPDWLRQ� &
�RQ�WKH�YHFWRU�RI�ILUVW�REVHUYDWLRQV�FDQ�EH�FRPSXWHG�LQ�DGYDQFH�E\

determining the variables C’Y1, C’WY1, C’X1 and C’WX1. When computing the

FRQFHQWUDWHG�ORJ�OLNHOLKRRG�IXQFWLRQ�RI� �� �DQG� �� WKHVH�YDULDEOHV�WKHQ�QHHG�RQO\� WR

EH� PXOWLSOLHG� E\� WKH� PDWUL[� �� 6LQFH� � LV� D� GLDJRQDO� PDWUL[�� WKH� ith row of C’Y1,

C’WY1, C’X1 and C’WX1 must in fact be multiplied by ri, which can be programmed

for each observation separately. The advantage of this solution is that we can use

again one of the built-in maximum likelihood procedures of commercial econometric

software. The disadvantage is that we also need to know the characteristic vectors of

the spatial weight matrix W, which might be problematic when W is large.
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3 NUMERICAL ILLUSTRATIONS

In this section we estimate the relationship between the labor force participation rate

and the unemployment rate at regional level. The estimation of this relationship is

primarily meant as an empirical illustration and can be seen as a necessary, though

not sufficient, step to a complete model of the labor force participation rate. In this

respect two remarks are important. First, we have limited the set of regressors to the

regional unemployment rate only. We have chosen this variable, as it is part of almost

every empirical study on regional labor force participation; Other regressors are less

universally adopted (see Elhorst, 1996). Furthermore, its estimate is usually quite

robust. Most studies have found that the effect of the unemployment rate on the labor

force participation rate is negative. Second, we abstract from a potential simultaneity

bias in that the labor force participation rate and unemployment rate in regional labor

markets are being determined simultaneously. On the other hand, this is quite

common. In an overview paper Elhorst (1996) has pointed out that the majority of

studies has treated the unemployment rate as an exogenous variable.

We have used regional data of France, Germany and the UK over the period

1983-1993. These data are harmonized series produced by Eurostat intended to be

comparable among EU member states as well as to give a consistent picture of labor

force participation and unemployment over time. We have also used Eurostat’s

regional division on the NUTS2 level, with the exception of the UK, for which

Eurostat only collects data on the NUTS1 level (31 regions in Germany excluding the

five new German Länder, 22 in France and 11 in the UK). Finally, we have opted for

a country-specific analysis to see whether we get similar or different results for each

country.

The spatial weight matrix used in the estimations is a symmetric normalized

inverse distance matrix. Except that the proposed iterative two-step estimation

procedure is not applicable if the spatial weight matrix is asymmetric, an inverse

distance matrix should not be row-normalized, since scaling the rows so that the

weights sum to one would cause this matrix to lose its economic interpretation of

distance decay. On the other hand, an inverse distance matrix can still be normalized
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VR� WKDW� LWV� ODUJHVW� FKDUDFWHULVWLF� URRW� HTXDOV� XQLW\�� max=1, just like the largest

characteristic root of a row-normalized spatial weight matrix. Let max denote the

largest characteristic root of an inverse distance matrix that is not yet normalized.

Dividing the elements of this spatial weight matrix W by max, W
* �� maxW, has the

HIIHFW�WKDW� *
max=1 and -1≤ *

min<0.

Table 1 reports the estimation results of all models that have been considered.

The following observations are typical for the specific-to-general approach. The

starting point of this approach is the static model at the right-hand side of figure 1.

The LM test is used to determine whether a model is acceptable on the data or must

be extended.6 It appears that the absence of serial and spatial autocorrelation in the

static model must be rejected. Thereupon the static model, corrected for serial or

spatial autocorrelation, will be estimated. It appears that the absence of serial

autocorrelation in the static model corrected for spatial autocorrelation, as well as the

absence of spatial autocorrelation in the static model corrected for serial

autocorrelation, must also be rejected. In sum, the static model must be corrected for

both serial and spatial autocorrelation. These findings hold for every country.

To consider the static model corrected for both serial and spatial autocorrelation

the result of the specific-to-general approach is probably extreme. It could be that an

investigator familiar with time series analysis will also consider the serial

autoregressive distributed lag model and that an investigator familiar with spatial

econometrics will also consider the spatial autoregressive distributed lag model.

)URP� WDEOH� �� LW� DSSHDUV� WKDW� WKH� UHVWULFWLRQ� 2 � 1, which would simplify the

serial autoregressive distributed lag model to a static model with serial

autocorrelation, should be rejected. This corroborates that the practice of correcting

the static model for serial autocorrelation should not be recommended. At the same

time, it appears that the problem of spatial error dependence remains. In other words,

by only specifying dynamics in time and not in space, the relationship remains

misspecified.

                                                
6If the extension consists of one parameter, the Lagrange Multiplier test then has a chi-squared
distribution with 1 degree of freedom. The 5 percent critical value of this distribution is 3.8.
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6LPLODUO\��LW�DSSHDUV�WKDW�WKH�UHVWULFWLRQ� 3 � 1, which would simplify the spatial

autoregressive distributed lag model to a static model with spatial autocorrelation,

should be rejected. This corroborates that the practice of correcting the static model

for spatial autocorrelation should not be recommended. At the same time, it appears

that the problem of serial error dependence remains. In other words, by only

specifying dynamics in space and not in time, the relationship remains misspecified.

If the two strategies were combined (but to date the number of investigators

GRLQJ�VR�LV�UDWKHU�VPDOO��LW�ZRXOG�DSSHDU�WKDW�WKH�UHVWULFWLRQV� 2 � 1�DQG� 3 � 1 also

must be rejected simultaneously. Hence, correcting the static model for both serial

and spatial autocorrelation should not be recommended either.

In conclusion we may say that the specific-to-general approach indicates that

both serial and spatial effects matter. Only the shape these effects may take is unclear,

since this approach may result in three different models that are non-nested and

therefore difficult to compare. These models are the combined serial and spatial

autoregressive distributed lag model, the serial autoregressive distributed lag model

corrected for spatial autocorrelation and the spatial autoregressive distributed lag

model corrected for serial autocorrelation.

Under these circumstances it may be helpful to follow the general-to-specific

approach. The starting point of this approach is the general serial and spatial

autoregressive distributed lag model at the left-hand side of figure 1. The Wald test is

used to test for restrictions on the model.7 From table 1 it can be seen that the

restrictions that would reduce this model to a combined serial and spatial

autoregressive distributed lag model or a spatial autoregressive distributed lag model

corrected for serial autocorrelation must be rejected. Although not reported, the

UHVWULFWLRQV�  ��DQG� 3=0 also must be rejected. This means that a model in which the

response of WY and WX is allotted a period in which to take effect is also not

acceptable on the data. By contrast, the restrictions that would reduce the general

                                                
7The Wald test has a chi-squared distribution with n degrees of freedom, where n stands for
the number of restrictions. The 5 percent critical value of this distribution is 3.8 if n=1, 6.0 if
n=2, and 7.8 if n=3. The 1 percent critical value of this distribution is 6.6 if n=1, 9.2 if n=2,
and 11.3 if n=3.
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serial and spatial autoregressive distributed lag model to a serial autoregressive

distributed lag model corrected for spatial autocorrelation are acceptable on the data

for France and the UK. They are not for Germany, but if these restrictions are tested

on the basis of the LR test, the serial autoregressive distributed lag model corrected

for spatial autocorrelation appears to be acceptable also for Germany (though only at

1% significance 8). This is one of the problems of the general-to-specific approach.

Although the Wald test does not require the restricted estimator, it does not always

help to find the correct model.9

Another model that appears to be acceptable on the data is the spatial equilibrium

FRUUHFWLRQ�PRGHO��7KH�WZR�UHVWULFWLRQV� �  ��DQG� 3� 4=0 are acceptable on the data

for all countries, on the basis of both the Wald test and the LR test at 1% significance

(in three of these six cases also at 5% significance).

A final subject for discussion is whether the static model is really misspecified.

On calculating the long-run effect of the unemployment rate on the labor force

participation rate for the two models that are acceptable on the data, we obtained the

following results: (i) -0.863 for France, -1.231 for Germany, and -0.957 for the UK in

the case of the serial autoregressive distributed lag model corrected for spatial

autocorrelation; and (ii) -0.891 for France, -1.441 for Germany, and -1.076 for the

UK in the case of the spatial equilibrium correction model. These long-run effects are

GLIIHUHQW�IURP�WKH�ORQJ�UXQ�HIIHFWV�LQ�WKH�VWDWLF�PRGHO��WKH�FRHIILFLHQW� 1), but not to a

great degree. The explanation might be that the static model stands for a cointegrating

relationship between two variables that are nonstationary in levels but stationary after

                                                
8Note that the LR test is the most labor-intensive test, since it can only be carried out after
both models have been estimated. The LR test is based on two times the difference between
the value of the log-likelihood function in the unrestricted model and the value of the log-
likelihood function of the restricted model. This test statistic has a chi-squared distribution
with degrees of freedom equal to the number of restriction imposed. In this case we get
2*(logLunrestricted-logLrestricted) =2*(1034.9-1029.5)=10.8. As we have 3 restrictions, the LR test
has a chi-squared distribution with 3 degrees of freedom; the 1 percent critical value of this
distribution is 11.3.
9In this case the correct model is unknown, but see Florax et al. (1998) for a comparison of the
specific-to-general and general-to-specific approaches applied to linear models with spatial
effects (not serial effects) based on Monte Carlo experiments.



22

being first differenced.10 Engle and Granger (1987) pointed out that the OLS

estimator of the regression coefficients in a linear regression model between two level

variables that are integrated of the same order is a superconsistent estimator.

Consequently, the OLS (=ML) estimator of the regression coefficients in the static

model may be quite accurate. The spatial analogue of this finding can be found in

Fingleton (1999). Nevertheless, there is evidence that superconsistent estimates may

have substantial finite-sample biases and that autoregressive distributed lag models

produce better estimates of the long-run coefficients (Banerjee et al., 1993, Ch.7).

4 CONCLUSIONS

There are a number of important implications for econometric modeling of space-time

data to be drawn from the analysis in this paper. As both serial and spatial effects are

likely to be present in the analysis of space-time data, economic relationships to be

estimated with the help of space-time data are better not formulated in static form.

Admittedly, this has only been investigated for the relationship between the labor

force participation rate and the unemployment rate at regional level. But under normal

circumstances, i.e. during periods without wars or climatic catastrophes, economic

variables observed at spatial units hardly change over time (or only gradually). The

same holds for their spatial distributions. Consequently, it is not unreasonable to

suspect serial and spatial effects to be present in the analysis of space-time data in

broad terms.

Re-estimating relationships formulated in static form but corrected for first-order

serial autocorrelation, first-order spatial autocorrelation, or both, should not be

recommended either. One may better start from a first-order autoregressive lag model

                                                
10It is beyond the scope of this paper to determine the order of integration of the labor force
participation rate and the unemployment rate. One reason is that a widely accepted panel data
unit root test to determine the order of integration of space-time data is not yet available (see
Maddala and Kim, 1998, for an overview of panel data unit root tests).
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in both space and time and then try to narrow it down by looking for simplifications

that are acceptable on the data, better known as the general-to-specific approach.

As both serial and spatial effects are likely to be present in the analysis of space-

time data, a relationship formulated as a first-order autoregressive lag model in space

or time only will generally still be misspecified. This implies that the investigator

familiar with time series analysis should not be blind to spatial dependence between

the observations on the spatial units at each point in time, and that the investigator

familiar with spatial econometrics should not be blind to serial dependence between

the observations on each spatial unit over time.

When looking for a relationship that captures both serial and spatial effects, it

might be that a spatial autoregressive distributed lag model corrected for serial

autocorrelation, or a serial autoregressive distributed lag model corrected for spatial

autocorrelation, is acceptable on the data. Another model that might be acceptable on

the data is the spatial equilibrium model which up to now has not been used in

empirical research. Tests on the relationship between the labor force participation rate

and the unemployment rate at regional level have shown that the last two models are

acceptable on the data, indicating that in this particular case serial dynamic effects are

more important than spatial dynamic effects.

A subject for further research is the estimation of spatiotemporal models

specified as a typical panel data model. The two most widely used panel data models

are the fixed effects and random effects models, which have in common that the

intercept is assumed to be variable. The reason these models have not yet been

considered is that estimation becomes complicated if both a spatial and a serial lagged

dependent variable are part of the explanatory variables. This is because the serial

lagged dependent variable causes the fixed effects estimator to lose its property of

consistency if T is fixed, no matter how large n is, and the random effects estimator to

lose its property of consistency even if both n and T tend to infinity (see Hsiao, 1986,

Ch.4; Baltagi, 1995, Ch.8). Consequently, estimation by maximum likelihood is not

straightforward. The alternative, first differencing the model to eliminate the variable

intercept and then estimation by the generalized method-of-moments (GMM) using a

set of appropriate instruments, is not straightforward either. The problem is that the
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GMM procedure described in the literature to estimate serial dynamic panel data

models (e.g. Baltagi, 1995: 126-128) does not take into account the conditions on the

parameters implied in the Jacobian term. A similar problem occurs if a spatially

ODJJHG�GHSHQGHQW�YDULDEOH� LV� DGGHG� WR� WKH� UHJUHVVLRQ�� ,I� WKH� UHVWULFWLRQ��� min��� ��

�� max implied in the Jacobian term |I- :_�LV�QRW�LQFOXGHG��WKH�VSDWLDO�autoregressive

SDUDPHWHU� �WHQGV�WR�EH�RYHUHVWLPDWHG��Anselin, 1980: 88).
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Table 1  The log-likelihood functions  (1n is a n×1 vector of unit elements)
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Table 2  Conditions on the models to ensure stationarity in time1

Static -

Spatial autocorrelation -

Serial autocorrelation _ _��

Spatial and serial autocorrelation (i) _ _��� max LI� ≥0,

(ii) _ _��� min LI� ��

Spatial lag -

Serial lag _ _��

Spatial lag and serial autocorrelation _ _��

Serial lag and spatial autocorrelation _ _��

Spatial equilibrium correction _ _��

Spatial and serial lag combined (i) _ _��� max LI� ≥0,

(ii) _ _��� min LI� ��

Spatial and serial general (i) ���� � � max if � ≥0,

(ii) ���� � � min if � ���

(iii) ���� � � max� LI� � ≥0,

(iv) ���� � � min� LI� � ��

1 ,Q� DGGLWLRQ� WR� WKHVH� UHVWULFWLRQV� �� min� ��� max for all models except the static model, the

serial autocorrelation model and the serial distributed lag model.



32

Table 3  Estimation results of the labor force participation rate regressed on the

unemployment rate (T-values between parentheses)

Model France Germany the UK

10.
Static

LM.8
LM.9
LogL

0= 0.742 (102.29)

1=-0.863 (-12.72)
118.5  Rej.
 43.5  Rej.
544.1

0= 0.745 (141.45)

1=-1.202 (-16.07)
180.2  Rej.
110.5  Rej.
700.8

0= 0.820 (100.95)

1=-0.917 (-12.42)
 43.4  Rej.
 32.3  Rej.
296.4

9.
Spat aut

LM.7
LogL

0= 0.695  (47.72)

1=-0.791 (-11.89)
� ���������������

 93.5  Rej.
591.2

0= 0.803  (84.65)

1=-0.908 (-12.09)
� ���������������

 81.3  Rej.
773.6

0= 0.817  (85.27)

1=-0.916 (-12.56)
� ��������������

 51.2  Rej.
308.1

8.
Ser aut

LM.7
LogL

0= 0.695  (91.73)

1=-0.364  (-9.87)
� ���������������

 26.9  Rej.
681.3

0= 0.702  (81.77)

1=-0.460  (-6.57)
� ���������������

 85.2  Rej.
961.6

0= 0.757 (45.11)

1=-0.385 (-3.72)
� ��������������

 19.2  Rej.
359.4

7.
Spat aut
Ser aut

LogL

0= 0.617  (38.07)

1=-0.443 (-11.22)
� ���������������
� ���������������

697.7

0= 0.781  (55.69)

1=-0.529  (-9.20)
� ���������������
� ���������������

991.0

0= 0.751 (40.51)

1=-0.490 (-5.09)
� ��������������
� ��������������

366.6
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6.
Spat lag

WALD.9
LM.4
LogL

� ���������������

0= 0.651  (44.25)

1=-0.666 (-10.16)

3= 0.937   (5.91)
317.4  Rej.
138.1  Rej.
596.5

� ���������������

0= 0.811  (67.14)

1=-0.730  (-8.09)

3=-1.180  (-8.45)
817.1  Rej.
133.2  Rej.
796.4

� ��������������

0= 0.801 (56.03)

1=-0.851 (-9.77)

3=-0.096 (-0.76)
 46.7  Rej.
 46.0  Rej.
314.0

5.
Ser lag

WALD.8
LM.3
LogL

� ���������������

0= 0.109   (5.61)

1=-0.304  (-8.37)

2= 0.177   (4.22)
  9.1  Rej.
 60.2  Rej.
690.8

� ���������������

0= 0.067   (5.16)

1=-0.390  (-5.13)

2= 0.236   (2.94)
 13.3  Rej.
 97.4  Rej.
975.0

� ��������������

0= 0.113  (3.00)

1=-0.343 (-2.98)

2= 0.198  (1.60)
  3.7  Not Rej.
 36.9  Rej.
365.2

4.
Spat lag
Ser aut

LogL

� ���������������

0= 0.589  (32.32)

1=-0.477 (-13.39)

3= 0.572   (4.71)
� ���������������

724.2

� ���������������

0= 0.312   (6.95)

1=-0.444  (-5.47)

3= 0.276   (1.98)
� ���������������

1023.9

� ��������������

0= 0.654 (13.13)

1=-0.305 (-1.71)

3=-0.006 (-0.03)
� ��������������

367.1

3.
Ser lag
Spat aut

LogL

� ���������������

0= 0.097   (5.82)

1=-0.505 (-19.06)

2= 0.391  (12.30)
� ���������������

730.9

� ���������������

0= 0.074   (5.95)

1=-0.477  (-7.14)

2= 0.361   (5.02)
� ���������������

1029.5

� ��������������

0= 0.111  (3.01)

1=-0.407 (-3.05)

2= 0.278  (1.95)
� ��������������

381.8
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2.
Spat
eq.cor.

LogL

� ���������������
� ���������������

0= 0.084   (5.03)

1=-0.515 (-15.78)

2= 0.413  (10.88)

3= 0.735   (5.92)
732.2

� ���������������
� ���������������

0= 0.046   (4.80)

1=-0.524  (-7.52)

2= 0.439   (5.97)

3= 0.346   (2.59)
1031.4

� ��������������
� ��������������

0= 0.075  (2.35)

1=-0.478 (-2.73)

2= 0.382  (2.15)

3= 0.272  (1.21)
381.1

1.
Combined
Spat lag
Ser lag

WALD.7
LogL

� ���������������
� ���������������

0= 0.151   (7.94)

1=-0.347  (-8.76)

2= 0.193   (4.66)

3= 0.168   (2.27)
 14.6  Rej.
698.9

� ���������������
� ���������������

0= 0.119   (6.49)

1=-0.218  (-2.04)

2= 0.115   (1.17)

3=-0.331  (-6.07)
 81.5  Rej.
994.7

� ��������������
� ��������������

0= 0.123  (2.91)

1=-0.284 (-2.32)

2= 0.147  (1.16)

3=-0.105 (-1.68)
  9.4  Rej.
368.0

0.
General
Spat lag
Ser lag

WALD.1
WALD.2
WALD.3
WALD.4
LogL

� ���������������
� ���������������
� ���������������

0= 0.107   (6.83)

1=-0.519 (-19.10)

2= 0.410  (13.30)

3= 0.642   (5.33)

4=-0.553  (-4.56)
102.4  Rej.
  9.1  Not Rej-1%
  7.7  Not Rej.
 16.1  Rej.
733.3

� ���������������
� ���������������
� ���������������

0= 0.100   (6.85)

1=-0.493  (-6.97)

2= 0.375   (4.92)

3= 0.353   (2.68)

4=-0.502  (-3.60)
116.2  Rej.
 13.5  Rej.
 12.2  Rej.
 39.1  Rej.
1034.9

� ��������������
� ��������������
� ��������������

0= 0.110  (3.20)

1=-0.460 (-2.76)

2= 0.335  (1.97)

3= 0.311  (1.40)

4=-0.345 (-1.55)
 51.5  Rej.
  0.7  Not Rej.
  4.8  Not Rej.
 12.1  Rej.
383.7

Hypotheses are tested at 5% significance, unless otherwise stated
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Figure 1  Restricted econometric models subsumed by the general serial and spatial
autoregressive distributed lag model
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