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Abstract

Parameter estimation in evidence-accumulation models of choice response times is demanding of both the data and the user. We

outline how to fit evidence-accumulation models using the flexible, open-source, R-based Dynamic Models of Choice (DMC)

software. DMC provides a hands-on introduction to the Bayesian implementation of two popular evidence-accumulation models:

the diffusion decision model (DDM) and the linear ballistic accumulator (LBA). It enables individual and hierarchical estimation,

as well as assessment of the quality of a model’s parameter estimates and descriptive accuracy. First, we introduce the basic

concepts of Bayesian parameter estimation, guiding the reader through a simple DDM analysis. We then illustrate the challenges

of fitting evidence-accumulation models using a set of LBA analyses. We emphasize best practices in modeling and discuss the

importance of parameter- and model-recovery simulations, exploring the strengths and weaknesses of models in different

experimental designs and parameter regions.We also demonstrate how DMC can be used to model complex cognitive processes,

using as an example a race model of the stop-signal paradigm, which is used to measure inhibitory ability. We illustrate the

flexibility of DMC by extending this model to account for mixtures of cognitive processes resulting from attention failures. We

then guide the reader through the practical details of a Bayesian hierarchical analysis, from specifying priors to obtaining

posterior distributions that encapsulate what has been learned from the data. Finally, we illustrate how the Bayesian approach

leads to a quantitatively cumulative science, showing how to use posterior distributions to specify priors that can be used to

inform the analysis of future experiments.
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In this article, we describe how to fit cognitive models of the

process of evidence accumulation, in which evidence favoring

different options is accumulated over time until a threshold is

reached that triggers an associated response. There are many

advantages to the evidence-accumulation approach, such as its

abilities to specify a comprehensive account of the probability of

each choice and the associated distribution of times to make

them, and to provide parameter estimates that quantify latent

(i.e., not directly observable) quantities of psychological interest

(e.g., the quality of the evidence provided by a choice stimulus

and the amount required to trigger a choice). As a result, these

models have been widely adopted, with the twomost prominent

variants, the diffusion decision model (DDM; Ratcliff &

McKoon, 2008) and the linear ballistic accumulator (LBA;

Brown & Heathcote, 2008) having been used in hundreds of

articles with applications to a wide array of topics in animal

cognition, psychology, and the neurosciences, including vision,

attention, language, memory, cognition, emotion, development,

aging, and clinical conditions, as well as applications in biology

and economics (for reviews, see Mulder, van Maanen, &

Forstmann, 2014; Ratcliff, Smith, Brown, & McKoon, 2016).

Unfortunately, parameter estimation in the context of

evidence-accumulation models can be challenging. We dis-

cuss below why this leads us to prefer a Bayesian approach

to parameter estimation, and we provide flexible open-source

software for this purpose. The Dynamic Models of Choice

(DMC; osf.io/pbwx8)1 software is written in R (R Core

Team, 2016) and is accompanied by a series of tutorials that

guide the user through the process of inferring parameters

from data, and that also provide advice based on our experi-

ence (see Table 1 for an overview).
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In the first part of the article, we provide a basic introduc-

tion to Bayesian estimation of the most longstanding

evidence-accumulation model of choice and response times

(RTs), the DDM. We then illustrate the challenges associated

with fitting evidence-accumulation models to data using the

LBA, which, although developed more recently, has found

wide application due to its computational tractability. In this

illustration we explain best practices in cognitive modeling,

such as parameter- and model-recovery simulations that ad-

dress these challenges. These practices can be adapted by

users to explore the strengths and weaknesses of any of the

many different types of evidence-accumulation models imple-

mented in DMC in the specific context of the experimental

design and parameter region relevant to their own research.

Evidence-accumulation models have transcended their

roots in simple decision processes and have provided the

building blocks for more wide-ranging cognitive models. In

the second part of this article, we explore a complex

contingent-choice task; in particular, we focus on a type of

contingent choice in which participants are required to with-

hold their response upon detecting a signal that occasionally

appears after the choice stimulus. Race architectures have long

been applied to this Bstop-signal^ paradigm in order to pro-

vide nonparametric estimates of the ability to stop (i.e., inhib-

it) ongoing responses (Logan & Cowan, 1984; Logan,

Cowan, & Davis, 1984). More recently, these models have

also been used to provide parametric accounts of response

inhibition (Logan, Van Zandt, Verbruggen, & Wagenmakers,

2014; Matzke, Dolan, Logan, Brown, & Wagenmakers,

2013a) and to model failures to attend to the stop signal

(Matzke, Love, & Heathcote, 2017b).

We use an extension of a parametric stop-signal model,

proposed by Matzke, Curley, Gong, and Heathcote (2018a),

to illustrate the power and flexibility of DMC to model

complex cognitive processes. We provide the mathematical

details of Matzke et al. (2017a, b) model, both because the

same types of equations underpin many evidence-

accumulation models and because they illustrate how easy it

is to extend these models to account for mixtures of processes

caused, for instance, by attention failures. We illustrate the

advantages of Bayesian hierarchical modeling by applying it

to experimental stop-signal data, and then show how to use the

resulting parameter estimates to quantitatively inform the

analysis of future experiments.

Evidence-accumulation models

The most widely known exemplar of evidence-accumulation

models, the DDM, is restricted to binary choice and assumes

that evidence is continuous and stochastic (i.e., that it varies

from moment to moment during accumulation). As is shown

in Fig. 1, the DDM has four core parameters: drift rate (v),

threshold (a), starting point (z), and nondecision time (t0). The

drift rate quantifies the mean rate of evidence accumulation,

which can be influenced by individual differences in the qual-

ity of information processing and by stimulus characteristics

related to task difficulty. Threshold quantifies the separation of

the two response boundaries and reflects response caution;

Table 1 DMC tutorials

Tutorial Topic

Introduction to DMC

dmc_1_1 Setting up a DMC model object

dmc_1_2 Simulating and exploring the LNR/LBA/DDM

dmc_1_3 Building an LBA model

dmc_1_4 Building an LNR model

dmc_1_5 Building a DDM

Bayesian Modeling

dmc_2_1 Prior distributions–Basic

dmc_2_2 Prior distributions–Advanced

dmc_2_3 Adding new models to DMC

dmc_2_4 Adding new models to DMC–Advanced

Fitting a Single Subject

dmc_3_1 Fitting an LNR model

dmc_3_2 Assessing the goodness of fit of an LNR model

dmc_3_3 Fitting an LBA model

dmc_3_4 Fitting a DDM

dmc_3_5 Model selection–Single subject

Fitting to a Set of Subjects

dmc_4_1 Conducting simulations for multiple subjects

dmc_4_2 Prior distributions–Hierarchical models

dmc_4_3 Posterior distributions–Hierarchical models

dmc_4_4 Fitting a fixed-effects LNR model

dmc_4_5 Fitting a random-effects LNR model

dmc_4_6 Fitting fixed- and random-effects LBA models

dmc_4_7 Fitting fixed- and random-effects DDMs

Advanced Topics

dmc_5_1 Complex factorial designs

dmc_5_2 Advanced scoring of accuracy

dmc_5_3 Model selection–Hierarchical models

dmc_5_4 Plausible values

dmc_5_5 Advanced plotting

dmc_5_6 Testing parameter effects

Beyond Basic Evidence-Accumulation Models

dmc_6_1 Fitting an LBA model with go failure

dmc_6_2 Fitting a Wald model with go failure

dmc_6_3 Fitting a Go-NoGo model

dmc_6_4 Fitting an ex-Gaussian stop-signal model with two racers

dmc_6_5 Fitting an ex-Gaussian stop-signal model with three racers

Tutorials Accompanying This Article

DMCpaper1 Advanced fitting and assessment of LBA models

DMCpaper2 Advanced fitting and assessment of stop-signal models
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large values of a indicate that a large amount of evidence must

be accumulated before a decision boundary is reached. The

starting point parameter quantifies the initial evidence value

before accumulation starts, reflecting participants’ a priori re-

sponse bias. Nondecision time quantifies the duration of pro-

cesses outside the decision-making process. The nondecision

time is the sum of the time to encode the stimulus in a form

suitable to provide evidence about the choice and the time to

produce a response once the threshold is reached. The choice

RT is the sum of the nondecision time, which is assumed to

vary between trials uniformly over a range st, and the decision

time, beginning when accumulation starts and ending when

the threshold is first reached. The DDM also assumes uniform

variability in the starting point from choice to choice over a

range sz, and Gaussian variability in the rate of evidence ac-

cumulation from choice to choice with standard deviation sv;

together, these account for the relative speeds of error and

correct responses (Ratcliff & Rouder, 1998). To identify the

model, the moment-to-moment variabil i ty of the

accumulation rate is fixed to 1, consistent with the convention

in the rtdists package (Singmann, Brown, Gretton, &

Heathcote, 2017), used by DMC to compute the DDM distri-

bution functions.2

More general models of choice for two or more response

options usually assume a race among (discrete or continuous)

stochastic evidence-accumulation processes, with one runner

per option. The choice is determined by the winner of the race

(i.e., the first runner to reach its threshold). In simple linear

versions, the runners race independently (e.g., Logan et al.,

2014; Van Zandt, Colonius, & Proctor, 2000), whereas in

more complex, nonlinear versions the runners interact coop-

eratively and/or competitively during evidence accumulation

(e.g., Ratcliff & Smith, 2004; Usher & McClelland, 2001).

Recently proposed deterministic race models, such as the

LBA and the lognormal race (LNR; Heathcote & Love,

2012), keep some elements of choice-to-choice variability

but drop the stochastic component. Their linear and indepen-

dent trajectories during evidence accumulation make them

more computationally and mathematically tractable than their

predecessors. As is illustrated in Fig. 2, the LBA assumes that

the accumulators corresponding to the different response op-

tions linearly accrue evidence with mean drift rate v and trial-

to-trial variability sv, commencing from start points drawn

from independent uniform distributions from 0 to A for each

accumulator. The first accumulator to reach its threshold (b)

determines the response and decision time. As in the DDM,

the RT is the sum of the decision time and the nondecision

time (t0).

In the past, applications of evidence-accumulation models

have been largely restricted to rapid choices (typically faster

than 1 s), but they are being increasingly applied to slower

choices (e.g., Lerche & Voss, 2018; Palada et al., 2016) and to

more complex cognitive processes. Race models, such as the

LBA, implement winner-takes-all dynamics that can be used

to build powerful and general-purpose computations (e.g.,

Maass, 2000; Šíma & Orponen, 2003). Models in which the

racers are statistically independent are computationally and

mathematically tractable, underpinning recent applications to

complex choices contingent on logical relationships among

the stimulus features (Eidels, Donkin, Brown, & Heathcote,

2010), to choices among complicated options in the multi-

attribute LBA (Trueblood, Brown, & Heathcote, 2014), and

to choices for which the evidence changes during the decision

process (piecewise LBA; Holmes, Trueblood, & Heathcote,

2016). Independent race models can also be extended to ac-

count for mixtures of different types of responding, even in

complex paradigms—enabling, for example, Bushmakin,

2
Ratcliff and colleagues often fix this parameter at 0.1, so their estimates of

accumulator-related parameters are 10 times smaller. The rtdists package

makes available in R the fast-dm-30 code (www.psychologie.uni-heidelberg.

de/ae/meth/fast-dm/; see Voss, Nagler, & Lerche, 2013).
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Fig. 1 Schematic of a diffusion decision model. Evidence is on the

ordinate, and time is on the abscissa. The stimulus is either s1, with

corresponding response r1, or s2, with corresponding response r2. The

inputs have a normal distribution with mean v and standard deviation

sv≥0. The starting point for accumulation has a uniform distribution

with mean z and width sz≥0, with the boundary for r1 located at zero

and that for r2 at a > 0. The nondecision time is the sum of the encoding

time (te) and the response production time (tr), and is assumed to have a

uniform distribution with mean t0≥0 and width st. The figure depicts a

case in which s2 is presented, the sampled evidence rate (depicted by an

arrow) is correspondingly positive, and the sampled start point is

unbiased (i.e., exactly halfway between the two boundaries). The actual

path of evidence accumulation during a trial varies due to moment-to-

moment noise and is depicted by a wavy line (note that in reality this path

is usually much more jagged). For scaling purposes, the moment-to-

moment variability in the accumulation rate (s) is fixed to 1. This figure

is also available at https://tinyurl.com/y7h94ebp under a Creative

Commons CC-BY license, https://creativecommons.org/licenses/by/2.0/
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Eidels, and Heathcote’s (2017) account of attention failures in

a complex contingent-choice task.

DMC is designed to make it relatively easy for more ad-

vanced users to implement these and other advanced

evidence-accumulation models (for an introductory Bhow

to,^ see tutorials 2.3 and 2.4, and for the range of such models

already included in the standard distribution, see tutorials 5.1–

5.6). However, in the main the tutorials focus on the DDM,

LBA, and LNR. They provide a hands-on introduction that

lets users explore these standard models (tutorials 1.3–1.5),

and they show how to use Bayesian methods to fit the models

to binary-choice data from a single participant (3.1–3.4) or

from groups of participants (4.4–4.7).3 DMC also provides

the functionality to simulate data from any DMC model (tu-

torials 1.2 and 4.1), consistent with a philosophy that encour-

ages checking model implementations through simulating da-

ta and determining whether the data-generating parameters

can be recovered through fits to the simulated data. In what

follows, we first introduce the basic concepts of Bayesian

parameter estimation and then apply these to fitting the

DDM to a single participant’s data. We then use the LBA to

illustrate parameter recovery and other good practices in cog-

nitive modeling (Heathcote, Brown, & Wagenmakers, 2015).

Finally, we illustrate how DMC can be used with an advanced

model.

Bayesian parameter estimation

Bayesian estimation starts from prior distributions representing

knowledge about the model parameters before the data are

observed (tutorials 2.1, 2.2, and 4.2). The prior distributions

are updated by the incoming data using Bayes’s rule: This

results in the posterior distributions. Panel A of Fig. 3 illus-

trates the basic concepts of Bayesian parameter estimation

using the nondecision time (t0) parameter of theDDM for three

fictitious participants. The gray dashed line shows the prior

distribution. Here we assume a relatively noninformative nor-

mal distribution for each participant with mean 0.35 and stan-

dard deviation 0.25, truncated below at 0.1 s. The truncation

reflects the prior assumption that choice RTs less than 0.1 s are

implausible. The solid black lines show the posterior distribu-

tions. The central tendency of the posterior can be summarized

using the mean, mode, or median of the distribution; these

summary statistics are often used as point estimates for the

parameters. The mean of the posterior distribution of the first

participant is indicated by the vertical dotted line.

Bayesian inference, however, offers more than just point

estimates: The posterior distributions quantify the uncertainty

of the parameter estimates. In Fig. 3, the posteriors of the

second and third participants are relatively narrow, whereas

the posterior of the first participant is quite wide, indicating

substantial uncertainty in estimating this parameter. The 95%

credible interval (CI) of the posterior, indicated by the hori-

zontal bar, summarizes the uncertainty of the estimate and

quantifies the range within which the true data-generating pa-

rameter value (the gray cross) lies with 95% probability. The

straightforward probabilistic interpretation of the Bayesian CI

is in sharp contrast with the sometimes-nonsensical nature of

3
Each member of the group can be fit as a separate individual, making it easy

to process large numbers of participants with one function call, as well as

hierarchically, where each member of the group is assumed to come from

the same population (hierarchical models are described in more detail later

in this article).

Fig. 2 Schematic of a binary linear ballistic accumulator. Evidence is on

the ordinate, and time is on the abscissa. The stimulus is either s1, with

corresponding response r1, or s2, with corresponding response r2. Inputs

have a truncated (positive) normal distribution with mean v, correspond-

ing to the parameter mean_v in DMC, and standard deviation sv, corre-

sponding to the parameter sd_v in DMC. The starting point for accumu-

lation has a uniform distribution from 0 to A and threshold b, with B = b –

A being the parameterization of the threshold used in DMC, making it

easy to enforce the constraint that b > A by setting a prior, where B > 0.

Prior constraints are also used to enforce sd_v > 0, whereas mean_v is

unbounded. The nondecision time, the sum of the encoding time and

response production time, corresponds to the t0 parameter in DMC. We

usually bound t0 between 0.1 and 1 s. The figure depicts a case in which

s2 is presented (i.e., the evidence rate distribution is more positive for the

r2 accumulator than for the r1 accumulator), and the sampled rate for the

r2 accumulator is greater than the sampled rate for the r1 accumulator

(i.e., the dashed line depicting the accumulation path is steeper for r2 than

for r1). However, the sampled starting point is higher for r1 than for r2, so

the r1 accumulator reaches its threshold after time td and the response is

an error with RT = t0 + td. This figure is also available at https://tinyurl.

com/ybpgwn84 under a Creative Commons CC-BY license, https://

creativecommons.org/licenses/by/2.0/
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the nominally analogous frequentist confidence interval (for a

pointed commentary, see Morey, Hoekstra, Rouder, Lee, &

Wagenmakers, 2016). For more detailed introductions to

Bayesian methods, the reader is referred to Edwards,

Lindman, and Savage (1963), Gelman et al. (2013),

Kruschke (2010), and Wagenmakers et al. (2018).

For complex models, such as the DDM and the LBA, the

posterior distribution cannot be derived analytically. Rather,

the it must be approximated by drawing sequences of sam-

ples—chains—using Markov chain Monte Carlo (MCMC)

methods (Gamerman & Lopes, 2006; Gilks, Richardson, &

Spiegelhalter, 1996). This is illustrated in Panel B of Fig. 3,

which shows, for each participant, 18 MCMC chains (by de-

fault, DMC uses three times as many chains as parameters,

which is six in this case), each comprising 200 samples from

the posterior distribution. MCMC sampling in the context of

evidence-accumulation models can be challenging. For in-

stance, in race models such as the LBA, we observe the out-

comes associated with the winner (responding at a certain

time) but only get indirect knowledge about the loser (that it

was slower). As a result, such models are Bsloppy^—a perva-

sive phenomenon in models of biological systems

(Gutenkunst et al., 2007)—meaning that their parameters

can be highly correlated. Sloppiness causes most standard

MCMC samplers to be grossly inefficient. DMC uses the

Differential-Evolution sampler (DE-MCMC; Turner,

Sederberg, Brown, & Steyvers, 2013), which avoids this prob-

lem by using a large set of MCMC chains. The values in

different chains are compared in a Bcrossover^ step that pro-

vides information about correlations, which then guides the

sampler’s exploration of the parameter space (ter Braak, 2006,

p. 240).

As sampling progresses, the influence of the data grows

until an equilibrium is reached so that the proper Bposterior^

(i.e., after the data have had their full influence) samples are

being obtained. The initial Bburn-in^ samples are discarded,

and additional Bconverged^ samples are obtained that are suf-

ficient to reliably estimate statistics that characterize the pos-

terior distributions. For example, sample means may be used

to characterize the central tendency of the posteriors.

Similarly, the span between the smallest and largest 2.5% of

the samples may be used to compute CIs.

DMC tutorials for the DDM, LBA, and LNR focus on the

process of using DE-MCMC to obtain converged samples that

adequately approximate the posterior distributions and the as-

sociated uncertainty of the parameter estimates. Obtaining and

verifying convergence can require judgment and is best con-

firmed by (1) assessing the similarity of within- and between-

chain variability (Bmixing^) using Brooks and Gelman’s

(1998) R̂ statistic, and (2) visually checking that the MCMC

chains have the appearance of Bflat fat hairy caterpillars,^ in

which most samples are in the middle, with occasional spikes,

and that there are no systematic upward or downward tenden-

cies (tutorials 3.1 and 3.2). This last condition can be difficult

to assess, because converged chains may still have slow oscil-

lations, reflecting long-time-scale correlations across se-

quences of samples. In such cases, it is useful to Bthin^ the

chains, keeping only, say, every 10th or 20th sample, which

also makes the samples less redundant and the corresponding

recorded samples of a more manageable size.

Fig. 3 Bayesian parameter estimation. (A) Prior (gray dashed line) and

posterior (black solid lines) distributions; the crosses indicate the true

data-generating parameter values; CI = credible interval. (B) Markov

chain Monte Carlo (MCMC) chains. For each participant, each colored

line (18 lines/participant) corresponds to oneMCMC chain sampled from

the posterior distribution; each chain comprises 200 converged posterior

samples. This figure is also available at https://tinyurl.com/yalupk58

under a Creative Commons CC-BY license, https://creativecommons.

org/licenses/by/2.0/
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DMC facilitates the process of assesing convergence by

building on functions from the R base and the CODA package

(Plummer, Best, Cowles, & Vines, 2006) to quantify redun-

dancy (autocorrelation) and the effective number of indepen-

dent samples4 and to calculate R̂ and plot the chains (see

tutorial 3.2), as well as to determine an appropriate level of

thinning (tutorial 4.6). DMC also provides a tweak of CODA

that enables users to superimpose the posterior distributions

over the prior distribution. This alerts users to cases in which

the estimates reflect the prior more than the posterior (i.e., the

data have not Bupdated^ the prior), which can be a problem, at

least when the prior is uninformative, in particular experimen-

tal designs for parameters that are only weakly constrained by

the data.

Fitting the diffusion decision model

Here we illustrate the basic concepts of Bayesian parameter

estimation by guiding the reader through tutorial 3.4, which

demonstrates fitting a six-parameter DDM to simulated data

for a single participant. As is depicted in Fig. 4 (drawn with

the plot.cell.density function), the design is minimal and the

data set large, with 10,000 decisions to each of two equally

frequent stimuli. As is shown by the Bprofile^ plots in Fig. 5a

(drawn with the profile.dmc function), the large sample size

means that the most likely parameters for the data correspond

quite closely to the generating values (see the Fig. 5 caption

for details). Sampling was carried out with the prior distribu-

tions shown in Fig. 5b (drawn with the plot.prior function),

which are noninformative because they spread their probabil-

ity mass over a wide range around the true values, and so have

little influence on the sampling.

First, we ran 400 iterations (using the run.dmc function) for

each of the 18 (3 × 6) MCMC chains. Initial values were

randomly drawn from the prior (using the samples.dmc func-

tion); thus, they are often far away from the true values and so

have very small likelihoods. The left panel of Fig. 6 shows that

as sampling progressed, posterior log-likelihoods rapidly in-

creased, and Fig. 7a shows that the posterior samples for the

parameters rapidly converged on the generating values. The

middle panels of Figs. 6 and 7b zoom in on the last 100

iterations, showing that the chains are already quite flat, with

the posterior log-likelihood having, as expected, a negatively

skewed distribution, and the posterior samples varying fairly

symmetrically. The initial 400 iterations augmented the core

crossover step with a 5% probability of taking Bmigration^

steps (Turner et al., 2013, pp. 383–384) that replace low-

likelihood chains with slightly perturbed copies of higher-

likelihood chains. Migration deals with chains that become

stuck in low-probability areas of the parameter space. The

right panel of Fig. 6 illustrates this Bstuck chain^ phenomenon

during the last 200 iterations of a fresh run of 400 iterations

commencing from randomly generated start values when mi-

gration is turned off. One chain does not move toward the

posterior mode as rapidly as the others. In extreme cases, such

chains can remain stuck for a very long time, greatly slowing

convergence. In general, migration is very useful during burn-

in because it drives the sampler in the right region of the

parameter space, but if it is used extensively it can lead to false

convergence (i.e., all chains converge on the same suboptimal

solution); in our experience, this does not occur if migration is

only allowed on 5% of the iterations.

The results obtained with migration steps cannot be used

for inference, since they tend to bias the posterior samples

to higher-likelihood regions. Therefore, we turned off mi-

gration after the initial set of 400 iterations and obtained a

fresh set of 500 samples. Visual inspection of the chains,

using the same plot.dmc function used to generate the plots

in Fig. 7, revealed the required flat, fat, hairy caterpillars,

but the R̂ values (assessed with the gelman.diag.dmc func-

tion) were still a little above the recommended cutoff (at

least less than 1.2, and ideally less than 1.1), and the effec-

tive sample size, which adjusts the actual sample size (18

chains × 500 iterations) for redundancy due to autocorrela-

tions (assessed with the effectiveSize.dmc function) was

only around 300. After another 500 iterations were added,

the chains passed visual inspection (Fig. 7c), the R̂ values

were less than 1.1, and the effective sample sizes were

greater than 500 except for trial-to-trial variability in start

point (sz), for which R̂ was a little higher (1.14) and the

effective sample size a little less than 500. However, as is

detailed in the caption of Fig. 7, these posterior samples

already provide quite good approximations of the posterior

distributions, with posterior medians quite close to the true

values, which also fall within the estimated 95% CIs. In the

tutorial, further samples are taken to improve the sampling

of sz, which is often the most difficult DDM parameter to

estimate. The tutorial also illustrates the assessment of the

goodness of fit of the model and checks on the level of

autocorrelation, but we leave these details for users to ex-

plore when working through tutorial 3.4 and the other tu-

torials provided with DMC. To guide that exploration,

Table 1 provides an overview of the DMC tutorials. An

expanded version of this table, supplied with DMC’s

readme file, identifies the tutorial that introduces each of

DMC’s functions.

4
This can be much less than nominal because of redundancy, which impacts

on whether sufficient samples have been obtained for the purpose at hand. For

example, 1,000 samples might seem sufficient to obtain reliable estimates of

95% CIs (since there will be 25 samples above and below the bounds).

However, suppose that after autocorrelation is taken into account, the effective

number of samples reduces to 100; this is clearly insufficient for reliable

estimation of the 95% CI, although it might still be sufficient for estimating

the central tendency of the posterior.
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Challenges and solutions in model fitting

Having discussed a relatively simple example, in this section

we guide the reader through a set of LBA analyses of simu-

lated binary-choice data that illustrates why parameter estima-

tion can be challenging. We also show how to apply methods

such as parameter-recovery studies (e.g., Heathcote et al.,

2015) in order to investigate whether parameter estimates

are meaningful. Some examples examine the asymptotic be-

havior of the LBA in large simulated data sets, and others

show how to check its behavior in designs representative of

real experiments by examining fits to multiple small simulated

data sets. The tutorial associated with the analyses

(DMCpaper1.R, available with the tutorials in the OSF distri-

bution) enables readers to work through the example analyses.

Parameter correlations and model identification

As a result of the sloppiness of evidence-accumulation

models, and the associated parameter trade-offs, estimates

can be very uncertain, making it difficult to identify the values

that generated the data. In the extreme case of perfect correla-

tion, parameters are nonidentified. That is, their estimated

values are meaningless because the effects of changing one

parameter can be exactly compensated for by changing anoth-

er, meaning that parameter values have no explanatory value.

To illustrate, consider evidence-accumulator models in which

decision time (td) equals the distance that has to be traveled

from start point to threshold (D) divided by the rate of accu-

mulation (v): td = D/v. It is easy to see that a change inD (e.g.,

doubling) has no effect on td if an appropriate adjustment is

made to v (e.g., also doubling).

Example 1.0 in DMCpaper1.R shows that DE-MCMC is

able to obtain convergence even in the completely

nonidentified LBA, but that it produces parameters that are

inaccurate, uncertain, and strongly correlated. Fortunately,

MCMCmethods naturally alert users to problems with param-

eter estimation. In particular, as is illustrated in Fig. 8a, it is

straightforward to plot pairs of posterior samples against each

other to assess the degree of correlation between the parameter

estimates. As is shown in Example 1.1, the identification issue

is conventionally addressed by fixing the trial-to-trial standard

deviation of the accumulation rate (sd_v) to 1,5 which pro-

duces accurate and precise estimates for exactly the same sim-

ulated data, as is illustrated in Fig. 8b. The data were simulated

with sd_v = 1, but this is shown not to matter in Example 1.2,

in which the same good performance is obtained by fixing

sd_v = 2, with the only difference being that the parameter

estimates (except for nondecision time) double.

Figure 8b shows that even when sd_v is fixed to 1, the

correlation between nondecision time (t0) and the threshold

parameter (B) remains large (i.e., – .995). Example 1.3a fixes

B instead and shows that this produces generally worse per-

formance and higher posterior correlations, because B does

not entirely determine the distance to threshold, with the

start-point noise (A) also playing a role. Examples 1.3b and

1.3c show that fixing the mean rates generally does as well as

or better than fixing sd_v, whereas Example 1.3d shows that

fixing start-point noise (A) does markedly worse than all other

cases. Note that although large correlations can make param-

eter estimation difficult, they are a natural part of sloppy

models and do not necessarily indicate that there is a fatal

problem with the model specification.

Overall, it is clear that fixing a rate-related parameter is

to be preferred, but it must be kept in mind when

5
The DDM suffers from the same identification issues, which are convention-

ally addressed by fixing the moment-to-moment variability of the accumula-

tion rate in all conditions, but Donkin, Brown, and Heathcote (2009) pointed

out that this represents overconstraint. The LNR does not require any con-

straint to be identified.
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Fig. 4 Correct (black) and error (red) response time distributions simulated from the DDM for two stimuli s1 and s2, each with 10,000 responses (drawn

with the plot.cell.density function)



interpreting the results that if one parameter is fixed (e.g.,

sd_v), an apparent effect on other parameters might really

be due to a change in the fixed parameter. Note also that

when there is more than one accumulator parameter of a

particular type, only one needs to be fixed in order to iden-

tify the model. As an illustration, Example 1.4 simulates

data from a model in which sd_v is twice as large for the

accumulator that does not match the stimulus, denoted

sd_v.false, as for the accumulator that matches the stimu-

lus, denoted sd_v.true, with only sd_v.false being fixed; the

model’s ability to recover the data-generating parameter

values remains excellent.

Fig. 5 (a) Profile plots (drawn with the profile.dmc function) of the

likelihood of each parameter of the DDM in a range around its true

value, with all other parameters fixed at their true value. The true values

(with the peak of each likelihood in brackets) are a = 1 (1.0), v = 1 (0.97),

z = 0.50 (0.50), sv = 1 (1.04), sz = 0.2 (0.24), and t0 = 0.15 (0.15). (b) Prior

distributions (drawn with the plot.prior function)

968 Behav Res (2019) 51:961–985



Parameter-recovery study

Often, researchers use evidence-accumulation models be-

cause they are interested in whether the model parameters

vary over some manipulation—for example, whether the

mean accumulation rates vary between two conditions.

Answering such a question requires a Bmeasurement

model^—that is, a model that can reliably identify the pro-

cesses that generated the data. This can be tested with a

Bparameter-recovery study^ (e.g., Heathcote et al., 2015).

Parameter recovery involves simulating data from known

parameter values, fitting the model to the synthetic data as

if they had been obtained from a real experiment, and then

determining whether the estimated parameters match the

true data-generating parameters. DMC provides a set of

functions to facilitate parameter-recovery studies, de-

scribed using the example below.

Because the model in Example 1.4 is commonly found to

hold in real data, we use it to illustrate a small-sample (100

trials for each stimulus) parameter-recovery study in Example

1.5. We fit 200 replicated data sets generated with identical

parameter values, which is made simple by DMC’s ability to

simulate and fit any number of subjects with a single com-

mand (although the computational time can become

substantial).

Given the large number of data sets, visual convergence

diagnostics are impractical. Fortunately, the RUN.dmc

function is specifically designed for parameter-recovery

studies and addresses convergence problems automatically.

It augments crossover steps with a migration step until

stuck chains are removed, then turns off migration and

adds new samples and removes old samples until chains

are mixed (checked with R̂ ) and flat (checked by compar-

ing the location and spread of the first and last third of the

samples). RUN.dmc performs all checks repeatedly,

starting with stuck chains then moving on to mixing and

flatness, but going back to stuck chains if necessary until

convergence is reached and, if requested, a minimum num-

ber of posterior samples are obtained.

In parameter-recovery studies, the mean of the posterior

medians and 95% CIs across replications can provide an indi-

cation of the average performance of the model, as is shown in

Table 2. Bias, measured by the difference between the poste-

rior median and the true value, is negligible (1%–5%) and

very similar to that in the large-sample result. With increased

sample size, the precision of the 95% CIs increases (i.e., the

CIs get narrower). The gain in precision from the 100-fold

increase in sample size in Example 1.4 relative to Example

1.5 (20,000 vs. 200 trials) varies from close to a square-root

law (~ 10 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20000=200
p

), as is generally found for simple

linear models, to about half that value. The final row of

Table 2 reports the Bcoverage^ of the 95% CIs, computed as

the percentage of times across the 200 replications that the true

value fell within the 95% CI. The precision of the coverage

estimates relies solely on the number of replications, so with

Fig. 6 Posterior log-likelihoods (drawn with the plot.dmc function) for

the first 400 iterations (left panel), posterior log-likelihoods for the last

100 iterations (i.e., the first 300 iterations are removed; middle panel), and

posterior log-likelihoods for the last 200 out of 400 iterations when

migration is turned off (right panel). Note that the x-axis is drawn from

0 in each case
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only 200 replications it is relatively coarse. Nevertheless, the

results suggest that coverage is good (i.e., close to the nominal

value of 95%).

Figure 9a shows the prior distributions for Examples 1.4

and 1.5. Figure 9b and c contrast the updating brought about

by, respectively, the large data sample in Example 1.4 and the

small data sample for a single replicate in Example 1.5. In the

large-sample case, the prior is completely dominated, whereas

in the small-sample case, updating is more moderate.

However, even in the latter case, the influence of the prior is

still largely negligible, as is appropriate, given that the priors

were relatively uninformative.

The importance of making mistakes

Sufficient trials per participant is not the only prerequisite for

good parameter estimation in evidence-accumulation models;

participants also need to make a sufficient number of errors.

To illustrate this, we first look at the extreme case of perfect

accuracy by fitting models that take this fact into account, as

would be the case when modeling detection performance (i.e.,

making a single response to the onset of a stimulus) by assum-

ing only a single evidence-accumulation process. We show

that asymptotic performance is similar to the choice cases

addressed previously with 25% errors, both in Example 1.6

for the LBA and in Example 1.7 for the LATER model

(Carpenter, 1981), a simplification of the LBA with start-

point noise fixed at 0, which is often used in detection

paradigms.

In contrast, when the error rate is low but nonzero (~ 2.5%)

and the full model from Example 1.4 is fit, recovery can be

poor. Example 1.8 examines the asymptotic case. Although

the parameter estimates are not biased, the posterior uncertain-

ty can be very large, with the width of the 95% CIs ranging

from 10% of the parameter values (for B and t0) through more

than 100% of the values (for sd_v.true). Example 1.9 outlines

a parameter-recovery study like Example 1.5, with results re-

ported in Table 3. Bias is much larger, and the inflation in

uncertainty is similar to that in the asymptotic case. This illus-

trates that parameter recovery depends on the region of the

data-generating parameter space. In practice, we find it is use-

ful to explore the parameter region using data from pilot sub-

jects, then to use the obtained parameter estimates to simulate

data sets with different numbers of trials in order to guide the

design of experiments.

Generally, when fitting choice models, it is best to have

reasonably high error rates. When high-accuracy perfor-

mance is of interest, it is beneficial to add a within-

subjects manipulation to the design that also produces a

lower accuracy condition. This is illustrated in Example

1.10, a small-sample parameter-recovery study with an

extra factor that combines Examples 1.5 and 1.9 in order

to produce high (~ 25%) and low (~ 2.5%) error condi-

tions, while keeping the total number of trials per replica-

tion constant (50 trials in each cell of the 2×2 design, so

200 trials in total). The results indicate similar levels of

uncertainty in the high-error condition and the pure high-

error case in Example 1.5. The low-error condition, how-

ever, results in much smaller uncertainty than in the pure

low-error case in Example 1.9 (~ 10%–60%), indicating a

substantial gain favoring the design that manipulates

accuracy.

Comparing parameters and models

In the previous example, accuracy was manipulated by

keeping the matching rates constant, but making the

mismatching rate much higher for the low- than for the

high-accuracy condition. We use this setup to illustrate

how to test differences in parameters. This is done by com-

puting the posterior distribution of the difference between

parameters by calculating pairwise differences between

samples from the joint posterior. Bayesian p values can

be computed from the probability that one parameter is

greater than another by tallying the number of times the

differences are greater than 0 (tutorial 5.6 describes how to

test arbitrary functions of parameters). We show that the

test is well-calibrated in the case of the null difference

between matching rates, since the p values from the 200

replications are approximately uniformly distributed be-

tween 0 and 1 (however, this is not always the case; see

Gelman, 2013). For the mismatching rate, in contrast, even

the smallest p value is greater than .995, indicating that this

difference is easily detected.

Model selection Binformation criteria,^ such as the DIC

(Spiegelhalter, Best, Carlin, & Van Der Linde, 2002),

BPIC (Ando, 2011), and WAIC (Watanabe, 2010), provide

another way of testing, for instance, whether the matching

rates are different. The model in Example 1.10 is more

complex than is needed, in that it estimates the two

matching rates separately, even though their true values

are identical. In Example 1.11, we fit to the same 200 data

sets used in Example 1.10 to a simpler model that removes

this redundancy and so requires one less estimated param-

eter. The information criteria reward goodness of fit but

penalize redundancy, so if well-calibrated, they should de-

tect that the matching rates are not different and select the

simpler model. Note that this is a difficult problem,
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�Fig. 7 (a) Markov chain Monte Carlo (MCMC) chains comprising the

first 400 iterations (drawn with the plot.dmc function). (b) MCMC chains

comprising the last 100 out of 400 iterations. (c) MCMC chains

comprising the final 1,000 iterations, for which the posterior medians

(with 95% credible intervals in brackets) were a = 1.01 (0.99–1.03), v =

1.03 (0.95–1.10), z = 0.499 (0.495–0.503), sv = 1.06 (0.83–1.29), sz =

0.28 (0.10–0.36), and t0 = 0.151 (0.147–0.154)
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because both models are in a sense correct, and the more

complex model must fit the data at least as well, and prob-

ably a little better, than the simpler model, since it can soak

up some variation due to noise.

We used a model-recovery study to investigate whether

the information criteria can indeed recover the data-

generating simpler model. When summed over data sets,

DIC and WAIC clearly prefer the simpler model by about

the same margin, whereas for BPIC the preference was

even stronger. However, when tallying the proportion of

individual data sets in which the simpler model was select-

ed, WAIC did surprisingly poorly, barely scoring over

65%, whereas for DIC this percentage was 77%, and for

BPIC it was 83%. These results are surprising, given the

increasing popularity of WAIC over the standard DIC ap-

proach (Gelman et al., 2013) and the relative obscurity of

BPIC. The results also illustrate the utility of using model-

recovery studies to check the performance of model-

selection criteria, particularly in situations with relatively

few trials per participant (tutorial 3.5 provides more details

on model selection).

Stop-signal race model

Stop-signal race models assume a statistically independent

race between a Bgo^ (i.e., choice) runner and a Bstop^

runner. If the stop runner wins, the choice response is

inhibited, but if the go runner wins, the response is

executed. In the stop-signal paradigm, the problem of par-

tial observation becomes worse. This is because the

finishing times of the stop runner cannot be directly ob-

served; they must be inferred from how the difference in

onset between the choice stimulus and the stop signal

(stop-signal delay; SSD) changes the RT distribution of

failures to stop relative to the distribution of choice RTs

on trials without stop signal (Matzke, Verbruggen, &

Logan, 2018b). Assuming Bcontext independence^ (i.e.,

that the choice runner is the same on trials with and with-

out a stop signal), we can obtain a nonparametric estimate

of the average time for the stop process to complete (stop-

signal RT). The estimate is nonparametric because the

model does not make assumptions about the parametric

form of the distribution of finishing times for the runners

(Logan & Cowan, 1984).

Parametric race model

Matzke et al. (2013a) advocated an alternative para-

metric Bayesian approach, which provides estimates of

the full distribution of stopping latencies based on the as-

sumption that the finishing time distributions of the run-

ners follow an ex-Gaussian distribution (see Fig. 10). The

ex-Gaussian is the sum of a normal distribution, with mean

μ and standard deviation σ, and an exponential distribu-

tion, with mean τ, and has been widely used to describe RT

distr ibutions (e.g., Andrews & Heathcote, 2001;

Heathcote, Popiel , & Mewhort, 1991; Matzke &

Wagenmakers, 2009). Estimation of the race model re-

quires the probability density function, f(t | θ) (i.e., the

instantaneous probability of a runner finishing at time t),

and the survivor function, S(t | θ) (i.e., the probability that

a runner is still racing at time t), both of which are easily

computed for the ex-Gaussian with parameter vector θ =

(μ, σ, τ).

In a two-runner race, the likelihood that the go runner fin-

ishes at time t and the stop runner has not yet finished (i.e., the

Table 2 Results of a parameter-recovery study with fits to 200 data sets of 200 observations each (100 for each of two stimuli) generated using the

parameter values given in the BTrue^ row, resulting in approximately 25% errors (Example 1.5)

A B mean_v.true mean_v.false sd_v.true t0

True 0.5 1 4 3 0.5 0.2

2.5 percentile 0.197 0.506 2.905 1.838 0.362 0.133

50 percentile 0.500 0.989 4.078 3.030 0.525 0.212

97.5 percentile 0.814 1.616 5.487 4.378 0.723 0.287

Median-true 0.000 – 0.011 0.078 0.030 0.025 0.012

Coverage (%) 93.0 95.0 94.5 94.5 90.0 93.0

The three Bpercentile^ rows give three percentiles defining the median (50th percentile) and the 95% CI (2.5th and 97.5th percentiles) of the posterior

distributions. The next row tabulates the difference between the true values and the posterior medians, and the final row shows coverage of the 95%

credible intervals
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�Fig. 8 Pair plots of the parameter estimates from a large data sample

(20,000 trials). The main diagonal shows histograms of the 2,700

posterior samples; the lower triangle shows scatterplots between the

posterior samples; and the upper triangle reports correlations for the

corresponding panel in the lower triangle (reflected over the main

diagonal). (a) Example 1.0: Nonidentified LBAwith all parameters esti-

mated. (b) Example 1.1: Conventional-identified LBAwith the restriction

sd_v = 1
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Fig. 9 Priors and posteriors for the linear ballistic accumulator in

Examples 1.4 and 1.5. (a) Prior distributions. (b) Prior (red lines) and

posterior (black peaked lines) distributions for Example 1.4 with a large

data sample (20,000 trials). (c) Prior and posterior distributions for one

replicate from Example 1.5 with a small data sample (200 trials). For the

large data sample (b), the posterior density is much more concentrated

than the prior density, and thus the priors appear very flat relative to the

posteriors. This suggests that the priors had minimal influence on the

posterior distributions. For the smaller data sample (c), the posterior

density is more similar to the prior, but still fairly well updated
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go runner wins at t) is LGO(t) = f(t | θGO) S(t–SSD | θSTOP).
6 If

the stop runner wins, the finishing time cannot be observed, so

the likelihood of winning at each possible time point must be

integrated (summed) in order to obtain the probability of stop-

ping: pSTOP ¼ ∫
∞

−∞
f t−SSDj θSTOPð Þ S tj θGOð Þ dt. The integral

must be evaluated numerically, which is slow, but it only

needs to be done once for each SSD. Matzke, Love, Wiecki,

et al. (2013b) provided software to fit a Bayesian implemen-

tation of this two-runner model.

Accounting for attention failures

DMC implements the two-racer ex-Gaussian model with an

extension developed byMatzke, Love, and Heathcote (2017b)

that incorporates attention failures in which the stop runner

never gets off the blocks (tutorial 6.4). Matzke, Hughes,

Badcock, Michie, and Heathcote (2017a) found that such

Btrigger failures^ are common in schizophrenia patients, but

they are also present in healthy controls. Estimation of the

probability of trigger failures (ptf) requires a straightforward

extension to the likelihood. If the go runner wins, with prob-

ability ptf only the go runner is active (i.e., there is no race),

and otherwise the usual race occurs: LGO(t) = ptf f(t | θGO) + (1

– ptf) f(t | θGO) S(t–SSD | θSTOP). Stopping cannot co-occur

with trigger failures, so pSTOP is as before, but is less likely in

proportion to the rate of trigger failures: pSTOP ¼ 1−ptf

� �

∫
∞

−∞

f t−SSDj θSTOPð Þ S tj θGOð Þ dt. Matzke et al. (2017a, b)

added the possibility of attention failures resulting from Bgo

failures,^ in which the go runner never gets off the blocks with

probability pgf (tutorials 6.1 and 6.2 outline similar extensions

to standard evidence-accumulation models). Since go re-

sponses cannot co-occur with go failures, LGO(t) = (1 – pgf)

[ptf f(t | θGO) + (1 – ptf) f(t | θGO) S(t–SSD | θSTOP)]. Since go

failures must cause successful stopping: pSTOP ¼ pgf þ

1−pgf

� �

1−ptf

� �

∫
∞

−∞
f t−SSDj θSTOPð Þ

�

S tj θGOð Þ dt�.

Accounting for choice errors

Paradoxically, the standard stop-signal paradigm relies on a

choice task, yet the standard stop-signal model assumes a

single go runner, and so cannot naturally accommodate choice

errors. A detection task (i.e., a nonchoice task, such as

responding to the onset of a stimulus) accords with the stan-

dard model’s assumption of a single go racer, but it is not used

in practice, in order to avoid anticipatory responses. To min-

imize error rate, the stop-signal paradigm typically uses a very

easy choice task and emphasizes accurate responding. In the

ex-Gaussian stop-signal model, choice errors are regarded as

contamination and are typically discarded. However, Matzke

et al. (2017a, b) found that even with very low error rates (~

2.5%), this approach can bias the parameter estimates, partic-

ularly when errors are slower than correct responses, which is

usually the case when response accuracy is emphasized.

To address this limitation, Matzke et al. (2017a, b) pro-

posed the BEXG3^ model, which accounts for choice using

a race between two ex-Gaussian go runners (one for each

choice), along with one ex-Gaussian stop runner. The exten-

sion of the likelihood for go Choice 1 requires the inclusion of

the survivor function for the Choice 2 runner not having fin-

ished: LGO,1(t) = f(t | θGO,1) S(t | θGO,2) S(t–SSD | θSTOP), and

similarly for Choice 2. The probability of stopping is given by

pSTOP ¼ ∫
∞

−∞
f t−SSDj θSTOPð Þ S tj θGO;1

� �

S tj θGO;2
� �

dt.

6
Note that the standard LBA uses exactly the same race equation, except that

the density and survivor functions are specific to the LBA, and SSD = 0.

Table 3 Results of the parameter-recovery study with fits to 200 data sets of 200 observations each (100 for each of two stimuli) generated using the

parameter values given in the BTrue^ row, resulting in approximately 2.5% errors (Example 1.9)

A B mean_v.true mean_v.false sd_v.true t0

True 0.5 1 4 1.5 0.5 0.2

2.5% percentile 0.245 0.545 2.866 – 0.043 0.357 0.129

50% percentile 0.589 1.086 4.721 1.803 0.624 0.214

97.5% percentile 0.992 1.839 6.996 3.634 1.012 0.296

Median-true 0.089 0.086 0.721 0.303 0.124 0.014

Coverage (%) 95.0 99.0 95.0 96.5 91.0 94.0

The three Bpercentile^ rows give three percentiles defining the median (50th percentile) and the 95% CI (2.5th and 97.5th percentiles) of the posterior

distributions. The next row tabulates the difference between the true values and the posterior medians, and the final row shows coverage of the 95%

credible intervals
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DMC provides a Bayesian hierarchical implementation of the

EXG3 model including the mixture extensions introduced

above (tutorial 6.5).

Bayesian hierarchical parameter estimation

Bayesian hierarchical methods (e.g., Farrell & Ludwig,

2008; Gelman & Hill, 2007; Rouder, Lu, Speckman,

S un , & J i a n g , 2 0 05 ; Sh i f f r i n , L e e , K im , &

Wagenmakers, 2008) simultaneously model data from a

set of participants, assuming that their parameters come

from the same population distribution (see tutorials 4.2

and 4.3). The population distribution describes how the

parameters of the individual participants vary in the pop-

ulation. Figure 11 illustrates the basic concepts of hierar-

chical estimation using the μSTOP parameter of the EXG3

model for three fictitious participants. Panel A shows that

the participant-level parameters are drawn from a normal

population distribution, truncated below at 0 (as all have

units of time) and above at 4 s (to avoid potential numer-

ical errors when large values are sampled). The popula-

tion distribution is characterized by the population mean

μμSTOP and the population standard deviation σμSTOP pa-

rameters. The population-level parameters are assumed to

be unknown. This implies that we set priors (i.e., hyper-

priors) on these parameters, which allows us to estimate

them from the data. For the population mean, we specify

broad truncated normal hyper-priors with a mean of .5

and a standard deviation of 1. For the population standard

deviation, we choose an exponential distribution,

reflecting the prior belief that smaller population standard

deviations are more likely than large ones, with

nonnegligible mass out to 4 s. The population-level pa-

rameters provide inference on the group level, whereas

the participant-level parameters provide inference on the

individual level.

Hierarchical modeling uses information from the entire

group, captured by the population-level parameters, to im-

prove parameter estimation at the individual level. This is

achieved by using the population distribution as a prior for

the participant-level parameters. Even though the hyper-

priors on the population-level parameters are largely

noninformative, the prior on the participant-level parameters

inferred by the hierarchical model can be quite informative.

This occurs during the course of sampling, with each partici-

pant’s data tuning the population-level parameters, and the

population distribution then providing a more and more infor-

mative prior for the participant-level parameters. As is illus-

trated in Fig. 11, this process alters the participant-level esti-

mates from the hierarchical analysis (panel A) relative to the

estimates from the standard individual analysis (panel B),

Bshrinking^ them toward the group mean. The hierarchical

estimates are therefore less variable, more precise (i.e., have

narrower CIs), and, on average, more accurate than the esti-

mates obtained from the individual analysis. The effects of

shrinkage in the figure are most pronounced for the first par-

ticipant, whose parameter is estimated with relatively large

uncertainty.

Hierarchical estimation is especially valuable when the

number of trials available for each participant is limited,

because it garners some of the stabilizing effects of av-

eraging while avoiding gross distortions from fitting non-

linear models to averaged data (e.g. , Brown &

Heathcote, 2003; Heathcote, Brown, & Mewhort, 2000).

Because stop-signal trials—which provide most of the

constraint on the stop parameters—typically constitute

only a minority of the trials, hierarchical methods can

greatly improve the quality of the parameter estimates

associated with the stop runner.
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Fig. 10 The two-racer ex-Gaussian stop-signal race model. This figure is also available at https://tinyurl.com/ydezqk3p under a Creative Commons CC-

BY license, https://creativecommons.org/licenses/by/2.0/
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Fitting empirical stop-signal data

We fit the EXG3 model hierarchically to the data from 47

participants7 in a stop-signal experiment that manipulated

choice difficulty, resulting in ~ 12.5% errors in the easy and

~ 25% errors in the hard condition. The model featured 17

parameters, three parameters for each of the five ex-Gaussian

distributions—one for stopping and four for the factorial com-

bination of easy versus hard and match (i.e., Btrue^) versus

mismatch (i.e., Bfalse^) runners—and one each for go and

trigger failures. The tutorial associated with this application

(DMCpaper2.R) enables readers to work through the example

analyses.

After a preliminary descriptive analysis, we first fit each

participant’s data individually, using the methods described

earlier and vague priors closely resembling those in Fig. 12a.

This step provided start values for hierarchical sampling, since

it can otherwise be difficult to find parameters that result in a

valid likelihood, and because even if such estimates can be

found, this two-step approach is usually much faster (tutorial

4.6). Moreover, the results from the initial stage can also be

used to examine the validity of the population model; for

instance, if participants cluster into groups, it is inappropriate

to assume a common normal population distribution.

From priors to posteriors

We assumed truncated normal population distributions for all

model parameters. The hierarchical analysis requires two sets

of hyper-priors, one for the mean (location) and one for the

standard deviation (scale) of the population distributions

(Fig. 12a). For the population means, we specified broad nor-

mal hyper-prior distributions truncated below at 0 and above

at 4 s. For the μ parameters (both go and stop), we set the

mean of the hyper-priors to 0.5 s and the standard deviation to

7
See Matzke et al. (2018a, b) for details of the experiment. We removed six

participants from their sample, five with minor truncation of slow RTs due to a

time limit on responding, and onewhose data in the easy condition violated the

race model’s prediction that the mean RT for failed stop trials (0.470 s) would

be faster than the mean go RT (0.443 s). We also removed trials for a fixed

0.05-s SSD used on a small number of trials in the original design, because (1)

these data points were poorly fit by the model and (2) the use of such a short

fixed SSD is unrepresentative of typical stop-signal studies. We believe that

these exclusions were prudent, given our purpose here of providing reference

priors.

Fig. 11 Bayesian hierarchical estimation. (A) Participant-level posteriors

and the population distribution from the hierarchical analysis; crosses

indicate the true data-generating parameter values; CI = credible

interval. (B) Participant-level posteriors from the standard individual

analysis; the gray dashed line indicates the prior distribution. In the

individual estimations, the μSTOP estimate of the first participant is well

away from the rest of the group and is estimated imprecisely, as indicated

by the relatively wide 95% CI. In hierarchical estimation, the population

distribution pulls all three estimates toward the group mean. This

Bshrinkage^ is greatest for the outlying first participant, but to a lesser

degree also affects the estimates for the other two participants. As a result,

the hierarchical estimates are less variable, more precise, and, on average,

more accurate. This figure is also available at https://tinyurl.com/

ydgwr7ox under a Creative Commons CC-BY license, https://

creativecommons.org/licenses/by/2.0/
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1. For σ and τ, we set the mean to 0.1 s and the standard

deviation to 1. These settings produced broad and fairly

noninformative priors with nonnegligible mass out to 3 s.

The mixture proportion parameters (ptf and pgf) were

transformed from the probability scale to the entire real line

using a probit transformation and were assigned normal

hyper-priors with a mean of -1.5 (~ 6.7% failure rate) and

standard deviation of 1, giving broad priors with
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nonnegligible mass from – 4 (~ 0.003%) to 1 (~ 84%). For the

population standard deviations, we chose identical exponen-

tial distributions for all parameters.

Figure 12b shows the hyper-prior and posterior distribu-

tions of the population means resulting from hierarchical esti-

mation of the EXG3 model. Updating from prior to posterior

was substantial for all but the two τ mismatch parameters.

Since only slow finishing times are determined by the τ mis-

match parameters, they are often poorly constrained. In

parameter-recovery studies, Matzke et al. (2018) found that

this weak identification does not spread to the other parame-

ters; it remains beneficial to model the mismatching process in

order to avoid the systematic biases produced by fitting a two-

racer model that discards errors. Figure 12c shows the hyper-

prior and posterior distributions of the population standard

deviations, which measure individual differences. They are

all well updated, again with the exception of the two τ mis-

match parameters.

Goodness of fit

A crucial part of evaluating a model is checking whether it

provides an adequate description of the observed data. To

do so, we first simulate data from the model in a way that

reflects our uncertainty about its parameters by mixing

together data simulated from random samples from the

joint posterior distribution. Just as in the observed data,

these Bposterior-predictive^ data can be aggregated to pro-

duce summary statistics and plots. From a Bayesian per-

spective, there is uncertainty about the model predictions

resulting from sampling variability and posterior uncer-

tainty, but there is no uncertainty about the data (Bthe data

are the data^). Figure 13 provides goodness-of-fit plots,

averaged over participants and posterior samples applica-

ble to most choice paradigms, whereas Fig. 14 provides

plots specific to the stop-signal paradigm, showing good-

ness of fit as a function of SSD. The figures show average

results over participants, which is useful as a summary and

also for detecting systematic misfit, which is often difficult

to see at the individual level (DMC also provides

goodness-of-fit plots for individual participants). The data

and model predictions for exactly the same design (i.e., the

same number of trials per condition) are averaged in the

same way, so any distortions introduced by averaging ap-

ply equally.

Figure 13a and b (produced with the ggplot2 R package;

Wickham, 2009; tutorial 5.5) show response proportions and

RT distribution percentiles, respectively. Model predictions

are accompanied by 95%CIs, and they indicate that the model

describes the observed data well. Figure 13c provides a more

complete characterization in terms of functions, showing the

average cumulative probability of observing an RT; these

functions asymptote at the probability of the response they

represent (tutorials 3.2 and 4.4). Note that the sum of the

asymptotes in each cell equals the probability of making any

response; this is markedly less than 1 in the stop panels, on

account of the frequency of successful stop trials, which have

no associated RTs. Predictive uncertainty is indicated by

clouds of points corresponding to the predictions for five per-

centiles using 100 samples from the joint posterior distribu-

tion. This more refined plot suggests a small misfit to the

response probabilities, indicative of response bias unaccount-

ed for by the model (e.g., accuracy in the hard condition is

slightly overestimated for left responses and underestimated

for right responses). If this misfit were consequential for an

application, we might consider fitting an augmented model

that allows different ex-Gaussian parameters for left- and

right-stimulus runners. Modeling often involves an iterative

process of refinement, aided by goodness-of-fit plots and the

model selection methods described earlier.8 DMC supports

this process at both the group and individual levels (see tuto-

rial 5.3 and 5.6, respectively, and DMCpaper2.R).

Figure 14a shows that the model provides a good account

of the average probability of failed inhibitions. Participants

often have different ranges of SSDs over the same range of

response probabilities, making it difficult to produce average

inhibition functions that are representative of individual per-

formance. As is explored in DMCpaper2.R, this is best ad-

dressed through effectively normalizing the domain of the

functions by averaging equal percentile ranges of SSDs for

each participant.9 Figure 14b shows good fit to the average

median RTs for failed inhibitions.

8
Dutilh et al. (2017) outline a Bblinded-modeling^ approach that allows re-

searchers to retain flexibility for proper modeling, but at the same time safe-

guards the confirmatory nature of the investigation.
9
Similar scaling issues occur with correlations between model parameters

aggregated over participants. To address this issue, DMC by default standard-

izes estimates before plotting aggregated correlations. Correlations are quite

strong in the stop-signal model, although they are generally weaker than those

for the LBA, shown earlier. We can also assess correlations at the level of the

population parameters, which are generally very small, except for some stron-

ger correlations between mean and standard deviation parameters of the same

type. These correlations are why DMC by default blocks sampling of these

parameter pairs. Turner et al. (2013) discuss how blocking can ameliorate

some of the sampling difficulties caused by large parameter correlations.
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�Fig. 12 Priors and posteriors for the EXG3 model. (a) Hyper-prior

distributions for the population mean (location) parameters; similar priors

were used in the individual fits for obtaining the start values for

the hierarchical analysis. The common exponential prior for the

population standard deviations (scale) is shown in the bottom right

panel. (b) Hyper-prior (red lines) and posterior (black peaked lines)

distributions for the population means. (c) Hyper-prior and posterior

distributions for the population standard deviations. For both the

population means (b) and the population standard deviations (c), the

posterior distributions of all parameters except for tau.easy.false and

tau.hard.false have shifted greatly from the priors. Hence, the posterior

densities look relatively peaked as compared to the prior densities, which

look relatively flat



From posteriors to priors

So far, we have described the process of combining

priors with data to obtain posteriors. We can also com-

plete the circle by using posteriors as a basis for devel-

oping priors to be used in the analysis of new data, thus

realizing the promise of the Bayesian approach to build a

quantitatively cumulative science (Jaynes & Bretthorst,

2003). Just like the likelihood, the prior is an important

part of specifying a model (e.g., Lee & Vanpaemel,

2018), albeit one that is often more specific to particular

designs, whereas the likelihood corresponds to a more

generic part of the model that specifies the cognitive

mechanisms that operate in a broad array of designs.
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Fig. 13 Goodness-of-fit results. (a) Response proportions (NR =

nonresponse). (b) Response time percentiles (10th, 50th, and 90th). The

data are shown with dashed lines and open points. The medians of the

model predictions are shown with solid points; error bars show the

corresponding 95% credible intervals. (c) Cumulative distribution

functions. The data are shown with thick lines, with open points

marking the 10th, 30th, 50th, 70th, and 90th percentiles. Model

predictions are shown with thin lines and solid points, with the clusters

of gray dots showing the uncertainty in the percentiles from 100 randomly

selected samples from the joint posterior
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Hence, we have provided functionality in DMC to facil-

itate the sharing of priors.

Table 4 provides the parameters of the best-fitting trun-

cated normal distributions to the posterior distribution of

the population mean and standard deviation parameters, as

well as fits to the aggregated participant-level posterior

samples. These parameters can provide starting points for

specifying priors for similar experiments, perhaps after ad-

justment to account for changes in design and participant

characteristics. Informative priors are particularly useful

when the new experiment offers less constraint on estima-

tion, because of a smaller sample size or a design change

that results in the data providing less information about

some aspects of the model (e.g., Osth, Jansson, Dennis,

& Heathcote, 2018). Priors are crucial when using prior-

predictive model selection methods such as Bayes factors

(Kass & Raftery, 1995).

DMC automates the process of obtaining fits to posterior

distributions, and it allows the estimated parameters to be

adjusted and the new priors plotted. For example, we might

wish to expand the standard deviation of the priors in order to

allow for uncertainty about the outcomes of future experi-

ments. This is illustrated in Fig. 15, which shows the

population-level and aggregated individual-level posteriors

and the resulting priors with twice the estimated standard de-

viation. Heterogeneity among participants is evident in the

aggregated individual posteriors, particularly in the μ param-

eter of the matching runners, for which some estimates are

above 1 s. As expected, the priors for the mismatching τ

parameters are largely uninformative in all cases.
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Fig. 14 Goodness-of-fit results as a function of stop-signal delay (SSD).

(a) Inhibition functions averaged over participants, as a function of 12

equal percentile ranges (81/3% each). (b)Median response times for failed

inhibitions (signal-response RT: SRRT) averaged over participants, as a

function of 20 equal time intervals spanning the range of SSDs for each

participant. The x-axis values are the average values of the ends of each

range, with only every other range shown. The data are shown with solid

points. The uncertainty of the model predictions resulting from 100

randomly selected samples from the joint posterior is shown with violin

plots, with the white dots indicating the median of the predictions
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Discussion

The models available in DMC are not for the faint-hearted;

they are demanding of both the user and the data. The reward

is that observed behavior can be mapped to meaningful psy-

chological quantities. However, we believe that this almost

magical process of inferring the values of latent variables

should always be viewed with a degree of skepticism, as ex-

perience teaches us that magic is not the only thing that can

happen. In the first part of this article, we described how to use

the tools provided by DMC to ensure that in a particular ap-

plication, a standard evidence-accumulation model, can be

treated as a Bmeasurement model^—that is, a model whose

estimated parameters are meaningful because they can be

uniquely mapped to the observed data up to some quantifiable

degree of certainty. The same techniques can be applied to

other standard models and also to newly developed models.

One of the design imperatives for DMC was to make it

fairly straightforward to add new models (tutorials 2.3 and

2.4) that take advantage of the power and flexibility of the

evidence-accumulation approach to modeling cognition. The

emphasis on generality comes at the cost of speed and confor-

mity to the standards required for an R package. However, we

have also developed an R package that integrates with DMC

and implements the standard DDM and LBA in C++, thus

speeding sampling by up to an order of magnitude (Lin &

Heathcote, 2017). Although this faster approach requires

C++ programming skills, we envisage that in the future it will

be expanded to other frequently used models.

In the second part of the article, we illustrated the benefits of

DMC’s flexibility and generality, outlining how more advanced

applications of DMC enable the standard models to be integrat-

ed into a hierarchical framework that addresses commonalities

among individuals, and how standard models can be used as

building blocks for more wide-ranging models of cognition,

with an example application to a real data set. We demonstrated

that contingent choices in the stop-signal paradigm can be suc-

cessfully modeled by a simple and mathematically tractable

parallel-race architecture. In many cases, this approach straight-

forwardly extends to more complex tasks and logical contingen-

cies, creating a powerful framework to model latent cognitive

structures in a broad array of applications. An example—also

implemented in DMC—is Strickland, Loft, Remington, and

Heathcote’s (2018; https://osf.io/t3cqw) prospective memory

decision control model that instantiates feedforward competitive

interactions between a two-choice decision and an alternative

third choice. Similarly, the mixture-modeling approach we used

to account for attention failures in the stop-signal race model is

also implemented in Castro, S., Strayer, D., Matzke, D. &

Heathcote, A. (submitted). Cognitive workload measurement

and modelling under divided attention. Journal of

Experimental Psychology: General; https://osf.io/e8kag) DMC

model of response omissions under dual-task load.

One issue with such elaborations of the standardmodels is that

they often lack a computed likelihood, which is the key element

for tractable Bayesian estimation. Fortunately, new simulation-

based approaches can support Bayesian estimation even in these

cases, greatly expanding the ability to model complex cognitive

processes. DMC includes a general implementation of one of

these, probability density approximation (Holmes, 2015; Turner

& Sederberg, 2014), with an example using Holmes et al.’s

(2016) Piecewise LBA that can serve as a basis for developing

further applications (tutorial 2.4). Because this approach is com-

putationally intensive, we are working on a C and GPU imple-

mentation that can be called byDMC through an R package (Lin,

Y-S., Heathcote, A. & Holmes, W.R. (submitted). Parallel

probability density approximation, Behavior Research Methods).

In closing, we emphasize that DMC not only provides a

framework for implementing models but also a means to ex-

plore their strengths and weaknesses. We believe it is crucial

to thoroughly test the usefulness of a newmodel and/or design

before placing faith in results from empirical data. We also

believe it is important for users to have thorough understand-

ing of the estimation process and the behavior of the model

before applying it to real data. To encourage this, DMC’s

functionality is documented through an extensive series of

tutorials that provide hands-on experience with simulated da-

ta. We hope that after working through the tutorials, even

Table 4 Parameters of the best-fitting truncated normal distributions to

the posterior distribution of the population mean (location) and standard

deviation (scale) parameters, as well as fits to the aggregated participant-

level posterior samples

Location Scale Individual

Mean SD Mean SD Mean SD

μhard.true 0.598 0.030 0.200 0.024 0.600 0.191

μeasy.true 0.567 0.023 0.157 0.018 0.567 0.151

μhard.false 0.669 0.094 0.427 0.077 0.701 0.388

μeasy.false 0.731 0.061 0.345 0.051 0.742 0.323

τhard.true 0.048 0.025 0.090 0.017 0.092 0.060

τeasy.true 0.050 0.018 0.060 0.013 0.073 0.042

τhard.false 0.047 0.035 0.205 0.028 0.166 0.140

τeasy.false 0.074 0.044 0.176 0.030 0.166 0.117

τhard.true 0.283 0.092 0.315 0.063 0.393 0.228

τeasy.true 0.187 0.067 0.228 0.046 0.273 0.162

τhard.false 0.478 0.315 1.032 0.201 0.644 0.944

τeasy.false 0.766 0.582 2.175 0.828 1.233 1.593

μStop 0.252 0.006 0.035 0.005 0.252 0.034

σStop 0.019 0.012 0.048 0.009 0.044 0.032

τStop 0.038 0.014 0.044 0.010 0.054 0.031

ptf – 1.829 0.101 0.576 0.074 – 1.831 0.558

pgf – 3.063 0.134 0.813 0.101 – 3.088 0.788

The subscripts Btrue^ and Bfalse^ refer to the matching and mismatching

runners, respectively; SD = standard deviation
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those relatively new to these models will be able to use them

with confidence. For those new to quantitative modeling, we

also recommend the excellent introductions by Farrell and

Lewandowsky (2015) and Lee and Wagenmakers (2013).

Because DMC is open-source, experienced users can inspect,

verify, and modify its functions as they require. We regularly

update the OSF distribution, and we encourage others to de-

velop their own extensions, by either integrating elements of

the code into their applications or incorporating DMC into

their OSF projects, along with their own modifications and

tutorials to enable others to replicate their analyses.

a

b

c

Fig. 15 Priors (red lines) obtained from fitting the posterior distributions

(black lines) with truncated normal distributions. (a) Population means.

(b) Population standard deviations. (c) Aggregated individual posterior

samples. The standard deviation of the priors has been doubled to allow

for uncertainty about the outcomes of future experiments
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