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Dynamic modulation of modal coupling in
microelectromechanical gyroscopic ring resonators
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Yunhan Chen3, Ian Flader3, Thomas W. Kenny3, Xuezhong Wu2 & Ashwin A. Seshia 1*

Understanding and controlling modal coupling in micro/nanomechanical devices is integral to

the design of high-accuracy timing references and inertial sensors. However, insight into

specific physical mechanisms underlying modal coupling, and the ability to tune such inter-

actions is limited. Here, we demonstrate that tuneable mode coupling can be achieved in

capacitive microelectromechanical devices with dynamic electrostatic fields enabling strong

coupling between otherwise uncoupled modes. A vacuum-sealed microelectromechanical

silicon ring resonator is employed in this work, with relevance to the gyroscopic lateral modes

of vibration. It is shown that a parametric pumping scheme can be implemented through

capacitive electrodes surrounding the device that allows for the mode coupling strength to be

dynamically tuned, as well as allowing greater flexibility in the control of the coupling stiff-

ness. Electrostatic pump based sideband coupling is demonstrated, and compared to con-

ventional strain-mediated sideband operations. Electrostatic coupling is shown to be very

efficient, enabling strong, tunable dynamical coupling.
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T
he interactions of micro- and nanomechanical resonators
with various physical fields have been researched for several
decades and have been engineered into specific device for-

mats for applications to timing and frequency control1,2, sensing3–6,
as well as more fundamental studies in alternative approaches to
information processing7–9, and quantum science10–13. Several recent
studies have also focused on fundamental emergent behaviors in
coupled micro/nanomechanical systems14–17 and the mutual cou-
pling between two distinct mechanical resonators or modes18–27. By
regarding one of the coupled mechanical modes as a phonon
cavity, optomechanics-like dynamical operations, such as cooling
(dynamical coupling)22,28–31, amplification22,31,32, squeezing33,34,
coherent manipulation28,35,36, and phonon lasing30,37, have been
demonstrated in micro- and nanomechanical systems. Mode cou-
pling mechanisms based on physical mechanical linkages28, dielec-
tric coupling21,35, tension-induced parametric coupling18,23,29, and
internal resonance20,25 have been previously investigated. However,
physical insight is often limited due to the limited experimental
control of mode coupling in such systems. Often, manufacturing
tolerances or small asymmetries can have a huge impact, and the
ability to define modal coupling parameters by design is still limited,
often even elusive. Static electrostatic tuning in such systems is
possible but provides for only weak tunability, and the ability to
define and exercise good control on modal coupling in micro- and
nanomechanical resonators remains a key challenge limiting prac-
tical applications as well.

In this paper, we demonstrate that dynamic capacitive tuning
can enable significant tunability of modal coupling in micro-
electromechanical devices. The intrinsic modal coupling in such
systems can be tuned by the nonlinear fields associated with
parallel plate transducers. Such fields can be dynamically
modulated enabling a further knob on the tunability of system
response. A vacuum-sealed micromachined gyroscopic ring
resonator is employed as the experimental testbed in this work.
Such a system demonstrates linear hybrid coupling between the
gyroscopic near-degenerate modes due to configurational/struc-
tural asymmetries arising from manufacturing tolerances or
material properties, and misalignment between the principal axis
and the detection electrode. We demonstrate that, akin to the
tension-induced stiffness hardening mechanisms18,22,23, electro-
statically induced stiffness softening can also provide a nonlinear
parametric coupling term. While the static linear and nonlinear
interactions generated by the electrostatic field have been pre-
viously studied38,39, capacitive nonlinear parametric coupling
between normal modes in a single resonator has not been pre-
sented previously. Here, it is shown that apart from the tension-
induced parametric coupling, this electrostatic nonlinear para-
metric coupling may reside, or even dominate, in capacitively
transduced devices30,31. Dynamical mode coupling between
gyroscopic modes is implemented by applying a red-detuned
pump adjusted based on the system parameters and the built-in
intrinsic coupling. This capacitive device is demonstrated to be a
coupling-abundant multiple-mode system, which used to be very
difficult to construct due to the difficulty of combining different
types of mode coupling mechanisms in one system40. Strong
dynamical coupling has significant practical applications to tun-
ing the response of micro- and nanoelectromechanical devices,
such as mode-localized sensors41,42, Coriolis gyroscopes43,44,
wireless filter resonators45, and many other devices16,32.

Results
Capacitive symmetric electromechanical resonator. A capacitive
symmetric microelectromechanical ring resonator is used as the
experimental testbed in this work44. The resonator is constructed
of 45 equispaced nested rings. Adjacent rings are interconnected

with interleaved spokes. The resonator is supported by a central
anchor. The diameter and the thickness of the resonator are 720
and 40 µm, respectively. The width of the rings and spokes is
3 μm. The resonator is surrounded by 16 capacitive electrodes,
employed to actuate, sense, and tune the in-plane response. The
capacitive gap d0 is designed to be 1.5 µm wide. The device is
fabricated using highly doped P-type (111) single-crystal silicon
with a resistivity of 1–3 mΩ cm, and encapsulated using the “Epi-
seal” process46, enabling a stable <1 Pa vacuum environment. The
capacitive electrodes introduce a nonlinear electrostatic field
surrounding the mechanical resonator, which produces inho-
mogeneous force terms, stiffness modification terms, and non-
linear mode interactions among multiple modes. Combined with
the intrinsic properties of the bare mechanical resonators, the
capacitive features allows for abundant manipulations of
the system dynamics, the most interesting aspect studied here is
the parametric pump-induced dynamical operations.

The linear and nonlinear mode-coupling mechanisms are
investigated in this system. Moreover, those couplings can be
manipulated dynamically using a parametric pumping scheme. The
experimental setup is shown in Fig. 1a; all the experiments are
conducted at room temperature. The in-plane mechanical modes
involved in this study are illustrated in Fig. 1b, c, involving two pairs
of near-degenerate order-2 and order-3 modes, II-1, II-2, III-1, and
III-2, with resonant angular frequencies ωII-1 ¼ 2π ´ 134; 209 Hz,
ωII-2 ¼ 2π ´ 134; 253 Hz, ωIII-1 ¼ 2π ´ 166; 498 Hz, and
ωIII-2 ¼ 2π ´ 166; 949 Hz. The damping rates of the modes of
the same order are identical, with values of γII � 2π ´ 1:05 Hz and
γIII � 2π ´ 2:51 Hz. The electrodes are marked with numbers
anticlockwise from 1 to 16 (Fig. 1a). The drive signals ±Vd cos ðωdtÞ
are applied on electrodes 3 and 7 to actuate order-2 modes. The
pump signal Vp cos ðωptÞ is applied on electrodes 1 and 5. A direct-
current (DC) voltage V0 of 30 V is applied on the resonator body.
The mechanical motion is transduced by the detection electrodes
along drive and pump axes. The current signal is introduced to a
lock-in amplifier following further amplification stages. A tuning
voltage V t1 can be superposed on drive electrode 7. Another tuning
voltage V t2 can be applied on off-axis electrode 6.

Hybrid state coupling and dynamical manipulation. Order-2
modes II-1 and II-2 are a pair of widely used degenerate
modes47,48. The antinodal axes (principal axes) of the order-2
normal modes have an angular interval of 45� (Fig. 2a). This
system can be equivalent to a two-degree-of-freedom lumped
parameter system in Cartesian coordinates (Fig. 2b). The angle in
this equivalent system is the double of that in the real system
depicted in Fig. 2a (see Supplementary Note 1). Axes x-o-y are
defined along the directions in which mechanical motions are
probed, the drive and pump are applied along x and y directions,
respectively. Coordinates xω-o-yω are defined along the principal
axes of normal modes II-1 (xω direction) and II-2 (yω direction).

If the tuning voltage V t1 is applied along x direction, the
resonant frequencies of modes II-1 and II-2 will disperse (Fig. 2d).
An avoided crossing is obviously illustrated when V t1 is around
3.5 V, which indicates that the hybrid states observed from x-o-y
coordinates H-1 (x direction) and H-2 (y direction) can be
regarded as two coupled resonators, as depicted in Fig. 2c. This is
also revealed by the nondiagonal equations of motion in x-o-y
coordinates (see Supplementary Note 2). Those hybrid states are
combinations of normal modes II-1 and II-2. The strength of the
avoided crossing indicates the coupling rate of the two hybrid
states. As shown in Fig. 2e, the V t1 tuning process can be
simulated (see Supplementary Note 2). This coupling originates
from two factors. The first one is the frequency difference between
the normal modes II-1 and II-2 (Δω ¼ ωII-2 � ωII-1 ≠ 0), and the
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second one is the misalignment (denoted as θ in the equivalent
Cartesian coordinates, as shown in Fig. 2b) of the principal axes
with electrode axes, which are both due to manufacturing
tolerances. The initial θ of the tested resonator is estimated to
be about 18�. In the setup reference system, the real misalignment
is θ=2 (Fig. 2a). The mode shapes of the order-2 modes in the V t1
tuning process can be obtained by calculating θ at different values
of V t1, which are selectively depicted in Fig. 2f. Both Δω and θ can
be changed by V t1 or V t2 (see Supplementary Note 2). A given set
of V t1 and V t2 can determine a specific group of Δω and θ.

By regarding mode II-2 as a phonon cavity, a dynamical
sideband coupling operation can be realized based on the above
structural coupling by applying a red-detuned parametric pump.
In this implementation, V t1 and V t2 are tuned to make θ � 36�

and Δω � 2π ´ 39:7 Hz. An alternating current signal Vp cosωpt

applied along y axis will periodically change the stiffness of hybrid
state H-2. The dynamics of the normal modes are given by the
equations of motion

€xω þ γII _xω þ ðω2
II-1 þ Δpsin

2θÞxω þ Δp cos θ sin θyω ¼ F1 cos ðωdtÞ; ð1Þ

€yω þ γII _yω þ ðω2
II-2 þ Δpcos

2θÞyω þ Δp cos θ sin θxω ¼ F2 cos ðωdtÞ; ð2Þ

where xII-j and Fjðj ¼ 1; 2Þ are the displacement and drive force

amplitude (normalized by mass) of mode II-j, respectively. Δp is
the pump produced by signal Vp cosðωptÞ,

Δp ¼ κ 2V0Vp cos ðωptÞ �
V2

p

2
�
V2

p

2
cos ð2ωptÞ

" #

; ð3Þ

where κ ¼ Apϵ0=ðd
3
0mIIÞ, Ap is the area of pump electrodes, ϵ0 is

the permittivity of vacuum, and mII denotes the effective mass of
mode II-1 or II-2. There is a DC term, a first-order harmonic
term, and a second-order harmonic term in the pump. The DC
term in the pump will tune the hybrid coupling condition, thus
affecting resonant frequencies (see Supplementary Fig. 6). The
resonant frequencies of order-2 modes are functions of Vp and
are denoted as ωII-&;Vp

(& ¼ 1; 2). When a 3-V pump is applied,

ωII-1;3V (ωII-2;3V) is slightly shifted from the initial ωII-1;0V
(ωII-2;0V) by 0.33 Hz (0.60 Hz), as shown in Fig. 3f.

The amplitude of the first-order term is 4V0=Vp times that of
the second-order term. The first-order term is dominant in this
implementation, since V0 is much larger than Vp. The second-
order term itself and its interaction with the first-order term only
slightly contribute to higher order (�2) coupling. In the following
interpretation parts, the DC and second-order harmonic terms
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Fig. 1 The experimental platform. a Basic setup for experiments. The nested-ring resonator is actuated, pumped, tuned, and sensed by equally distributed

capacitive electrodes numbered anticlockwise from 1 to 16. The drive signals are applied on electrodes 3 and 7 in the push–pull form. The pump signal is

applied on electrodes 1 and 5. A DC voltage V0 is applied on the resonator body. An in-axis tuning voltage Vt1 and an off-axis tuning voltage Vt2 are applied

on electrodes 7 and 6, respectively. In the equivalent framework for order-2 degenerate modes, coordinates x and y are defined along drive and pump

directions, respectively. The set of axes x-o-y is of fourfold rotational symmetry. The response signal along x (y) axis is detected by electrodes 11 (9) and 15

(13) differentially, amplified using charge amplifiers, and measured by a lock-in amplifier. b, c Mechanical modes involved in this study. b The

amplitude–frequency responses and mode shapes of the order-2 in-plane modes, and c those of the order-3 in-plane modes. The displacements (disp.) are

normalized. Source data are provided as a Source Data file
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are not considered. Γ1 ¼ 2κV0Vpsin
2θ and Γ2 ¼ 2κV0Vpcos

2θ

are defined as intra-modal coupling terms, and Λ ¼

2κV0Vp cos θ sin θ is defined as an inter-modal coupling term.
When simultaneously applying drive and red-detuned pump

with frequencies ωd � ωII-1 and ωp � Δω, the first-order side-
band dynamical coupling process is illustrated in Fig. 3a. An idler
spectrum line near ωII-2 is generated due to an up-conversion
(Λþ) process, in which the anti-Stokes sideband 3 with frequency
ωII-1 þ ωp is produced in the dynamics of mode II-2 during the
mixing of the inter-modal coupling pump with the displacement
of mode II-1. Meanwhile, the mixing of mode II-2 displacement
with the inter-modal coupling pump causes a down-conversion
(Λ�) process, which produces a Stokes sideband 2 with frequency
ωII-2 � ωp in the dynamics of mode II-1. Sideband 2 has a phase
delay relative to the external actuation tone. For the red-detuned
pump, sideband 2 is in antiphase, which results in dynamic back-
action cooling and avoided crossing. The off-resonance sideband
1 (4) is produced by the down (up)-conversion process of mode
II-1 (II-2), which will not affect the dynamical coupling. In this
implementation, sidebands are generated near the mechanical
modes rather than the pumps in cavity optomechanics systems49,
because the eigen-frequencies of the mechanical modes are much
higher than the frequency difference here.

If the pump frequency is changed to ωp � Δω=2, the second-
order sideband coupling process is illustrated in Fig. 3b. Wave
mixing processes of (Γ1þ ´Λþ) and (Λþ ´ Γ2þ) of mode II-1 will
generate sidebands 7 and 8 in dynamics of mode II-2,
respectively. Similarly, wave mixing processes of (Γ2� ´Λ�) and
(Λ� ´ Γ1�) of mode II-2 will generate sidebands 9 and 10 in
dynamics of mode II-1. Off-resonance sidebands 5 and 6 act as
the intermediary points for those processes. Other off-resonance

sidebands 11, 12, 13, 14 are also generated by first- and second-
order mixing processes, which would not contribute to the
dynamical coupling.

Sidebands 9 and 10 will produce back actions on mode II-1.
However, the effects of sidebands 9 and 10 on mode II-1 are
opposite to each other. Based on the second-order coupling
strength model in Supplementary Eq. (58), back actions caused by
sidebands 9 and 10 will completely cancel each other when
θ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3ωII-1 þ ωII-2Þ=ðωII-1 þ 3ωII-2Þ
p

� 45�. In this con-
dition, the second-order dynamical coupling is invisible, as shown
in Supplementary Fig. 3a.

Here, we monitor the frequency response along the x axis at
ωd, and the results with different pump frequencies are shown in
Fig. 3c. The pump strength is maintained at Vp ¼ 3 V. The
vertical dotted lines indicate the pump-on resonant frequencies of
the modes II-1 and II-2. First level normal-mode splitting can be
observed when ωp � Δω, which indicates strong first-order
dynamical mode coupling. The avoided crossings induced by
the very strong first-order dynamical coupling shift the lower
branches of the resonance peaks, which makes the second-order
avoided crossings take place at a pump frequency higher than
Δω=2, as shown in Fig. 3c, d. However, it should be noted that the
second-order dynamical coupling still takes place at the pump
frequency of exactly Δω=2. The observed second-order avoided
crossings higher than Δω=2 are simultaneously affected by both
the first- and the second-order coupling. Some slices of response
curves near and between the first- and second-order coupling are
also provided in Fig. 3e to better illustrate the avoided crossing
evolution process. The Stückelberg interferometry pattern is also
observed at the bottom of the Fig. 3c where the pump frequency
is low50. In this system, the intra-modal coupling terms are
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responsible for the Stückelberg interferometry phenomenon, and
the inter-modal coupling term leads to the first-order dynamical
coupling. Both intra-and inter-modal coupling terms are
necessary for higher-order dynamical couplings. The experimen-
tal data can be reproduced by solving Eqs. (1), (2), as shown in
Fig. 3d (see Supplementary Note 3).

The dynamical coupling strength is controllable. Fig. 3f shows the
pump strength Vp dependence of the first-order coupling rate g1,
which is described by the frequency split. The first-order coupling

rate is given by g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2V2
0V

2
psin

2ð2θÞ=ð4ωII-1ωII-2Þ � γ2II

q

. The

theoretical values of mode splitting are depicted by dot-dashed lines
in Fig. 3f. In this study, first-order coupling rate of more than
2π ´ 30 Hz can be obtained, which exceeds the damping rate

(2π ´ 1:05 Hz) by more than 28 times. Besides, when Vp reaches
values around 6 V, an intermediate avoided crossing is observed,
which originates from the interaction of the two first-order idler
sideband. If Vp exceeds this value, the frequency split will decrease.
The maximum coupling rate of this study is restricted by the limited
value of Δω. It is noteworthy that the dynamical coupling strengths
are both Vp and θ dependent. Adjusting θ provides a new degree of
freedom to control dynamical coupling.

The pump strength dependence of the first-order coupling
strength can be reproduced by solving Eqs. (1), (2) (Fig. 3g).
There is an overall trend of dispersing to lower frequency for the
peaks in Fig. 3f, which is caused by the DC term in the pump Δp.

The experiment and simulation results for another
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Drive frequency ωd and pump frequency ωp response along x axis detected at ωd when Vp ¼ 3 V. The vertical dotted lines indicate the mode frequencies

ωII-&;3V (& ¼ 1; 2) affected by the DC term in the 3-V pump. Expt. indicates experimental data. d Simulation of the experimental results in c by solving

Eqs. (1), (2), parameters of θ ¼ 36� and Δω ¼ 2π ´ 39:7 Hz are used in the simulation. Simu. indicates simulation results. e Some slices of frequency

response curves in c and d, which are denoted by numbers i–v. The orange points are experimental data and blue curves are simulation results. f The

frequency response along x axis as a function of pump amplitude Vp when ωp ¼ Δω. The DC term in the pump will slightly shift resonant frequencies (black

solid curves) ωII-&;Vp
to lower values. g Simulation of the experimental results in f. Source data are provided as a Source Data file
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implementation of θ � 45� and Δω � 2π ´ 40:7 Hz are also
provided in Supplementary Fig. 3.

Electrostatic nonlinear coupling and dynamical manipulation.
In this setup, the ring resonator is dominated by stiffness-
softening electrostatic nonlinearity because of the narrow capa-
citive gap51, which is confirmed by the V0-dependence of the
nonlinear response (see Supplementary Note 4). Doping-induced
material nonlinearity52 and tension-induced mechanical non-
linearity51 may also reside, but they are relatively weak compared
to the electrostatic one when V0 is set to be 30 V.

It was previously demonstrated that the mechanical modes in
clamped–clamped beam resonators can be parametrically coupled
to each other due to tension-induced mechanical nonlinearity,
because the displacement of one mode produces a beam
extension thus modifying the other mode’s resonant
frequency18,22,23. Here, we demonstrate that the origin of
electrostatic nonlinearity can also produce intermodal parametric
coupling. The electrostatic nonlinear coupling between order-2
and order-3 modes is experimentally and theoretically described.

Modes II-1 (II-2) and III-1 are simultaneously actuated by
drive and pump electrodes, respectively. Modes II are actuated in
linear region with a drive signal amplitude of 2 mV. Mode III-1 is
actuated in the stiffness-softening Duffing nonlinear condition
with a drive signal amplitude of 10 mV. The frequency responses
of modes II are recorded, and a dispersive parametric coupling is
observed. If the drive frequency of mode III-1 is changed from
low to high, the dispersion of modes II is shown in Fig. 4d. If the
drive frequency of mode III-1 is changed from high to low, the
dispersion of modes II is shown in Fig. 4e, and the shifts of modes
II-1 and II-2 when mode III-1 is at resonance are 5.9 Hz and
6.2 Hz, respectively. The nonlinear bifurcation of mode III-1 is
revealed by the frequency dispersion of modes II. When mode
III-1 is actuated, the resonant frequencies of modes II will
disperse to lower values. This phenomenon is opposite to that of
the mechanical nonlinear parametric coupling18,22,23, which
should make modes II disperse to higher resonance frequencies.

The observed parametric mode coupling can be explained by
the model that two modes sharing one polarized capacitor. It was
previously shown that a mechanical resonator can be coupled to a
microwave cavity using a capacitor10,53,54, and the stiffness of the
mechanical resonator is modified by varying the bias voltage on
the capacitor. In this model, the resonant frequency of mode II is
modified by the capacitance gap variation induced by displace-
ment of mode III. When two modes are actuated simultaneously,
their displacements are superposed (Fig. 4a–c). Displacement of
heavily actuated mode III will cause a electrostatic stiffness
variation for mode II, thus modifying its resonant frequency. The
capacitive parametric coupling can be described by following
equations of motion (see Supplementary Note 4):

€xII þ γII _xII þ ω2
IIxII þ αIIxIII þ βIIðxII þ xIIIÞ

2

þ νIIðxII þ xIIIÞ
3 ¼ FII sinðωd-IItÞ;

ð4Þ

€xIII þ γIII _xIII þ ω2
IIIxIII þ αIIIxII þ βIIIðxII þ xIIIÞ

2

þ νIIIðxII þ xIIIÞ
3 ¼ FIII sinðωd-IIItÞ;

ð5Þ

where xII and ωII denote the displacement and resonant
angular frequency of mode II-1 or II-2, and xIII and ωIII denote
the displacement and resonant angular frequency of one order-3
mode (mode III-1 in this case). F

&
and ωd-& (& ¼ II, III) are

the amplitudes and frequencies of the external forces acting on
the corresponding modes. Parameters α

&
, β
&
, ν
&

are provided
by Supplementary Eqs. (70–72). The key factor for the observed
mode-II frequency shift is the 3νIIx

2
IIIxII term in expanded Eq. (4).

The displacement square of mode-III scaled by the third-order
nonlinearity coefficient νII will directly influence the effective
stiffness of mode-II. Eqs. (4), (5) are solved using multiple-
scale analysis, and the results are provided in Supplementary Eqs.
(75, 76).

The dispersive frequency shifts of modes II caused by actuation
of mode III-1 can be simulated based on Eqs. (4), (5) (see
Supplementary Fig. 9). The frequency shift of mode II σ̂II caused
by displacement of mode III and that of mode III σ̂III caused by
displacement of mode II are given by

σ̂II �
3νIId

2
0γII

8ωII

f 2II
ω2
II

þ
2f 2IIIγ

2
II

ω2
IIIγ

2
III

� �

; ð6Þ

σ̂III �
3νIIId

2
0γII

8ωIII

f 2IIIγ
2
II

ω2
IIIγ

2
III

þ
2f 2II
ω2
II

� �

; ð7Þ

where f
&

¼ F
&
=ðd0γ

2
IIÞ. The frequency shift direction of mode-

II (the sign of σ̂II) is determined by the sign of the third-order
nonlinearity coefficient νII, which is negative for this resonator
dominated by electrostatic nonlinearity. Thus, frequency of
mode-II will shift downward.

As long as the associated modes can simultaneously modulate
the response of a common capacitive transducer, those modes are
coupled. Thus, this electrostatic nonlinear mode coupling is very
common in capacitive micro- or nanomechanical resonators. The
coupling strength is significantly impacted by the characteristics
of the shared capacitor.

It has been illustrated that the structural asymmetry will
transform normal modes II-1 and II-2 into mechanically coupled
hybrid states H-1 and H-2. The hybrid states are electrostatically
coupled to order-3 modes, an anti-Stokes pump can transform
this electrostatic coupling into tunable strong dynamical
coupling. In this case, order-3 modes are regarded as phonon
cavities. The drive signal (Vd ¼ 2 mV) sweeps from below mode
II-1 to above mode II-2, and the pump signal (Vp ¼ 3 V) with
frequency from below ωIII-1 � ωII-2 to above ωIII-2 � ωII-1 are
simultaneously applied. The frequency responses of modes II-1
and II-2 are measured, as shown in Fig. 4f, in which a skewed “#”
configuration with four avoided crossings is illustrated. When the
pump frequency is kept ωIII-1 � ωII-1, the dynamical coupling
strength of modes II-1 and III-1 depicted by the frequency split of
mode II-1 will increase if pump voltage is increased (Fig. 4h). The
pump voltage dependence of coupling strength of modes II-2 and
III-1 is also obtained (Fig. 4j). Moreover, avoided crossings can be
observed between the higher splitting branch of II-1 and mode II-
2 in Fig. 4h, and between the lower splitting branch of II-2 and
mode II-1 in Fig. 4j, which are produced by the structural hybrid
coupling of H-1 and H-2.

The skewed “#” coupling configuration are simulated by
separately modeling the sequential dynamical coupling of III-1 to
II-1 and II-2 and that of III-2 to II-1 and II-2, which can be
described similarly by the following equations of motion:

€xII-1 þ γII _xII-1 þ ω2
II-1xII-1 þ α1xII-1 þ β1xII-2 þ λ1xIII

þ Λ1 cosðωptÞðxII-1 sin θ þ xII-2 cos θ þ xIIIÞ

¼ g1 cosðωdtÞ;

ð8Þ

€xII-2þ γII _xII-2 þ ω2
II-2xII-2 þ α2xII-1 þ β2xII-2 þ λ2xIII

þΛ2 cosðωptÞðxII-1 sin θ þ xII-2 cos θ þ xIIIÞ

¼ g2 cosðωdtÞ;

ð9Þ
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€xIII þ γIII _xIII þ ω2
IIIxIII þ α3xII-1 þ β3xII-2 þ λ3xIII

þ Λ3 cosðωptÞðxII-1 sin θ þ xII-2 cos θ þ xIIIÞ ¼ 0:
ð10Þ

The subscript III refers to mode III-1 or III-2. The detailed
derivation of those equations of motion and the parameters αj, βj,
λj, Λj, and g j (j ¼ 1; 2; 3) are provided in Supplementary Note 5.
By solving Eqs. (8)–(10), we can simulate the observed avoided
crossings, as shown in Fig. 4g. The Vp dependence of coupling
strengths depicted in Fig. 4h, j can also be simulated by setting
ωp ¼ ωIII-1 � ωII-1 and ωIII-1 � ωII-2, as shown in Fig. 4i, k,
respectively.

By showing the abundant coupling phenomena between
order-2 and order-3 modes, we demonstrate that this

electrostatic mechanical system has the potential to couple even
more modes. If the dynamical couplings are implemented
simultaneously, a classical analog of multiple-level system could
be constructed, which would enable abundant varieties of
interesting manipulations40.

Discussion
In this study, we report significant progress in modeling and
manipulating the structural asymmetry and misalignment
induced mode coupling between a pair of degenerate wine-glass
modes in ring resonators. We also discover an electrostatic field-
imposed nonlinear parametric coupling effect among different
modes in a single resonator. These modal coupling effects in
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Fig. 4 Electrostatic nonlinear parametric coupling and demonstration of coupling-abundant multiple-mode system. a, b Schematic transient pattern of the

independently actuated mode II (a) and mode III (b). c Schematic transient pattern of the simultaneously actuated modes. Their superposed displacements

will both affect the capacitive gap. Modal interaction occurs when a nonlinear electrostatic potential is applied. d, e The dispersive frequency shifts of

modes II induced by the actuation of mode III-1 if the drive frequency of mode III-1 is changed from low to high (d) and high to low (e). The dotted lines

indicate the resonant frequencies of the modes II without the additional actuation of mode III-1. The bifurcation-induced jump phenomenon in nonlinear

frequency response of mode III-1 (upside) can be detected by the frequency shift of modes II. f Frequency responses of modes II when pump frequency are

changed from below ωIII-1 � ωII-2 to above ωIII-2 � ωII-1 depict a skewed “#” configuration. The pump voltage is 3 V. g Simulation of the experimental

results in f. h The strength of the dynamical coupling between modes II-1 and III-1 as a function of pump amplitude Vp, pump frequency is set to be

ωIII-1 � ωII-1. i Simulation of the experimental results in h. j The strength of the dynamical coupling between modes II-2 and III-1 as a function of pump

amplitude Vp, pump frequency is set to be ωIII-1 � ωII-2. k Simulation of the experimental results in j. Source data are provided as a Source Data file
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capacitively transduced mechanical systems can be tuned very
significantly through the parametric pumping scheme.
Electrostatic-pump-based manipulations show consequent
advantages with respect to tension-mediated manipulations.
Depending on the topology of the resonators, the effect of
tension-induced manipulations can vary. For instance, its effect
can be significant for clamped–clamped or thin film resonators,
but negligible for centrally anchored or bulk-fabrication-process
resonators, such as the ring resonator in this work, if the same
tension is applied. In comparison, the electrostatic-medi-
ated pump-based manipulation removes such topology restric-
tions for capacitively transduced resonators, hence making it
applicable for a wider range of resonator designs.

Recently, significant breakthroughs in enhancing quality factor
(Q) of mechanical resonators have been made55–58. Though some
of those resonators are dielectric, the proposed dissipation miti-
gating techniques could inspire conductive high-Q mechanical
resonators. An interesting direction for further research is to
combine the electrostatic-mediated parametric coupling and
dynamical manipulations illustrated here in such conductive high-
Q mechanical resonators, which may enable purely phonon-based
quantum sideband manipulations at the macroscopic scale10,11.
Some interesting dynamical tunable coupling experiments have
been implemented in capacitive mechanical systems30,31. How-
ever, these effects were attributed to tension-induced parametric
interaction. Here, we demonstrate that electrostatic field-induced
parametric coupling should also reside in these systems, and may
at least partly contribute to the observed results.

Electrostatic mechanical resonators are widely used for sensing
applications, and their susceptibility to mode coupling has often
been not fully assessed in published studies. This paper shows
that mode coupling should be taken into account when designing
sensors, as the associated interactions may greatly alter the
properties of the mechanical devices. More interestingly, elec-
trostatic dynamical sideband coupling may be very useful in
terms of enhancing sensor performance, such as manipulating
energy transfer between dynamically coupled modes to improve
or decrease Q factor of a specific mode59, greatly speeding up
mode switching for Coriolis gyroscopes by replacing the stop-
decay-actuate process with coherent mode manipulation60, thus
calibrating the bias error without affecting the bandwidth,
dynamically tuning the frequency split of gyroscopes, and pro-
viding tunable coupling for mode-localized sensors.

Methods
Experiment and simulation setup. The die embedding the vacuum-sealed MEMS
resonators is electrically packaged in a ceramic leadless chip carrier. The device is
operated in an ambient room temperature environment. The bias voltages are
generated by a low noise voltage source (Keysight B2961A). The drive and pump
signals are provided by a two-channel lock-in amplifier (Zurich Instruments
HF2LI). The response motion of the resonator is detected by a capacitance–voltage
converting scheme that is based on charge amplifier, and measured by the lock-in
amplifier. The simulation codes are based on Python 3.7 with NumPy and Mat-
plotlib packages.

Data availability
The authors declare that all data supporting the findings of this study are included in the
paper and its supplementary information files, and are available on request from the
corresponding authors. The source data underlying Figs. 1b, 2d, f, 3c, e, f, and 4d, e, f, h, j
and Supplementary Figs. 2c, 3a, c, e, 4c–i, 5, 6, 7, and 8 are provided as a Source Data file,
which is also available in figshare (https://doi.org/10.6084/m9.figshare.8397908).

Code availability
The authors declare that all codes supporting the findings of this study are included in
the paper and its supplementary information files, and are available on request from the
corresponding authors. The simulation codes underlying Figs. 2e, 3d, g, and 4g, i, k and
Supplementary Figs. 2d, e, 3b, d, f, 4c–i, 6, and 9 are available in figshare (https://doi.org/
10.6084/m9.figshare.8397908).

Received: 1 February 2019; Accepted: 18 September 2019;

References
1. Nguyen, C. T. C. MEMS technology for timing and frequency control. IEEE

Trans. Ultrason. Ferroelectr. Freq. Control 54, 251–270 (2007).
2. Ng, E. et al. The long path from MEMS resonators to timing products. In

Proceedings of 28th IEEE International Conference on Micro Electro
Mechanical Systems. 1–2 (IEEE, 2015).

3. Roy, S. K., Sauer, V. T. K., Westwood-Bachman, J. N., Venkatasubramanian,
A. & Hiebert, W. K. Improving mechanical sensor performance through larger
damping. Science 360, eaar5220 (2018).

4. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical
resonator. Nat. Nanotechnol. 8, 493–496 (2013).

5. Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real
time. Nat. Nanotechnol. 7, 602–608 (2012).

6. Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction
scheme for nanomechanical systems based on dielectric forces. Nature 458,
1001–1004 (2009).

7. Hafiz, M. A. A., Kosuru, L. & Younis, M. I. Microelectromechanical
reprogrammable logic device. Nat. Commun. 7, 11137 (2016).

8. Hatanaka, D., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Phonon
waveguides for electromechanical circuits. Nat. Nanotechnol. 9, 520–524
(2014).

9. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an
electromechanical oscillator. Nat. Nanotechnol. 3, 275–279 (2008).

10. Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical
oscillators. Nature 556, 478–482 (2018).

11. Riedinger, R. et al. Remote quantum entanglement between two
micromechanical oscillators. Nature 556, 473–477 (2018).

12. Møller, C. B. et al. Quantum back-action-evading measurement of motion in a
negative mass reference frame. Nature 547, 191–195 (2017).

13. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical
resonator. Science 349, 952–955 (2015).

14. Ganesan, A., Do, C. & Seshia, A. A. Phononic frequency comb via intrinsic
three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).

15. Matheny, M. H. et al. Phase synchronization of two anharmonic
nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014).

16. Agrawal, D. K., Woodhouse, J. & Seshia, A. A. Observation of locked phase
dynamics and enhanced frequency stability in synchronized micromechanical
oscillators. Phys. Rev. Lett. 111, 084101 (2013).

17. Shim, S. B., Imboden, M. & Mohanty, P. Synchronized oscillation in coupled
nanomechanical oscillators. Science 316, 95–99 (2007).

18. Westra, H. J. R., Poot, M., van der Zant, H. S. J. & Venstra, W. J. Nonlinear
modal interactions in clamped-clamped mechanical resonators. Phys. Rev.
Lett. 105, 117205 (2010).

19. Eichler, A., del Álamo Ruiz, M., Plaza, J. A. & Bachtold, A. Strong coupling
between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109,
025503 (2012).

20. Antonio, D., Zanette, D. H. & López, D. Frequency stabilization in nonlinear
micromechanical oscillators. Nat. Commun. 3, 806 (2012).

21. Faust, T. et al. Nonadiabatic dynamics of two strongly coupled
nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012).

22. Mahboob, I., Nishiguchi, K., Okamoto, H. & Yamaguchi, H. Phonon-cavity
electromechanics. Nat. Phys. 8, 387–392 (2012).

23. Matheny, M. H., Villanueva, L. G., Karabalin, R. B., Sader, J. E. & Roukes, M.
L. Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13,
1622–1626 (2013).

24. Mahboob, I. et al. Dispersive and dissipative coupling in a micromechanical
resonator embedded with a nanomechanical resonator. Nano Lett. 15,
2312–2317 (2015).

25. Chen, C., Zanette, D. H., Czaplewski, D. A., Shaw, S. & López, D. Direct
observation of coherent energy transfer in nonlinear micromechanical
oscillators. Nat. Commun. 8, 15523 (2017).

26. Seitner, M. J., Abdi, M., Ridolfo, A., Hartmann, M. J. & Weig, E. M.
Parametric oscillation, frequency mixing, and injection locking of strongly
coupled nanomechanical resonator modes. Phys. Rev. Lett. 118, 254301
(2017).

27. Luo, G. et al. Strong indirect coupling between graphene-based mechanical
resonators via a phonon cavity. Nat. Commun. 9, 383 (2018).

28. Okamoto, H. et al. Coherent phonon manipulation in coupled mechanical
resonators. Nat. Phys. 9, 598–598 (2013).

29. Liu, C. H., Kim, I. S. & Lauhon, L. J. Optical control of mechanical mode-
coupling within a MoS2 resonator in the strong-coupling regime. Nano Lett.
15, 6727–6731 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12796-0

8 NATURE COMMUNICATIONS |         (2019) 10:4980 | https://doi.org/10.1038/s41467-019-12796-0 | www.nature.com/naturecommunications

https://doi.org/10.6084/m9.figshare.8397908
https://doi.org/10.6084/m9.figshare.8397908
https://doi.org/10.6084/m9.figshare.8397908
www.nature.com/naturecommunications


30. De Alba, R. et al. Tunable phonon-cavity coupling in graphene membranes.
Nat. Nanotechnol. 11, 741–746 (2016).

31. Mathew, J. P., Patel, R. N., Borah, A., Vijay, R. & Deshmukh, M. M.
Dynamical strong coupling and parametric amplification of mechanical
modes of graphene drums. Nat. Nanotechnol. 11, 747–751 (2016).

32. Sun, F., Dong, X., Zou, J., Dykman, M. I. & Chan, H. B. Correlated anomalous
phase diffusion of coupled phononic modes in a sideband-driven resonator.
Nat. Commun. 7, 12694 (2016).

33. Mahboob, I., Okamoto, H., Onomitsu, K. & Yamaguchi, H. Two-mode
thermal-noise squeezing in an electromechanical resonator. Phys. Rev. Lett.
113, 167203 (2014).

34. Patil, Y. S., Chakram, S., Chang, L. & Vengalattore, M. Thermomechanical
two-mode squeezing in an ultrahigh-Q membrane resonator. Phys. Rev. Lett.
115, 017202 (2015).

35. Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Coherent control
of a classical nanomechanical two-level system. Nat. Phys.9, 485–488 (2012).

36. Zhu, D. et al. Coherent phonon Rabi oscillations with a high-frequency carbon
nanotube phonon cavity. Nano Lett. 17, 915–921 (2017).

37. Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in
an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

38. Truitt, P. A., Hertzberg, J. B., Altunkaya, E. & Schwab, K. C. Linear and
nonlinear coupling between transverse modes of a nanomechanical resonator.
J. Appl. Phys. 114, 114307 (2013).

39. Buks, E. & Roukes, M. L. Electrically tunable collective response in a coupled
micromechanical array. J. Microelectromech. Syst. 11, 802–807 (2002).

40. Okamoto, H. et al. A strongly coupled Λ-type micromechanical system. Appl.
Phys. Lett. 108, 227402 (2016).

41. Spletzer, M., Raman, A., Wu, A. Q., Xu, X. & Reifenberger, R. Ultrasensitive
mass sensing using mode localization in coupled microcantilevers. Appl. Phys.
Lett. 88, 254899 (2006).

42. Thiruvenkatanathan, P., Yan, J., Woodhouse, J., Aziz, A. & Seshia, A. A.
Ultrasensitive mode-localized mass sensor with electrically tunable parametric
sensitivity. Appl. Phys. Lett. 96, 083562 (2010).

43. Ayazi, F. & Najafi, K. A HARPSS polysilicon vibrating ring gyroscope. J.
Microelectromech. Syst. 10, 169–179 (2001).

44. Ahn, C. H. et al. Encapsulated high frequency (235 kHz), high-Q (100 k) disk
resonator gyroscope with electrostatic parametric pump. Appl. Phys. Lett. 105,
243504 (2014).

45. Nguyen, C. T. C. Frequency-selective MEMS for miniaturized low-power
communication device. IEEE Trans. Microw. Theory Tech. 47, 1486–1503 (1999).

46. Yang, Y., Ng, E. J., Chen, Y., Flader, I. B. & Kenny, T. W. A unified Epi-seal
process for fabrication of high-stability microelectromechanical devices. J.
Microelectromech. Syst. 25, 489–497 (2016).

47. Zhou, X. et al. Mitigating thermoelastic dissipation of flexural
micromechanical resonators by decoupling resonant frequency from thermal
relaxation rate. Phys. Rev. Appl. 8, 064033 (2017).

48. Nitzan, S. H. et al. Self-induced parametric amplification arising from
nonlinear elastic coupling in a micromechanical resonating disk gyroscope.
Sci. Rep. 5, 9036 (2015).

49. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the
mesoscale. Science 321, 1172–1176 (2008).

50. Ivakhnenko, O. V., Shevchenko, S. N. & Nori, F. Simulating quantum
dynamical phenomena using classical oscillators: Landau-Zener-Stückelberg-
Majorana interferometry, latching modulation, and motional averaging. Sci.
Rep. 8, 12218 (2018).

51. Lifshitz, R., Cross, M. C. Nonlinear Dynamics of Nanomechanical and
Micromechanical Resonators (ed Schuster, H. G.) 1–52 (Wiley VCH Verlag
GmbH & Co. KGaA, 2008).

52. Yang, Y. et al. Nonlinearity of degenerately doped bulk-mode silicon MEMS
resonators. J. Microelectromech. Syst. 25, 859–869 (2016).

53. Rocheleau, T. et al. Preparation and detection of a mechanical resonator near
the ground state of motion. Nature 463, 72–75 (2010).

54. Brown, K. R. et al. Passive cooling of a micromechanical oscillator with a
resonant electric circuit. Phys. Rev. Lett. 99, 137205 (2007).

55. Ghadimi, A. H. et al. Elastic strain engineering for ultralow mechanical
dissipation. Science 360, 764–768 (2018).

56. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent
nanomechanical resonators via soft clamping and dissipation dilution. Nat.
Nanotechnol. 12, 776–783 (2017).

57. Güttinger, J. et al. Energy-dependent path of dissipation in nanomechanical
resonators. Nat. Nanotechnol. 12, 631–636 (2017).

58. Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube
mechanical resonators with quality factors of up to 5 million. Nat.
Nanotechnol. 9, 1007–1011 (2014).

59. Venstra, W. J., Westra, H. J. R. & van der Zant, H. S. J. Q-factor control of a
microcantilever by mechanical sideband excitation. Appl. Phys. Lett 99,
013112 (2011).

60. Okamoto, H., Mahboob, I., Onomitsu, K. & Yamaguchi, H. Rapid switching in
high-Q mechanical resonators. Appl. Phys. Lett. 105, 083114 (2014).

Acknowledgements
We thank Sijun Du, Milind Pandit, Malar Chellasivalingam, and Atif Aziz for helpful
discussions and assisting with training on laboratory equipment. This work is partly
supported by the National Key R&D Program of China (NKPs) (2018YFB2002304) and
the National Natural Science Foundation of China (NSFC) (51905539, 51575521 and
51705527). Experimental devices are designed and fabricated in the nano@Stanford labs,
which are supported by the NSF as part of the National Nanotechnology Coordinated
Infrastructure under award ECCS-1542152, with support from the Defense Advanced
Research Projects Agency Precise Robust Inertial Guidance for Munitions (PRIGM)
Program, managed by Dr. Robert Lutwak and Dr. Ron Polcawich, and the NSF under
grant number CMMI-1662464. This work is primarily supported by the UK Natural
Environment Research Council under grant number NE/N012097/1.

Author contributions
X.Z. conceived the idea and designed the research under the guidance of A.A.S. and
assistance of C.Z. The measurements and data analyses were performed by X.Z. and C.Z.
with the assistance of J.S. and G.S. The test circuitry was developed by D.X. and X.Z. The
theoretical works were done by X.Z., supervised by A.A.S., D.X. and X.W. The device was
designed and fabricated by D.D.G., Y.C., I.F. and T.W.K. The manuscript was written by
X.Z. and A.A.S. All authors contributed to manuscript preparation. The project was
planned by A.A.S.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-12796-0.

Correspondence and requests for materials should be addressed to D.X. or A.A.S.

Reprints and permission information is available at http://www.nature.com/reprints

Peer Review Information Nature Communications thanks G. P. Guo, Zenghui Wang
and other anonymous reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12796-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4980 | https://doi.org/10.1038/s41467-019-12796-0 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-019-12796-0
https://doi.org/10.1038/s41467-019-12796-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators
	Results
	Capacitive symmetric electromechanical resonator
	Hybrid state coupling and dynamical manipulation
	Electrostatic nonlinear coupling and dynamical manipulation

	Discussion
	Methods
	Experiment and simulation setup

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


