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An autonomous underwater glider (AUG) is a self-propelled vehicle whose motion is controlled by shifting its centre of 
buoyancy and gravity with wings to convert vertical motion into horizontal motion. In this paper, the dynamic motion of a 
newly developed AUG, including a spiral motion, with rectangular and tapered wing is analysed. The dynamics of the 
glider, including its hydrodynamic derivatives, is modelled based on the Newton-Euler approach. This model is 
subsequently used, with a linear quadratic regulator (LQR) control technique, to analyse the glider motion along the sagittal 
plane, its steady state spiral gliding motion in the vertical plane, and its stability. Results show that the glider has a stable 
dynamic response and a satisfactory glide performance. Specifically, the external control surface i.e. wings, influence the 
linear velocity and steady turning radius of glider. Furthermore, it was found that the rectangular winged glider has more 
dynamic stability because of a higher pitch moment. Additionally, a rectangular winged glider has a smaller spiral turning 
radius i.e. better manoeuvrability. 

 
 [Keyword: Underwater glider, Dynamic model, Spiral motion, Dynamic stability]  

Introduction  

An autonomous underwater glider (AUG) is a 
special type of unmanned underwater vehicle that 
uses buoyancy control, in conjunction with wings to 
convert vertical motion to horizontal motion, 
typically in a saw-tooth pattern, to propel itself 
forward with very low power consumption 1, as 
shown in (Fig. 1). This is an emerging technology in 
underwater vehicles due to its high energy 
efficiency. 

 
Fig. 1—Saw tooth glide pattern 2 

Graver and Leonard 1, 3  developed a general 
dynamic model for underwater gliders based on first 

principles. This model was applied to examine the 
dynamics  of gliders that traverse in a saw tooth 
pattern such as the Slocum 4, Spray 5 and Seaglider 
6. To investigate the dynamics of a glider in a spiral 
path, Bhatta 7  used perturbation theory.  

Arima 8 and Isa 9 developed an underwater glider 
independent controllable wings.  Gliders with 
controllable wings have a relative higher gliding 
performance as compared to fixed wing gliders, but 
have less endurance. These gliders can travel at high 
speeds in propeller mode, but are less efficient 
because of the higher drag due to the propeller. 
Fang Liu et al. 10 described the effect of wings 
geometry on the manoeuvrability of a hybrid 
underwater glider. Chord length has direct relation 
to lift-to-drag ratio of a glider. Zhang 11 investigated 
the wing aspect ratio of a gliding robotic fish and 
found that a large wing aspect ratio results in a 
higher gliding velocity and pitch angle 12. In this 
study, the dynamic motion of a newly developed 
glider with a NACA 0016 rectangular and tapered 
wing profile is investigated. In addition, the 
manoeuvrability of the glider was analysed.  

In Section One the dynamic model and equation 
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of motion in the sagittal plan is presented. Section 
Two describes the gliders steady state spiral motion 
and dynamic stability. Finally the effect of pitch 
angle or glide angle on the glide performance is 
discussed. 
Dynamic Equations of Motion 

Graver 13 developed the dynamic equations of 
motion for a self-propelled submerged vehicle based 
on first principles and implemented a nonlinear 
controller to control its motion. In this work, the 
dynamics of an underwater glider with an elliptical 
shape with fixed wings and tail, as shown in Figure 
2, is investigated. The results are generalizable, and 
are not glider specific. It has been modelled based 
on Fossen 14 equations with the hydrodynamics 
derivatives analytically derived based on Strip 
theory 15.  

A glider’s six degree of freedom (DOF) motion is 
defined in body fixed frame and inertial frame of 
reference. The body fixed motion components are 
surge, sway, heave, roll, pitch and yaw, as shown in 
(Fig. 2) 16-18. The longitudinal velocity (surge) is 
along x- axis, lateral velocity (sway) is along y-axis 
and vertical speed (heave) or depth is along z-axis, 
with gravity positive downwards. 

 
Fig. 2—Coordinates system of Glider 

Assume that the position of glider in body frame 

of reference is denoted as Tz]y,[x,b  . The 

corresponding translational and angular velocities 

are represented as Tw]v,[u,v   and Tr]q,[p,ω   

respectively. The R matrix is used to translate the 
body frame of reference to the inertia fixed 
coordinates.  
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where‘s’ is sine and ‘c’ is cosine. ] ψ φ, , [θ  

represents the pitch angle, roll angle and yaw angle 
respectively. The kinematic relationships are given 
in Equation 1-2. 

bRωR                                          (1) 

bRvb                                            (2) 

The generalized equation of motion of rigid body 
can be written as  

  τηgD(v)vC(v)vVM   

Where M is represents the mass inertia matrix of 
the rigid body, which includes both the rigid body 
and the added masses terms. C(v) denotes the 
matrix of centrifugal and Coriolis forces, which 
includes both the rigid body and the added mass 
terms. D(v) represents the hydrodynamic damping 
and lift force and g(η) is a vector representing the 
restoring forces and moments due to gravity and 
buoyancy. 

Based on Fossen’s work 14,  the equations of 
motion for a rigid body in six degree of freedom are 
as follows 
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Where ] ZY, , [X and ] NM,, [L are the external 

forces and moments respectively. The external 
forces are 

controlFichydrodynamFchydrostatiFextF   
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controlMmomentsMchydrostatiMextM   

Hydrostatic Forces and Moments 

The hydrostatic forces, including gravitational 
and restoring forces and moments, are  
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Where ‘W’ is weight of glider and ‘B’ is net 
buoyancy force.  

mgW    and  
vol

ρgVB   

Where m is the mass of glider, g is the 
gravitational forces.    is the density of water and 

vol
V the volume of the glider body. Buoyancy force 

is an important consideration of a glider design, 
whereby the glider should be neutrally buoyant 
(B=W). The buoyancy control system plays an 
important role in the glider’s motion. The buoyancy 
mechanism has a direct relation with the lung 
capacity factor η . Lung capacity factor is the 

percentage difference between the maximum 
displaced volume and the neutral buoyancy volume 
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Longitudinal Hydrodynamics Forces and 
Moments 

The hydrodynamic forces and moments of glider 
are represented by X, Y, Z, L, M and N along the 
body axis x, y, and z respectively. These forces and 
moments components are the function of linear 
velocities [u, v, w] and moments [p, q, r] 
respectively at steady state equilibrium condition. 
The related equations are as follows 
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The dynamic model is simplified along the x-z 
plane symmetrically, so all unrelated variables 

 rp,v,  will be zero. Also the effect of pitch rate 

over the drag components of glider is neglected. 
The unnecessary lift forces components are 
neglected as well during constant forward speed. 
Thus, the hydrodynamic forces and moments along 
the longitudinal plane are 
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Equation of Motion for Glider 

The glider equations of motion along the 
longitudinal plane are simplified by setting all 

unrelated components  rp,v,  to zero.  

 
Fig. 3—Vertical Motion Coordinates of Glider 

The equations, after linearization and neglecting 
higher order values, are 
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These equations are expressed in matrix form 
below  
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Assumed state vector is  
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Given input values  

 Tsδu   

Rewrite the equation 16 

Du
1

Mx
d

C
1

Mx





  

Or       

BuAxx   

The stability derivatives are calculated as 
follows: 
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Spiral Turning Motion 

The spiral turning motion of an underwater glider 
is highly complex and nonlinear. The spiral turning 
motion is determined by combining the steady state 
turning movement and steady state gliding vector 
motion along the horizontal plane.  

 
Fig. 4—Spiral motion (a) Front view (b) Top view  

(Fig. 4) shows the centripetal force, FL, turning 
radius, R and velocity, V. The relationship between 
turning motion and centripetal force, turning radius 
and velocity is as follows:  
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Based on Figure 4, the following equations can 
be obtained: 
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Where D & L are the hydrodynamic forces, β is 

drift angle, and m is the mass of glider.  
Let’s assume the drift angle is very small. Then 

the equation is  
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The spiral glider motion is illustrated in (Fig. 5) 
under the influence of roll angle.  

 
Fig. 5—Roll angle of Steady Turning Motion 19 

For stability, the metacentric height of marine 
vehicles is more important than the roll angle. It is 
the distance between the centre of gravity and centre 
of buoyancy. The stability of submerged vehicles 
depends on the distance between the centre of 
gravity, CG and buoyancy, CB. If the distance is 
large, the vehicle is more stable but requires more 
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power to maintain the pitch or roll moments of 
vehicle. The turning radius of spiral motion is a 
function of roll angle, when the roll angle is 
increased, the turning radius decrease vice versa 20.  
Dynamic Stability  

The hydrodynamic shape of a glider is 
constrained to one that provides path stability and 
turning performance while maintaining glide path.  

 

Fig. 6—Key components of the newly developed Autonomous 
Underwater Glider 

Fig. 6 shows the key components of a newly 
developed glider and its hydrodynamic design. 

Vertical and horizontal stability is important to 
ensure safe glide motion. The different levels of 
stability are illustrated in Fig. 7.  

 
Fig. 7—Stability modes 19   
Fig. 7(a) shows an unstable motion of a glider, (b) 
stability along straight line shift in heading from the 
initial heading due to disturbance, (c) glider remains 
on initial heading but different path after a 
disturbance and (d) glider remains on original path 
after a disturbance. 

Burcher at el 19 linearized the dynamic equation of 

motion along the horizontal plane. 
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The high level of manoeuvring of a glider 
requires dynamic stabilities in both horizontal and 
vertical directions. A stable glider without any 
control input may have straight line stability in 
horizontal plane. However, the hydrostatic restoring 
forces and moments can destabilize the glider in the 
vertical plane. The stability of a glider is controlled 
by a moving internal mass or centre of buoyancy. 
Alternatively, the dynamic stability of glider may be 
controlled by external fixed wings and a vertical 
rudder. The Routh stability criteria for dynamic 
stability in sway and yaw is 

0mv)r(yvNvy
r

N   

0...(22)

v
y

v
N

-
mv)

r
(y

r
N




 

In Equation 22, the first term represents the 
moment force and second term represents the ratio 
of force in vertical plane. The moment of a dynamic 
body must be greater than the linear velocity for a 
stable glider. The horizontal and vertical stability, 
GH and GV are given by  
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A non-zero dynamic stability margin indicates 
the unstable motion 21. 
Motion Simulation 

The dimension of a glider is defined in terms of 
centre of gravity and buoyancy, inertia forces, 
moments and volume of glider. In this study, an 
underwater glider is designed with an elliptical 
shape of 1.04 m length, 0.28 m diameter and 0.98 m 
wing span. The weight of the glider is 40 kg with a 
steady forward speed of 0.3 m/sec. The major 
parameters for the mathematical model are the 
centre of gravity and buoyancy, wetted surface area, 
position of moment and inertia. 

After these parameters are defined, the six-
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degree-freedom equation of motions were used and 
linearized based on given assumptions and 
conditions. The hydrostatic forces and moments 
were simplified and the hydrodynamic derivatives 
calculated. The state space model of glider at 
longitudinal plane is solved using Matlab Simulink. 

A linear-quadratic regulator (LQR) was used for 
control and the nonlinear longitudinal equation of 
motion was linearized.  The complete linearized 
model in state space has four states and control 
inputs. The MIMO system stability is accounted for 
by implementation of LQR in state space 
representation. The LQR cost function is define as 

dt...(25)
0

Ru(t))Tρu(t)Qx(t)T(x(t)(u)
LQR

J 

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Where ‘Q’ and ‘R’ are the state variable 
weightage matrices or positive define symmetric 
matrices. ρ is a positive constant. The state feedback 

gain ‘k’ is used to design the LQR controller. ‘k’ 
matrix is calculated using Matlab to solve the state-
space matrices A, B, Q and R. 

ku(t)x(t)   

‘Q’ and ‘R’ were selected to confirm the dynamic 
behaviour and motion. In this study, the ‘Q’ and ‘R’ 
values are 

  ,1,1,11diagQ   

 1diagR   

]0.02760.00800.00420.1166[RWk   

 and     

]0.02750.00750.00340.1496[TWk   

Here, 
RWk  and 

TWk  are the gain matrices for the 

rectangular and tapered winged glider respectively.  
Results and Discussions  

The newly developed glider with similar span 
rectangular and tapered wings is shown in Fig. 8.  
  

 
Fig. 8—Newly developed Autonomous Underwater Gliders 

Two types of simulations were conducted, open 
loop and close loop. The numerical simulation was 
performed using Matlab and Simulink.  

Fig. 9 and 10 shows the open loop and close loop 
surge velocity of the glider. The surge velocity of a 
tapered wing glider is 17% more compared with a 
glider with rectangular wings. The speed of glider 
has a direct relation with the surface area of the 
wings. The tapered wing has less surface area for a 
given wing span which creates less drag force as 
compared to the rectangular wings. However, the 
rectangular wings have a greater lift force because 
lift force is proportional to the wing area of the 
glider  

 
Fig. 9—Open-loop surge velocity of glider  

 
Fig. 10— Close-loop surge velocity of glider  

The heave velocity of the glider with tapered 
wings is 15% higher, as can be seen in Fig. 11 and 
12. The glider velocity is also a function of drag 
force. A tapered wing glider has less wetted area 
which generates less drag force compared to the 
rectangular wings. This low drag force will improve 
the high speed manoeuvrability of the glider.  
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Fig.11—Open-loop heave velocity of glider  

 
Fig. 12—Close-loop heave velocity of glider  

Pitch moment is an important factor to define the 
stable trajectory of a glider. The pitch moment of a 
glider with rectangular wings is significantly higher 
compared to that with tapered wings, as shown in 
Fig. 13 and 14. This shows that, for a given aspect 
ratio, a glider with rectangular wings will be more 
stable.  

 
Fig. 13—Open-loop pitch moment of glider  

 
Fig. 14—Close-loop pitch moment of glider  

The pitch angle or glide angle depends on the 
external shape of the glider. It is important to define 
the operational task of glider i.e. either shallow 
water or deep water. The speed of a glider is direct 
proportional to the pitch angle and is a function of 
the net buoyancy, which may be kept constant by 
changing the total volume of glider.   

 
Fig. 15—Open-loop pitch angle of glider  

Fig. 15 shows that the tapered wing glider has a 
14% steeper pitch angle. The pitch angle of glider is 
directly analogous to the hydrodynamic coefficients, 

which based on the total wetted area of the wings.   

 
Fig. 16—Close-loop pitch angle of glider  

A steep pitch angle is suitable for deep water 
exploration while the low pitch angle glider is 
design for shallow water applications i.e. XRAY 
glider 22, 23.  

 
Fig. 17—Sink rate vs glide angle 

Fig. 18 shows the horizontal range and sink rate 
of a tapered wing glider is 15% more as compare to 
a rectangular wing glider under the same initial 
conditions. The total kinetic energy (K.E) of a glider 
is directly analogous to the total drag force and 
range of glider. The relationship of operational 
range of glider and K.E is given as   

2
mv

2

1

range
RD   

Where D is the drag force and 
range

R  the range 

of glider, v is the velocity of glider and m the total 
glider mass.  The mass of glider is function of glider 
lift force is 

mgWL   

2g

2
v

D

L

range
R   

Rectangular wings have a greater wetted area, 
which produces more lift force, decreasing the range 
of the glider.  
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Fig. 18—Sink rate vs horizontal range  

The maneuverabiliy of glider is defined by the 
sprial turning radius R. The radius of steady state 
sprial motion is a function of lift force, as given in 
Equation 19.  

L

2
mV

R   

Where L is the lift force of the glider, calculated  
using CFD 12, 24. The lift force is perpendicular to 
the surge velocity of glider and has linear relation to 
glide angle 25, 26. 

 

Fig. 19—Spiral motion of glider    
Fig. 19 shows that the rectangular winged 

glider’s spiral motion turning radius is less 
compared to tapered wing glider for a constant glide 
angle. Rectangular wings have high 
manoeuvrability because of its higher lift force. As 
wings play an important role in controlling the roll 
moments of glider during the spiral gliding motion, 
the rectangular wings have a more stable roll 
moment because of its large wetted area.  
 

Conclusion 

The dynamic motion characteristics of a newly 
developed underwater glider have been investigated. 
The simulation results have shown that the external 
control surface i.e. wings, influence the linear 
velocity and steady turning radius of the glider. In 
this study, both rectangular and tapered winged 
gliders were investigated. A tapered wing glider has 
17% higher linear velocity compared to a 
rectangular winged glider. However, the rectangular 
winged glider has more dynamic stability because 
of a higher pitch moment. Additionally, a 
rectangular winged glider has a smaller spiral 
turning radius i.e. better manoeuvrability. The 
results presented here are based on simulation and 
should be validated experimentally. 
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