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Each quadrant is split again by taking a point of the subset etc. until each
quadrant contains at most one point of the set. These final nodes (points)

form the leafs of the quad-tree. In the 2-dimensional case we get, for

instance
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Finkel and Bentley [4] gave several heuristics to build quad-trees as optimal
as possible (i.e. with a smallest possible depth), where it is noted that

4
even optimal quad-trees may have a depth of 2log N, rather than of “log N,

for instance when all points lie on a diagonal line.
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Finkel and Bentley [4] showed that it is possible to insert points in quad-
trees, but that it is apparently very time consuming to keep the tree optimal.
Still they proved an expected time bound of O(log N) per insertion. In section

2 we will show that for every constant 0 <& < 1 it is possible to insert points

. . , 2 \
into a quad-tree in ap average time of O(%-ldg N) per insertion while keeping
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Abstract. We describe a method to insert points in a quad-tree, while keeping
the tree balanced, and prove an average time complexity of O(log2 N) per
insertion for it, where N is the number of points in the quad-tree. We define
a structure similar to a quad-tree, called a pseudo quad-tree, and show how
this structure can be used to handle both insertions and deletions in

o(log2 N) average time. We also discuss how quad-trees and pseudo quad-trees
can be extended to so-called EPQ-trees for use in configurations of points
with more than a constant number of points having a same coordinate, without
altering the earlier time bounds for insertions, deletions and queries.

We develop similar algorithms for k-d trees and obtain the same average

time bounds for insertions and deletions in such structures.

Keywords and phrases: multi-dimensional searching, insertion, deletion,

quad-tree, pseudo quad-tree, k-d tree, pseudo k-d tree, EPQ-tree.

1. Introduction.

Quad-trees were introduced by Finkel and Bentley [4] as a suitable data-
structure for answering queries about sets of points in multidimensional
space (viz. range queries). Let a set of points S = {pl, cees pN} be given
and let the dimension of the space be d. A quad-tree of S is built in the
following way. One of the points P, of the set is taken as the root of the
quad-tree. It divides the space into 2d quadrants, and therefore splits the
set into 2d subsets. These 2d subsets (quadrants) will be the sons of p, in

the tree. So, when 4 = 2, we get
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Throughout this baper we mean by average insertion time Oor average deletion
time the average time needed to perform N updates in an initially empty structure.

(Hence one should not confuse average time with exXpected time.)

2. Insertions and deletions in (pseudo) quad-trees.

2.1. Insertions in quad-trees,

Inserting a point in a quad-tree itself is no problem. We just locate the
subquadrant it is in by a simple search on the tree. If there was no point present
we insert it there. Otherwise we use the old point as a splitting point andg
insert the new point in the appropriate sub-sub quadrant. The problem is how
to keep the tree balanced, how to keep it as optimal as possible. The best we
may hope to achieve is 1 depth of about 2log N (as pointed out in the introduction)
but in this case each insertion would require a complete rebalancing of the tree,
which is a lot of work. Hence, to obtain fast inéert}on times (on the average)
we have to make some concessions on the optimality (i.e., the depth) of the

quad-tree.

2
average transaction time is bounded by %1og N.

To achieve the depth bound of 2_6109 N we put an even stronger condition on
the tree, namely that for every internal node, €xcept on the lowest level, with
a total of k points in its joint subtrees, every subtree contains at most
E%S-k points. Such a tree always has a depth of at most 2_6log n. Our method
of insertion will make use of the fact that for every configuration of n points
one can build a quad-tree, such that for every internal node with k points
in its joint subtrees, every subtree contains at most %k points, in only

0(d n log n) time. This can be done by repeatedly splitting each subquadrant w.r.t.



the depth to at most 2__‘Slog N. So, at the cost of only a small loss in
optimality one can perform insertions in quad-trees efficiently. Deletions

in quad-trees are very hard to process, and very time consuming. In fact

it has repeatedly been used as a reason for rejecting quad-trees as a
sufficiently flexible data structure (see also Samet [9]). In section 2 we
modify the guad-tree to a pseudo quad-tree, which can handle queries in the

same way but which has better prospectives for updates. Before showing how

to perform insertions and deletions in pseudo quad-trees, we develop a method
for building a pseudo quad-tree of a set of N points in d-dimensional space with
depth at most d+1log N, in O(d.N log N) time. We also prove that there are
configurations of points for which this depth bound is optimal. The main objective
in developing the pseudo quad-trees, however, is the possibility of performing

both insertions and deletions on it. We prove that for every constant 0 < & < d an
3

average time of O(%—log2 N) per insertion and deletion can be achieved, while
the depth of the (d-dimensional) pseudo quad-tree is kept to at most d+1—6log N.

When we work with quad-trees or pseudo quad-trees, we normally have to
assume that no more than a constant number of points have equal coordinates,
i.e., that there is a constant ¢ such that for every x and for every 0 < i £ 4
there are at most ¢ points with i'th coordinate equal to x. This condition is
needed, because it may be impossible otherwise to choose a point that suitably
divides the points in some way over the quadrants. In section 3 we show how
some extra sons can be added to each node in a quad-tree or pseudo quad-tree
to circumvent this condition as a restriction of generality. We show that this
extension of the structures does not increase the insertion and deletion
time and that, in general, it does not increase the gquery times.

Bentley [1] presented another data structure for answering queries about
more-dimensional pointsets, the k-d tree. He showed that insertion in k-d trees
is possible, but that it is again time consuming to keep the tree balanced, and
that deletions can be processed also but that they are often even harder to
perform. In section 4 we show how insertions in k-d trees can be processed
in average time O(é—log2 N), while the depth is kept to at most 2_(Slog N for
any constant 0 < & < 1. To be able to process deletions also, we again define
a modification to so called pseudo k-d trees. (The idea behind it was previously
introduced by Willard [10].) wWe prove for pseudo k-d trees an average insertion
and deletion time of O(%—log2 N), while the depth is kept to at most 2_6log N
for any constant 0 < § < 1. We arque that all results obtained for quad- and
psuedo quad-trees carry over in almost the same way to k~-d and pseudo k-d trees.

In section 5 we offer some concluding remarks.



So a transaction is charged at most O(log N) times, and the charge is always at
most O(g-loq N) at a time. Hence the total average transaction time is bounded

by O(%log2 N) .

So it is possible to perform insertions in quad~trees efficiently, when we
allow a small increase in depth. In general, the average time needed for insertions
is likely to be much smaller than O(% log2 N) because, when subtrees of internal
nodes expand equally fast, we have no need for any rebalancing at all. Although
we can process insertions in gquad-trees efficiently, deletions remain a problem.

In the next two subsections we will show how, by changing the structure slightly,

we can also obtain an efficient deletion method.

2.2. Pseudo gquad-trees.

As stated before, it is very hard to perform deletions in ordinary quad-trees.
This is so primarily because almost every point also has a dividing function.
Points are used for splitting quadrants into subquadrants and thus for splitting
parts of the set. When we delete a point p, we would like to "replace” it by a
new dividing point, but it is quite possible that any other point would split
the set in a very different way. Finkel and Bentley [4] therefore suggest to
reinsert all points in the subtrees of p that are affected. This may take a lot
of time, e.g. when we delete the root of the quadtree, but in the expected case
it may be quite efficient. Samet [9] shows how, in the two-dimensional case,
this number of reinsertions can be decreased by choosing the new dividing point
in a very special way. But his technique may still take much time in the worst
case.

As the problems with deletion arise from the dividing function of the points,
it would seem obvious to try and eliminate the dividing function of points.

This can be done by allowing arbitrary points to be used for this function instead
of points of the set only. Our new structure, which we shall call a pseudo
quad-tree, is based on this idea. It is very similar to an ordinary quad-tree,
except that the internal nodes that split the space (and therefore the set),

no longer are points of the set itself. We use arbitrary points to split the

space into gquadrants, the gquadrants into subquadrants and so on, until every
subquadrant contains at most one point of the set. The points of the set thus
occur as the leaves of the pseudo quad-tree. E.g. in the two-dimensional case we
get a structure as shown in the following diagram. (pl, ooy p12 are the points

from the set hl' ceey h5 are the arbitrarily chosen points.)



a point whose coordinate is the median along a chosen axis. When we want to
insert a point p, we first determine the subquadrant p is in. When there was no
point present in that subquadrant, we just insert p there, otherwise we use

the one old point present as a splitting point and insert p in the appropriate
sub-subquadrant just created. It is very well possible that now somewhere in
the tree the balance is disturbed. This can only happen on the path from the
root to the newly inserted point. If this occurs, then we determine the highest
internal node h for which this is the case, and rebuild the complete subtree
below it as a perfectly balanced tree, in the way described above. To obtain

a bound on the resulting average transaction time, let us look at some internal
node h with k points in its joint subtrees at the moment it is built. Because
of the way we build trees, every subtree attached to h contains at most %k points.
We need to rebalance at h only by the time one of its subtrees contains 5%3
times the total number of points below h at that moment. If this happens after
i insertions into the subtree at h (since the latest rebalancing, or creation,

of h) then necessarily:

bk + i 2> 5%3{k+i) =
i - 2f6 i E%S-k - Lk -
;:g 1= 4§26 k =
T

The total cost for the rebuilding of the subtree at h, we need to perform

for rebalancing, is d (it+k) log(i+k). When we divide these cost evenly over the
i insertions in the subtree at h which took place since the last rebuilding,
this makes for

d.(i+k) log(i+k) =
i

d.log(i+k) + d.?—log (i+k) <

2-28
6

per transaction. Because & is a positive constant this is 0O

d.log(i+k) + 4.

log (i+k)

a4
8

. d . \
is at most O(S-log N) . Note that the costs are charged only to insertions performed

log(i+k)) and this

in the subtree at h since its latest rebuilding. Hence, no costs can be charged
anymore to these transactions for rebalancing at the level of h, or at a lower
level. (Every internal node below h is also rebalanced by the rebuilding of the
subtree at h.) Only internal nodes at higher levels (and on the path from the root
to h) can charge more costs to these insertions. It follows that each insertion
can be charged at most once from every level. The depth of the guad-tree is at

2-6 2-6 log N

most log n = log N = ISE?E:S)' Because 0 is a constant < 1 this is O(log N).



1/3n ) . ' 2/3n

There still are d-1 coordinates of h left to determine. To find the proper

hz—value look only at the points with xl—coordinate bigger than hl. (The other

part of the set already is small enough and it is not important how this part

is split up by any further hyperplanes.) So we have a set of agT-n points to

1
split. Choose h2 such that EIT-n of these points have x2-coordinate smaller than
h2 and the other gi%-n points have x2—coordinate bigger than hy. We continue

with the portion of gi%-n points and choose the appropriate h3 value in the same

way, etc. By the time we have chosen the appropriate h value we are left

d-1

with a subset of E%T-n points. We can easily choose a hd value that splits this

\ ; 1 .
remaining subset in two parts of EFEERt points each, to end the process. So we

have obtained a point h = (hl' . hd) that splits the space in quadrants, each

containing at most I P points. E.g. in the two-dimensional case we would get

the following diagram.

1/3 n

h . .h=(hrh)
1/3 n 1 2

1/3 n

Using this theorem we can obtain

Corollary 2.2.1. Given a set of n points in d-dimensional space, there exists

+
a pseudo quad-tree for it with depth at most d 1log n.
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Because pseudo quad-trees are very much like ordinary quad-trees, all kinds of
queries that could be answered from quad-trees, can be answered using pseudo
quad-trees in a very similar way. In addition to the fact that in pseudo quad-trees
both insertions and deletions can be processed efficiently, as we will show
in section 2.3., it is also interesting to note that for a same set of points
we can also build pseudo quad-trees that have a smaller depth than the corresponding
quad-trees of the unmodified sort. This results from the fact that we may choose
every splitting point we like and that we can take the point that splits the set

in the smallest parts at any stage of the construction.

Theorem 2.2.1. Given a set of n points Pyr ooy pn in d-dimensional space, there
exists a splitting point h = (hl’ ooy hd) such that every guadrant induced by h

. 1
t t — i .
contains at most 351 n points

Choose h1 such that (up to a constant) E%T n points of the set have xl—coordinate

smaller than h1 and the other agi-n points have xl—coordinate bigger than hl'

Such a h1 exists because of our assumption that no more than a constant number
of points have a same coordinate. We have in fact constructed a hyperplane (of the

points with x1 coordinate equal to hl) that separates the set in one part with

. d . , . .
E%T-n points and another part with EFYERS points. E.g. in the two-dimensional case

it would be a line that divides the set in two subsets of 1/3n and 2/3n points,

respectively.
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Merely knowing that such an "optimal” pseudo quad-tree exists is not enough,

we also have to be able to build it efficiently.

Theorem 2.2.3. Given a set of n points in d-dimensional space, a pseudo quad-tree

of depth at most d+1log n for these points can be built in O0(d.n log n) time.

We will use the method of theorem 2.2.1. and corollary 2.2.1. Determining
the appropriate splitting point h in the proof of theorem 2.2.1. consists of
d times finding a ranked element of the set, with respect to some ordening,
which takes O(n) each time. Also the splitting of the set into the different
quadrants takes 0O(d.n). So building the first level of the pseudo quad-tree takes
O(d.n). The splitting of a quadrant that contains k points takes O(d.k) in
the same way. The quadrants together contain n points, hence the total cost for
building the second level of the tree is O(d.n) again. The same argument holds

d+1
for every level. Since the depth of the tree is at most log n, the bound follows.

[w]

It follows that we can build pseudo quad-trees of lesser depth than quad-trees
{(which could have depth 2log n) efficiently. In general the time needed for a
query on a quad-tree depends on the depth of the tree. Because these queries can
be performed on bseudo quad-trees in a similar way and pseudo quad-trees are of

lesser depth, in general, the query times will decrease.

2.3. Insertions and deletions in pseudo quad-trees.

The main objective for constructing pseudo quad-trees is the possibility to
handle both insertions and deletions efficiently. (See Overmars and van Leeuwen
[8] for another way of dynamizing pseudo quad-trees, based on a general approach
to dynamization.) As said earlier, efficient insertion and deletion routines
may be obtained only by weakening the strict optimality of the structure. In
the case of pseudo quad-trees, we cannot keep the depth of a pseudo quad-tree of

+
n points to d 1log n (as achieved by theorem 2.2.3.), but we can stay close to it.

Theorem 2.3.1. For any fixed 6 with 0 <& < d there is a way to perform N insertions

and deletions in an initially empty pseudo quad-tree such that its depth is always
d+1-%6
at most log n (where n is the current number of points in the pseudo quad-tree)



According to theorem 2.2.1. there exists a point h that divides the space
into quadrants containing at most E%T-n points each. Use h as the root of the
pseudo quad-tree and proceed. Again by theorem 2.2.1., in each quadrant there
exists a point that splits the k points in that quadrant into parts with at most
E%T-k points each. These points form the sons of h. Note that every subquadrant

contains at most ——i——a-n points. Repeatedly applying theorem 2.2.1. to the
(a+1)

subquadrants, and using the splitting points as internal nodes, gives us a pseudo
. d+1
quad-tree with depth at most log n.
This result is optimal, because we have the following

Theorem 2.2.2. There exists sets of n points pl, o1 P in d-dimensional

+1
space such that no pseudo quad-tree for it can have depth less than d log n.

Proof
1 1 2 2 n n
Take p1 = (Xl' ey xd), p2 = (Xl' ...i xd)i+i.., pn = (Xl’ ceny xd) such
that for every 1 € i <nand 1 £ 3 < d: xj < xj . Note that in such a cenfiguration

no two points have a same coordinate. When we walk from p1 to pn, we can change
quadrant at most d times. Therefore the points can be divided over at most d+1
quadrants. So there must be one quadrant that contains at least E%T-n points. The
points in this quadrant have the same property again as the set of points originally
chosen and therefore, by the same argument, there must be a subquadrant that
contains at least E%T-of these remaining points. Repeating this argument shows

that the pseudo quad-tree must have a depth of at least d+1log n. In the two-

dimensional case we have, for instance,
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d. (k+i-m) log(k+i-m) =
i+m

i-m k
—_ 3 — —_ - <
d'(i+m log(k+i-m) + it log(k+i-m)) <

+ -—
d. (Log (k+i-m) + (”d—l_)éd;lé) log (k+i-m))
& ‘
per transaction. Because k + i - m < N this is bounded by 0(6-log N) . By the

Same arguments as in the proof of the theorem 2.1.1. one can show that a

transaction is charged at at most once at each level. The depth of the pseudo
+1- a+1- 1
a 6log 1 61 og N

quad-tree is at most IBEY&+1—6)'

n < og N = Because & < d this

3
is O(log N). Hence the average time per transaction is bounded by O(g—-log2 N).

In general the average time needed for transactions is likely to be much smaller
3

than O(—g~-log2 N) because a) the transaction time depends only on the maximum

number of points in the set at any moment and b) when subtrees of internal

nodes expand or shrink equally fast, we have no need for any rebalancing at all.
From theorem 2.3.1. it follows that a pseudo quad-tree is a more powerful

structure then an ordinary quad-tree. Still there is one problem left, namely

the assumption, made in this section, that no more than a constant number of

points have a same coordinate. In the next section we shall remedy this deficiency

by defining an extended pseudo quad-tree (or EPQ-tree), which is able to handle

configurations without any such restriction.

3. EPQ-trees.

In section 2 we have developed a fully dynamic multi-dimensional data structure
based on a quad-tree, but we made the assumption that no more than a constant
number of points had a same coordinate. This was necessary because otherwise
it would not always be possible to choose a splitting point that splits the set
in the desired fractions. All points could, for instance, lie on a same vertical
line. In this case any splitting point would divide the points over at most
2 quadrants. (Theorem 2.2.1. makes essential use of the assumption that this
doesn't happen.) In this section we will show how pseudo quad-trees can be
modified to so-called EPQ-trees (Extended Pseudo Quad-trees), in order that we
can drop the restriction on the points of the set. We will show that queries
in an EPQ-tree are, in general, of the same efficiency as in ordinary (pseudo)

quad-trees. Also insertions and deletions can be processed fast in EPQ-trees.



11

3
and the average transaction time is bounded by %u log2 N.

The proof of this theorem is very similar to the proof of theorem 2.1.1.
To achieve the depth bound of d+1_610g n, we again put the stronger condition
on the tree, with k points of the set in its joint subtrees, every subtree
attached to it contains at most a:%:ak points. Note that the building method of
theorem 2.2.3. delivers a tree such that every internal node h with k points in
its joint subtrees has at most 5%? k points in each subtree attached to it.
Whe we want to insert a point p we first determine the subquadrant it is in. If
there was no point present we just insert it there. Otherwise, if there was a
point p' already, then we take the midpoint of pp* as a splitting point and
insert p and p' in the appropriate (different) sub-subquadrants. If we want to
delete a point p we locate it in the tree and throw it away. (This is possible
because it is a leaf.) It is very well possible that the insertion or deletion
disturbed the balance somewhere in the tree. This can only occur at a node on
the path from the inserted or deleted point towards the root of the tree. To
rebalance, take the highest internal node h that is out of balance and rebuild
the complete subtree at h using the method of theorem 2.2.3. To obtain an average
transaction time,let us again look at some internal node h with k points below it.
When the subtree at h is built, each subtree attached to h contains at most
E%T-k points of the set. By the time we need to rebalance at h, one of its
subtrees contains a:%:S'Of the points below h. Let this happen after there have
been i insertions and m deletions in the subtree at h (after h was built).

Then necessarily

STtz ok +i-m -
i- i+ 1 > (~—i——-— —1~0k
ar1-% a+1-6 ™ 2 ‘18 T a1 =
d-6 i+ ——1——-m > S k
a-6+1 d+1-6 T (d+1) (d+1-6)
hence because d- < 1 and 1 <1
en © a-8+1 a+1-6 ’
si+m> — O 4
(d+1) (a+1-6)

The total cost for the rebuilding at h is 4. (k+i-m) log(k+i-m). When we divide

these costs evenly over the i + m transactions in the subtree at h since its

last rebuilding this makes for
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have Xy coordinate equal to hl. These points, together with the points that had
some other coordinate equal to h, have to be divided over the appropriate
associated structures at h. Let p = (pl, serr Poroeeey pd) be such a point. The
associated structure p belongs to is fully determined by which coordinates

P, of p are equal to the corresponding coordinate hi of h. This can be tested in
0(d). After the splitting point h is located, which takes O(n), we can determine
for every point p to which quadrant or associated structure p belongs in 0(4)
steps. Hence the total cost for splitting the set at h is O(d.n). Splitting

the quadrants and building the associated structures continues in the same way.
Thus the building of every "level" in the total structure takes 0(d.n). One
easily sees that, after the splitting each quadrant contains at most one half of
the points. It is pessible that more than half of the points went into an associated
structure, but this can happen at most d times (everytime the dimension decreases
with at least one). Hence the depth of the total structure is at most log n + d.
Hence, building the structure takes at most O(d.n.(log n + d)). Because 4 is

fixed we have d < log n for n sufficiently large and the time bound is O0(d.n log n).

Clearly, in general we may be able to build far more optimal structures,
but when, for instance, all points lie on a vertical line, we can achieve nothing
better than a depth of log n + 4.

Performing queries on an EPQ-tree is a little more complex than it is for
pseudo quad-trees but often is of the same efficiency. We will demonstrate this

by the example of range queries. A ranae query asks for all points x = (Xl' ey

1 1 1 d d d
values of ai and bi (1 <i < d). when we want to perform a range query on an

xd) of the set such that a. < x <b and ... and a_ < x_. < b for specified

EPQ-tree we start at the root h of the tree. By comparing h with the range given

we determine the quadrants the range lies in. But instead of continuing in these
quadrants we also have to determine the associated subspaces the range cuts
"through", and we must perform a range query on each of these associated structures,
using as a range the restriction of the original range to the subspaces. When the
configurations satisfy the restriction for ordinary (pseudo) quad-trees then the
subspaces contain only constant number of points and therefore the time needed

for a query will be the same as for ordinary (pseudo) quad-trees. When the
configurations do not satisfy the restriction then also the search of the subspaces
takes time, but, because the number of subspaces to be searched is smaller then

the largest number of quadrants that might have to be searched, the total time
needed will be of the same order as it was for (pseudo) quad-trees (see e.q.

Bentley and Stanat [3]).
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3.1. The EPQ-structure.

A pseudo quad-tree is based on a way of splitting the d-dimensional space

to which the pointset belongs. This is done by choosing an arbitrary point h and
dividing the point set over the 2d quadrants defined by h. These quadrants
have hyperplanes in common. Using the original restriction that only a constant
number of points have a same coordinate, this is no problem, but when this
restriction is dropped, this must be changed. Therefore we cut the hyperplanes
off from the quadrants and treat them separately together with the "open" quadrants.
The d hyperplanes have (d-2)- dimensional subspaces in common. We again cut these
off from the hyperplanes. The resulting subspaces have (d-3)-dimensional subspaces
in common, we cut these off, and so on. In this way we get 2d quadrants, 4 (d-1)- |
dimensional subspaces, g (d-2) - dimensional subspaces, ..., <d§1> lines and
1 point. All these subspaces are associated to the internal node h and separately
organized as lower dimensional EPQ-trees. We define a 1-dimensional EPQ-tree
to be a (balanced) binary search tree and a O-dimensional EPQ-tree (a point h)
to be an integer that gives the number of points coinciding with h. The total
number of these associated structures excluding the ordinary quadrants is
(?) + (gj + ... + <d?1> + (g) = 2d—1. E.g., in the 2-dimensional case to all
internal nodes are added two lines and one point, i.e., two l1-dimensional

EPQ-trees and cne O-dimensional EPQ-tree.

4

NE SE sy NW 11/h 12/h h

SW SE

Theorem 3.1.1. Given a set of n points in d-dimensional space, one can build

an EPQ-tree of the points with depth < log n + 4 in O(d n log n).

As the splitting point we choose a point h = (hl' ... hd) (not necessarily

of the set) such that at most half of the points have x. coordinate strictly

1

less than h1 and at most half of the points have x, coordinate strictly greater

1
than hl' Such a point h exists but it may be that many points are left which
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{pl’ ..., P} take a point P, - Tt splits the set in two parts, according to its
n
first coordinate. The point P, is made the root of the k-d tree, the two subsets

will be its sons. E.g. in the two-dimensional case we get

In both subsets we take a point again and split the subsets w.r.t. the second
coordinate. Likewise we split w.r.t. the third coordinate etc. After splitting
w.r.t. the d 'th coordinate, we continue with the first coordinate again. In the

two-dimensional case we get, for instance,

P, o Pe
L ]
p8 612
» p9
L J
p
i p3 0p1 ‘13
P,
p.
> fll p15
Pig .
* +F7
P1g Pg Py Pig Py1P1yP13 Pyy Pyg

2
One can build optimal k-d trees (i.e. k-d trees of depth log n + 1) in O(n log n)
by taking for the splitting point the median with respect to the splitting

coordinate (cf. Bentley [1]). We assume again that no more than a constant number

of points have a same coordinate.
In this section we will arque that a similar theory as presented in section 2

and 3 for quad-trees, can be set up for k-d trees as well. We will show how to
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3.2. Insertion and deletion in EPQ-trees.

Although its structure may seem to be rather complex, an EPQ-tree can be
built efficiently and is recursive, i.e., every substructure is built in exactly
the same way as the total structure. We can therefore make it dynamic again,

with only a minor loss in optimality.

Theorem 3.2.1. For any fixed § with 0 < & < 1 there is a way to perform N insertions
and deletions in an initially empty EPQ-tree such that its depth is at most
2_(Slog n + d (where n is the current number of points in the EPQ-tree) and the

2
average transaction time is bounded by g-log N.

The proof is similar to the proof of theorem 2.3.1. When we want to insert
or delete a point p we first determine, by a search on the EPQ-tree, where (in
the main tree or an associated structure) P needs to be inserted or deleted, and
we perform the action. It is possible that somewhere at a node on the path from
P to the root (of the main tree) the balance is disturbed. Determine the highest
such node h on the search-path and rebuild the complete sub EPQ-tree of which h
is the root. This takes O(d.k log k) where k is the number of point below h.
In the same way as in the proof of theorem 2.3.1. we can show there must have been
0(4 k) transactions in the subtree at h since the last rebalancing at h. When we
charge the cost of rebuilding the subtree to the transactions after the latest
rebuilding, it makes for a cost of O(%-log n) < O(%-log N) per transaction. By
the same arguments as in the proof of theorem 2.3.1. one can show that each
transaction is charged only once from each level of the EPQ-tree. It follows

that the average transaction time is bounded by O(%-log2 N).

The extensions made in an EPQ~tree do not increase the storage required by
more than a constant fraction. Hence an EPQ-tree is a same powerful structure as
a pseudo quad-tree, but with the property that it can handle all sorts of

configurations, even the most degenerated ones.

4. k-4 trees.
Another well-known data-structure for multi-dimensional queries is the

k-d tree, presented by Bentley [1,2]. To build a k-d tree for a set of points
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Because the splitting points only split w.r.t. one coordinate one has no need for
splitting points, in practice, but only for the splitting coordinate of the points.
One can build an optimal pseudoc k-d tree, i.e., a pseudo k-d tree with depth
log n + 1, in O(n log n) in exactly the same way as we did for ordinary k-d trees,

except that we do not take the median itself as splitting point, but some point
between the median and its nearest neighbour (w.r.t. the splitting coordinate).
Hence, pseudo k-d trees have the same properties as ordinary k-d trees, but they
have the advantage that the points of the set have no splitting function (as in
the case of pseudo quad-trees). We will show that it is possible to delete points
from pseudo k-d trees efficiently. Willard [10] already developed a dynamization
of pseudo k-d trees (which he called k-d* trees), based on the decomposable nature
of the problems they are used for, by building and maintaining a forest of pseudo
k-d trees of different sizes (see also Overmars and van Leeuwen [8] ). This way
of dynamizing pseudo k-d trees has the disadvantage that the query time tends to
increase by a multiplicative factor of O(log n). It is possible to maintain a

pseudo k-d tree dynamically itself in the same way as we did for pseudo quad-trees.

Theorem 4.1.2. For any fixed & with 0 < & < 1 there is a way to perform N
insertions and deletions in an initially empty pseudo k-d tree such that its
depth is always at most 2_6109 n (where n is the current number of points in

1 2
the pseudo k-d tree) and the average transaction time is bounded by ~ log N.

6

The proof is completely analogous to the proof of theorem 2.3.1. with d = 1.

=}

Thus a pseudo k-d tree is an efficient, fully dynamic datastructure for queries
about multi-dimensional pointsets. But there is again one problem. To eliminate
the restriction that no more than a constant number of points had a same coordinate,
we have to extend the pseudo k-d tree in a way similar to the extension of the

pseudo quad-tree to EPQ-tree.

4.2. Extended pseudo k-d trees.

In section 3 we saw how to extend pseudo quad-trees so they can be used for
arbitrary configurations. In this subsection we will show that a similar technique
also applies to pseudo k-d trees. Again we add associated structures to each node.

For pseudo k-d trees this is much easier than for pseudo quad-trees. When we split
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perform insertions and deletions in so-called pseudo k-d trees, and extend

the structure to be able to handle all kinds of configurations.

4.1, Pseudo k-d trees.

As for quad-trees, one can perform insertions in k-d trees efficiently, with

only a little loss in optimality of the structure.

Theorem 4.1.1. For any fixed 6§ with 0 < § < 1 there is a way to perform N insertions
2-6

into an initially empty k-d tree such that its depth is always at most log n

(where n is the current number of points in the structure) and the average

transaction time is bounded by %—log2 N.

The proof is similar to the proof of theorem 2.1.1.

Performing deletions in k-d trees is just as hard as it is in quad-trees.
Therefore we again have to modify the structure. The so-called pseudo k-d tree
is similar to a pseudo quad-tree, being a k-d tree with arbitrary points as
internal nodes instead of points of the set. The points of the set occur only
at the leafs of a pseudo k-d tree. So, for instance, a 2-dimensional pseudo

k-d tree is shown in the following diagram. (p,, ..., are the points of the
1 Py

set and hl' ceey h8 are the arbitrary points.)
P .pl
.8 n
hg 6 P
h
p p 1
9 p
.h4 7 h3
h
v2
p -3
.Pe 3 Pa
»hS h7
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Theorem 4.2.2. For any fixed 6 with 0 < & < 1 there is a way to perform N insertions
and deletions in an initially empty extended pseudo k-d tree such that its depth

2-6
is at most logn +d + 1 (where n is the current number of points in the extended

1
pseudo k-d tree) and the average transaction time is bounded by g-loq2 N.

The proof is analogous to the proof of theorem 3.2.1. with d = 1.

The extension does not increase the storage required for the structure (which
is still O(n)). Hence, an extended pseudo k-d tree is a fully dynamic multi-
dimensional data structure, that can handle all kinds of configurations of points,

even the most degenerated ones.

5. Concluding remarks.

We have shown that quad-trees and k-d trees, both known efficient data
structures for multi-dimensional queries on static pointsets, can be transformed
into fully dynamic data structures with the same efficiency w.r.t. queries and
with very reasonable average insertion and deletion times. The dynamization was
obtained by a technique of "local rebuilding"”. This technique can also be used
in various other data structures, e.g. in range trees (see Lueker [6] and Willard
[11] ) and in structures for convex hulls, intersections of half spaces, and
maximal elements (Overmars and van Leeuwen [7] ).

The pseudo quad-tree we described has a smaller depth than the ordinary
quad-tree for a same set of points, which in general will lead to a decrease
in the query time needed. Finkel and Bentley [4] and later also Kersten and van
Emde Boas [5] have tried to achieve this for ordinary quad-trees by means of
"local optimization techniques". Similar techniques seem to be applicable to
pseudo quad-trees, but we have not investigated this further at the present time.

The average insertion and deletion times of O(log2 N) for pseudo quad-trees,
pseudo k-d trees and the extensions really are upper-bounds only because, when
we insert or delete random points, we will not often have to rebuild parts of

the tree. An expected time complexity of O(log N) per transaction seems reasonable,

but remains to be proved.
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the set at an internal node of a pseudo k-d tree we do this by choosing a hyper-
plane (with respect to one coordinate). So the only structure we have to add

to an internal node is the splitting hyperplane. An extended pseudo k-d tree is
a pseudo k-d tree in which every internal node h contains an extended pseudo
(k-1)-d tree of the points that lie on the splitting hyperplane of h. (We define
a l-dimensional pseudo k-d tree as an ordinary balanced binary search tree.)

In the 2-dimensional case we get, for instance,

Theorem 4.2.1. Given a set of n points in d-dimensional space, we can build an

extended pseudo k-d tree of depth at most logn +d + 1 in O(n log n).

Building an extended pseudo k-d tree works in exactly the same way as building
an ordinary pseudo k-d tree, the only difference being that, when there are more
points with the same median splitting coordinate, we build them in the associated
structure. One can easily see that this does not increase the building time.

Because we cannot go more than d times into an associated structure, the depth

will never exceed the bound of logn + d + 1.

By the same arguments as for EPQ-trees, the extension will, in general, not
increase the query time. Also the bounds on the insertion and deletion times

are not affected by the extension.
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