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Container-based cloud applications require sophisticated auto-scaling methods in order to operate

under different workload conditions. The choice of an auto-scaling method may significantly affect

important service quality parameters, such as response time and resource utilization. Current con-

tainer orchestration systems such as Kubernetes and cloud providers such as Amazon EC2 employ

auto-scaling rules with static thresholds and rely mainly on infrastructure-related monitoring

data, such as CPU and memory utilization. This paper presents a new dynamic multi-level (DM)

auto-scaling method with dynamically changing thresholds, which uses not only infrastructure, but

also application-level monitoring data. The new method is compared with seven existing auto-

scaling methods in different synthetic and real-world workload scenarios. Based on experimental

results, all eight auto-scaling methods are compared according to the response time and the num-

ber of instantiated containers. The results show that the proposed DM method has better overall

performance under varied amount of workloads than the other auto-scaling methods. Due to satis-

factory results, the proposed DM method is implemented in the SWITCH software engineering

system for time-critical cloud applications.
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1. INTRODUCTION

Cloud computing as a pay-per-use on-demand offer has become

a preferable solution for providing various types of CPU, mem-

ory and network-intensive applications over the Internet. These

include finite element analysis [1], video streaming, gaming,

early warning systems and various other Internet of Things

(IoT) time-critical applications.

Achieving favourable quality under the conditions of dynamic-

ally varying workload intensity is essential for such applications

in order to make them useful in a business context. Taherizadeh

et al. [2] studied a range of quality metrics that can be obtained

by advanced cloud monitoring systems and can be used to

achieve high operational quality. For example, applications’

quality can be quantitatively measured by response time and

resource utilization aspects.

As the workload becomes more dynamic and varies over

time, using the lightweight container-based virtualization can

support adaptation improvements on both application perform-

ance and resource utilization aspects faster and more efficiently

than using VMs [3]. This work uses container-based virtualiza-

tion technology, particularly Docker1 and CoreOS2 for the deliv-

ery of applications in the cloud. Despite container technologies’

potential, capabilities for auto-scaling cloud-based applications

[4–11] can still be significantly improved. Inadequate auto-

scaling that is unable to address changing workload intensity

over time results in either resource under-provisioning—in

which case the application suffers from low performance—or

resource over-provisioning—in which case the utilization of

allocated resources is low. Therefore, adaptation methods are

required for fine-grained auto-scaling in response to dynamic

fluctuations in workload at runtime.

Many existing auto-scaling mechanisms use rules with fixed

thresholds, which are almost exclusively based on infrastructure-

level metrics, such as CPU utilization. This includes auto-scaling

methods employed by commercial VM-based cloud providers

1Docker, https://www.docker.com/
2CoreOS, https://coreos.com/
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such as Microsoft Azure3 and Amazon EC2,4 and open-source

container orchestrators such as Kubernetes5 and OpenShift

Origin.6 Although such methods may be useful for some basic

types of cloud applications, their performance and resource util-

ization drops when various CPU, memory and network-

intensive time-critical applications need to be used [12].

The hypothesis of the present work is that the use of high-

level metrics and dynamically specifying thresholds for auto-

scaling rules may provide for more fine-grained reaction to

workload fluctuations, and thus it can improve application

performance and a higher level of resource utilization. The

goal of this paper is, therefore, to develop a new dynamic

auto-scaling method that automatically adjusts thresholds

depending on the execution environment status observed by

advanced multi-level monitoring systems. In this way, multi-

level monitoring information that includes both infrastructure

and application-specific metrics would help the service provi-

ders accomplish satisfactory adaptation mechanisms for the

various runtime conditions.

The main contribution of this paper can be summarized as

follows: (i) introducing a multi-level monitoring framework to

meet the whole spectrum of monitoring requirements for con-

tainerized self-adaptive applications, (ii) presenting a method

to define rules with dynamic thresholds which may be

employed for launching and terminating container instances

and (iii) proposing a fine-grained auto-scaling method based

on a set of adaptation rules with dynamic thresholds.

A fine-grained auto-scaling approach continuously allocates

the optimal amount of resources needed to ensure application

performance with neither resource over-provisioning nor under-

provisioning. Such an auto-scaling method should be able to sat-

isfy application performance requirements (e.g. response time

constraints), while optimizing the resource utilization in terms of

the number of container instances, as shown in Fig. 1.

With regard to different workload patterns, it is our aim to

evaluate the proposed auto-scaling method relating to its abil-

ity to support self-adaptive cloud-based applications with a

varied number of requests at runtime. Additionally, it is our

aim to compare the new method with seven other auto-

scaling methods which are predominantly used in current

software engineering practices.

The rest of the paper is organized as follows. Section 2 pre-

sents a review of related work focusing on the auto-scaling of

VM and container-based applications. Section 3 describes mon-

itoring requirements for containerized applications. Section 4

presents the architecture of the new adaptation method in detail,

which is followed by empirical evaluation in Section 5. Section

6 contains a critical discussion of the proposed approach, while

conclusions are presented in Section 7.

2. RELATED WORK

Cloud applications and systems with auto-scaling properties

have been discussed in experience studies and are contained

in various commercial solutions. This section presents a

review of important auto-scaling methods as summarized in

Table 1. The similarities and differences among the presented

auto-scaling approaches offer an opportunity for comprehen-

sive conception of the term ‘elasticity’ within cloud-based

applications. The proposed new method called dynamic

multi-level (DM) auto-scaling is also shown for completeness

in the last row of Table 1.

2.1. Experience studies

Al-Sharif et al. [4] presented a framework called ACCRS

(Autonomic Cloud Computing Resource Scaling) to provision

a sufficient number of VMs in order to meet the changing

resource needs of a cloud-based application. The proposed

adaptation approach uses a set of fixed thresholds for CPU,

memory, and bandwidth utilization to evaluate states of

resources at runtime. The workload can be identified as a hea-

vy or lightweight if any of these attributes violate the thresh-

olds. Their resource scaling framework applies a single-level

monitoring system which measures only infrastructure-level

metrics, and hence the service response time or application

throughput does not have any role in determining the auto-

scaling actions.

Islam et al. [5] developed proactive cloud resource manage-

ment in which linear regression and neural networks have

been applied to predict and satisfy future resource demands.

The proposed performance prediction model estimates upcom-

ing resource utilization (e.g. an aggregated percentage of CPU

usage of all running VM instances) at runtime and is capable

of launching additional VMs to maximize application per-

formance. In this approach, only CPU utilization is used to

train a prediction model, and their approach does not include

FIGURE 1. Fine-grained auto-scaling of a containerized application.

3Microsoft Azure, https://azure.microsoft.com/
4Amazon EC2, https://aws.amazon.com/ec2
5Kubernetes, https://kubernetes.io/
6OpenShift Origin, https://www.openshift.org/
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other types of resources, e.g. memory. The authors propose

using a 12-minute prediction interval, because the setup time

of VM instances in general is around 5–15 minutes. This low

rate of prediction is not suitable for continuously changing

workloads. Moreover, in such proactive methods [13–16], for

each workload change, it takes too long to converge towards a

stable driven performance model, and thus the application

may provide poor quality of service (QoS) to the users during

the first stages of the learning period.

Jamshidi et al. [6] presented a self-learning adaptation

technique called FQL4KE to perform scaling actions in terms

of increment or decrement in the number of VMs. FQL4KE

applies a fuzzy control method based on a reinforcement

learning algorithm. However, in some real-world environ-

ments, the number of situations is enormous, and therefore

the reinforcement learning procedure may take too long to

converge for any new change in the execution environment.

Therefore, using reinforcement learning may become imprac-

tical due to the time constraints imposed by time-critical

applications such as early warning systems.

Arabnejad et al. [7] proposed a fuzzy auto-scaling control-

ler which can be combined with two reinforcement learning

approaches: (i) fuzzy SARSA learning (FSL) and (ii) fuzzy

Q-learning (FQL). In this work, the monitoring system col-

lects required metrics such as response time, application

throughput and the number of VMs in order to feed the auto-

scaling controller. The auto-scaling controller automatically

scales the number of VMs for dynamic resource allocations

to react to workload fluctuations. It should be noted that the

proposed architecture is usable only for a specific kind of vir-

tualization platform called OpenStack. Moreover, the control-

ler has to select scaling actions among a limited number of

possible operations. That means if a drastic increase suddenly

appears in the workload intensity, the proposed auto-scaling

system is able to add just one or two VM instances that per-

haps cannot provide enough resources to maintain an accept-

able QoS.

Tsoumakos et al. [8] introduced a resource provisioning

mechanism called TIRAMOLA to identify the number of

VMs needed to satisfy user-defined objectives for a NoSQL

database cluster. The proposed approach combines Markov

decision process (MDP) with Q-learning as a reinforcement

learning technique. It continuously decides the most advanta-

geous state which can be reached at runtime, and hence iden-

tifies available actions in each state that can either add or

remove NoSQL nodes, or do nothing. The rationale of

TIRAMOLA is acting in a predictable manner when the regu-

lar workload pattern can be identified. Therefore, previously

unseen workloads are the main barrier to quick adaptation of

the entire system to address the performance objective of

TABLE 1. Overview of various auto-scaling approaches for cloud applications.

Paper Virtualization

technology

Infrastructure-

level metrics

Application-level

metrics

Technique Adjustment

ability

Al-Sharif et al. [4] VM CPU, memory

and bandwidth

Nothing Rule-based Static

Islam et al. [5] VM CPU Response time Linear regression and

neural networks

Static

Jamshidi et al. [6] VM CPU, memory, etc Response time and

application throughput

Reinforcement learning

(Q-Learning)

Dynamic

Arabnejad et al. [7] VM Nothing Response time and

application throughput

Fuzzy logic control and

reinforcement learning

Dynamic

Tsoumakos et al. [8] VM CPU, memory,

bandwidth, etc

Response time and

application throughput

Reinforcement learning

(Q-Learning)

Static

Gandhi et al. [9] VM CPU Response time and

application throughput

Queueing model and

Kalman filtering

Dynamic

Baresi et al. [10] Container CPU and memory Response time and

application throughput

Control theory Dynamic

Horizontal Pod Auto-scaling (HPA) used

by Kubernetes

Container CPU Nothing Rule-based Static

Target Tracking Scaling (TTS) and Step

Scaling (SS) used by Amazon

VM and

container

CPU and

bandwidth

Application throughput Rule-based Static

THRESHOLD (THRES) [11] VM and

container

CPU Nothing Rule-based Static

Multiple Policies (MP) used by Google VM CPU Application throughput Rule-based Static

DM Container CPU, memory

and bandwidth

Response time and

application throughput

Rule-based Dynamic
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interactive services. Moreover, TIRAMOLA is limited to the

elasticity of a certain type of application like NoSQL data-

bases. Besides this, the monitoring part should collect client-

side statistics in addition to server-side metrics (e.g. CPU,

memory and bandwidth, query throughput, etc.). To this end,

clients need to be modified so that each one can report its

own statistics, which is not a feasible solution for many use

cases.

Gandhi et al. [9] presented a model-driven auto-scaler

called dependable compute cloud (DC2) which proactively

tends to ensure application performance to meet user-

specified requirements. The proposed approach applies a

combination of a queueing model and the Kalman filter tech-

nique to produce estimations of the average service time at

runtime. The functionality of DC2 is focused on preventing

resource under-utilization, and hence it may cause an over-

provisioning issue during execution time. Furthermore, the

Kalman filter process is iteratively continued at every 10-s

monitoring interval, it needs some time (e.g. few minutes) to

calibrate the driven model based on the monitoring data for

every new state. Accordingly, the challenge in this regard is

that the accuracy of the proposed auto-scaling approach may

decrease for special workload patterns such as a new, drastic-

ally changing scenario over time.

Baresi et al. [10] presented an auto-scaling technique that

uses an adaptive discrete-time feedback controller to enable a

containerized application to dynamically scale resources, both

horizontally and vertically. Horizontal scaling means the add-

ition or removal of container instances, while vertical scaling

represents expanding or shrinking the amount of resources

allocated to a running container. In this work, a component

called ECoWare agent should be deployed in each VM. An

ECoWare agent is responsible for the collection of container-

specific monitoring data, such as containers’ utilization of

CPU, memory, and so on. This component is also in charge

of launching or terminating a container in the VM, or chan-

ging the resources allocated to a container.

2.2. Production rule-based solutions

Currently, many commercial cloud providers (e.g. Amazon

EC2 and Google Cloud Platform), as well as container man-

agement systems (e.g. Kubernetes), provide static rule-based

auto-scaling approaches which are not flexible enough to

adjust themselves to the runtime status of the execution envir-

onment. In this subsection, we explain some important rule-

based auto-scaling solutions for the purpose of comparison to

our proposed DM method. These solutions have been chosen

for comparison to our method since they are also rule-based

and considered as advanced auto-scaling approaches, and

which are used in production systems.

Our goal is to evaluate the proposed DM method through

a set of empirical experiments which are presented in Section 5.

Figure 2 complements Fig. 1, and presents two important qual-

ity properties which are analysed by the study and lead to the

definition of a fine-grained auto-scaling approach.

Generally, a typical practice in current commercial services

is to use fixed, single-level scaling rules. For example, it is

possible to specify a CPU-based auto-scaling policy that

more VMs/containers should be launched if the average CPU

utilization is over a fixed threshold such as 80%; while some

VMs/containers may be terminated if the average CPU util-

ization is less than 80%. These settings cannot be very useful

for special workload patterns such as drastically changing

scenarios. Moreover, they lead to a stable system at 80%

resource utilization, which means 20% of resources are

wasted, which is not desirable. One of the main open chal-

lenges and significant technical issues in proposing an auto-

scaling technique is to decide to what extent the adaptation

approach should be self-adjustable to changes in the execu-

tion environment.

In our proposed auto-scaling method, both infrastructure-

level metrics (CPU, memory, etc.) and application-specific

metrics (e.g. response time and application throughput) are

the factors that dynamically influence the adjustable, auto-

scaling rules. Our proposed method is dynamic because it

uses self-adaptive rules which are employed for launching

and terminating container instances. These rules are adjusted

according to the workload intensity at runtime. It means, in

our approach, conditions when containers are initiated or ter-

minated can be different and do not need to be predefined.

In the following, we proceed with an analysis of existing

auto-scaling methods which are widely used and serve as

means for comparison with the proposed DM method.

2.2.1. Kubernetes—horizontal pod auto-scaling

Kubernetes is a lightweight container management system

able to orchestrate containers and automatically provide hori-

zontal scalability of applications. In Kubernetes, a pod is a

group of one, or a small number of containers which are

tightly coupled together with a shared IP address and port

space. One pod simply represents a single instance of an

application that can be replicated, if more instances are

needed to process the growing workload. In Kubernetes, the

horizontal pod auto-scaling (HPA) approach [17] is a control

FIGURE 2. Important quality properties of cloud-based applications

and associated metrics.
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loop algorithm principally based on CPU utilization; no mat-

ter how workload intensity or application performance is

behaving. HPA (shown in Algorithm 1) is able to increase or

decrease the number of pods to maintain an average CPU

utilization across all pods close to a desired value, e.g.

Targetcpu= 80%.

A SUM_Cluster is the grouping function used to calculate

the total sum of the cluster. The period of the Kubernetes

auto-scaler is 30 s by default, which also can be changed. At

each iteration, Kubernetes’ controller increases or decreases

the number of pods according to NoP as the output of the

HPA algorithm.

2.2.2. AWS—target tracking scaling

The Amazon EC2 AWS platform offers a target tracking scal-

ing (TTS) [18] approach, which is able to provide dynamic

adjustments based on a target value for a specific metric. This

approach applies single-level auto-scaling rules to consider

either an infrastructure-level metric (e.g. average CPU utiliza-

tion) or an application-level parameter (e.g. application

throughput per instance). To this end, a predefined target

value must be set for a metric considered in the auto-scaling

rule. Moreover, the minimum and maximum number of

instances in the cluster should be specified. TTS adds or

removes application instances as required to keep the metric

at, or close to, the specified target value.

The default configuration in AWS is capable of scaling

based upon a metric with a 5-minute frequency. This fre-

quency can be changed to 1 minute—which is known as

detailed auto-scaling option. TTS is able to increase the clus-

ter capacity when the specified metric is above the target

value, or decrease the cluster size when the specified metric is

below the target value for a specified consecutive periods e.g.

even one interval. For a large cluster, the workload is spread

over a large number of instances. Adding a new instance or

removing a running instance causes less of a gap between the

target value and the actual metric data points. In contrast, for

a small cluster, adding or removing an instance may cause a

big gap between the target value and the actual metric data

points. Therefore, in addition to keeping the metric close to

the target value, TTS should also adjust itself to minimize

rapid fluctuations in the capacity of the cluster.

For example, a rule specified as ‘TTS1 (CPU, 80%, ±1)’

can be executed to keep the average CPU utilization of the

cluster at 80% by adding or removing one instance per scal-

ing action. Moreover, the rule ‘TTS’ can also be used to

adjust the number of instances by a percentage. For instance,

a rule named ‘TTS2 (CPU, 80%, ±20%)’ adds 20% more

instances or removes 20% fewer instances, if the conditions

are satisfied. For example, if four instances are currently run-

ning in the cluster, and the average CPU utilization goes

higher than 80% during the last minute, TTS2 determines that

0.8 instance (that is 20% of four instances) should be added.

In this case, TTS rounds up 0.8 and adds one instance. Or, if

in a certain condition, TTS2 decides to remove 1.5 instances,

TTS can round down and stop only one instance.

2.2.3. AWS—step scaling

The step scaling (SS) [19] auto-scaling approach can also be

applied in AWS. For instance, if the average CPU utilization

needs to be below 80%, it is possible to define different scal-

ing steps. Figure 3a shows the first part of an AWS auto-

scaling example called ‘SS1’ to expand the capacity of the

cluster, while the workload is increasing. In this example, one

instance will be added for a modest breach (from 80% to

85%), two more instances will be instantiated for somewhat

bigger breaches (from 85% to 95%), and four instances for

CPU utilization that exceeds 95%. The ranges of step adjust-

ments should not overlap or even have a gap. In this example,

SS1 periodically calculates the 1-minute aggregated value of

the average CPU utilization from all instances. Then, if this

value exceeds 80%, SS1 compares it against the upper and

lower bounds specified by various step adjustments to decide

which action to be performed.

FIGURE 3. An AWS auto-scaling example named SS1.

Algorithm 1 Kubernetes HPA algorithm.

Inputs:

Targetcpu: Targeted per-pod CPU resource usage

CLTP: Control Loop Time Period in seconds, e.g. 30 seconds

Outputs:

NoP: Number of pods to be running

do{

Cluster = [Pod1,…, PodN];

SumCpu=SUM_Cluster(cpu_usage_of_pod1,…,

cpu_usage_of_podN);

NoP =
é
ê
ê

ù
ú
ú

SumCPU

Targetcpu

wait(CLTP);

} while(true);
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Similarly, it is possible to define different steps to decrease

the number of instances running in the cluster. As an

example, Fig. 3b shows three steps to remove unnecessary

instances when the average CPU utilization falls below 50%.

In AWS, step scaling policies can be also defined on a per-

centage basis. That means to handle a growing workload at

runtime, SS is able to increase the number of instances by the

percentage of cluster size. Figure 4a shows the first part of an

AWS auto-scaling example called ‘SS2’ that includes two-

step adjustments to increase the number of instances in the

cluster by 20% and 30% of the cluster size at the respective

steps. If the resulting value is not an integer, SS2 rounds this

value. In this case, values greater than 1 are rounded down.

Values between 0 and 1 are rounded to 1. For example, if the

current number of instances in the cluster is four, adding 30%

of the cluster will result in the deployment of one more

instance. As such, 20% of four instances is 1.2 instances,

which is rounded down to 1 instance.

It is also possible to define a similar set of policies to

decrease the number of instances deployed in the cluster. In

this way, SS2 is capable of decreasing the current capacity of

the cluster by the specified percentage at different step adjust-

ments. Figure 4b shows a two-step auto-scaling to handle a

decreasing workload at runtime, and hence to reduce the

number of instances in the cluster by 20% and 30% of the

cluster size. The resulting values between 0 and −1 are

rounded to −1. Moreover, the resulting values less than −1

are rounded up. For example, −3.78 is rounded to −3.

2.2.4. THRESHOLD

THRES (Metric, UP%, DOWN%) [11] is a static single-level

auto-scaling method which horizontally adds a container

instance if an aggregated metric (e.g. average CPU or mem-

ory usage of the cluster) reaches the predefined UP% thresh-

old, and removes a container instance when it falls below the

predetermined DOWN% threshold for a default number of

successive intervals, e.g. two intervals. ‘THRES1 (CPU,

80%, 50%)’ is an example for such a static single-level auto-

scaling method.

The ‘THRES2 (CPU, 80%, 50%, RT, 190 ms)’ method

also can be defined as an example for a static multi-level

provisioning approach that is also able to consider the aver-

age response time (RT). To add a new container instance,

both the average resource utilization and response time

thresholds (in this use case, 80% and 190 ms, respectively)

should be reached for two consecutive intervals. To remove a

container from the cluster, the average CPU usage of the clus-

ter should be less than 50% during the last two periods.

2.2.5. Google—Multiple Policies

The Google Cloud Platform supports an auto-scaling mechan-

ism called ‘MP’ to use multiple auto-scaling policies individu-

ally at different levels [20]. For example, the MP auto-scaler

is able to consider two policies. One policy can be based upon

average CPU utilization of the cluster as an infrastructure-

level parameter. Another policy can be based on application

throughput of the load-balancer (ATLB) as an application-

level metric. In other words, each policy is a single-level rule

that is defined and based on only one metric. MP calculates

the number of necessary instances recommended by each pol-

icy, and then picks the policy that leaves the largest number of

instances in the cluster. This feature conservatively ensures

that the cluster always has enough capacity to handle the

workload.

In this way, a target value should be defined for each metric.

For example, ‘MP (CPU = 80%, ATLB = 80%)’ is a two-

policy method which continuously collects the average CPU

utilization of the cluster, as well as the load-balancing serving

capacity. In this example, setting a 0.8 target usage tells the

MP auto-scaler to maintain an average CPU utilization of

80% in the cluster. Moreover, MP will scale the cluster to

maintain 80% of the load-balancing serving capacity. For

instance, if the maximum load-balancing serving capacity is

defined as 100 RPS (requests per second) per instance, MP

will add or remove instances from the cluster to maintain

80% of the serving capacity, or 80 RPS per instance.

3. MONITORING CONTAINERIZED

APPLICATIONS

In comparison to traditional monitoring approaches for data-

centres, an advanced cloud monitoring system should be able

to monitor various metrics at different levels, including con-

tainer and application-level metrics, instead of only VM-level

metrics [21–24]. When designing a new auto-scaling

approach, our aim is to rely on such advanced multi-level

monitoring systems as described in the following subsections.

3.1. Container-level monitoring

If the system applies container-based virtualization instead of

VMs to use a lightweight mechanism for deploying and scal-

ing services in the cloud, container-level monitoring becomes

compulsory. A container-level monitoring system is able to

FIGURE 4. An AWS auto-scaling example named SS2.
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monitor containers and display runtime value of key attributes

including CPU, memory, and network traffic usage of each

container instances. As listed in Table 2, there are different

tools offered specifically for the purpose of monitoring con-

tainers and expose value of characteristics for a given con-

tainer at runtime.

cAdvisor7 is a system that measures, processes, aggregates

and shows monitoring data obtained from running containers.

This monitoring data can be applied as an awareness of the

performance features and resource usage of containers over

time. cAdvisor only displays monitoring information mea-

sured during the last 60 s. However, it is capable of storing

the data in an external Time Series Database (TSDB) such as

InfluxDB8 which supports long-term storage and analysis.

Besides that, Grafana9 is a Web interface to visualize large-

scale monitoring data. Using InfluxDB and Grafana on top of

the cAdvisor monitoring system could significantly improve

visualizing the monitored metrics in understandable charts for

different time periods.

Prometheus10 is a monitoring tool which includes a TSDB.

It is able to gather monitoring metrics at different intervals,

show the measurements, investigate rule expressions, and

trigger alerts when the system commences to experience

abnormal situation. However cAdvisor is considered as the

easier monitoring system to be used in comparison to

Prometheus, it has restrictions with alert management. It

should be noted that both may not be able to appropriately

offer turnkey scalability to handle large number of containers.

DUCP is a commercial solution to monitor, deploy and

manage distributed applications using Docker. Web-based

user interface and high scalability are the notable characteris-

tics of this container management solution.

Scout11 is also a container monitoring system which has a

Web interface management console, and is capable of storing

measured values taken during at most 30 days. This monitoring

solution supports alerting based on predetermined thresholds.

3.2. Application-level monitoring

Application-level monitoring, which is an open research chal-

lenge yet, measures parameters that present information about

the situation of an application and its performance; such as

response time or application throughput. Table 3 shows a list

of cloud monitoring systems which are able to measure

application-specific metrics.

Zenoss [25] is an agent-less monitoring platform based on

the SNMP protocol. This tool has an open architecture to

help consumers customize it based on their monitoring

requirements. However, it has a limited open-source version

and the full version for monitoring requires payment, so its

applicability in research is undermined.

Ganglia [26] is a scalable monitoring system for high-

performance computing environments such as clusters and

grids. This tool is generally designed to collect infrastructure-

related monitoring data about machines in clusters and display

this information as a series of graphs in a web-based interface.

It is not suitable for bulk data transfer due to the lack of conges-

tion avoidance and windowed flow control in Ganglia.

Zabbix [27] which is an agent-based monitoring solution

supports an automated alerting ability to trigger if a predeter-

mined condition happens. Zabbix is mainly implemented to

monitor network services and network parameters. As a dis-

advantage to be considered, the auto-discovery characteristic

of this monitoring system can be inefficient [28]. For example

for Zabbix, sometimes it may take almost five minutes to dis-

cover that a host is no longer running in the environment.

This restriction in time may be a serious issue for any time-

critical self-adaptation scenario.

Lattice [29], as a non-intrusive monitoring system, is mainly

implemented for monitoring highly dynamic cloud-based environ-

ments, consisting of a large number of resources. The functional-

ities of this monitoring system are the abilities for the distribution

and collection of monitoring data via either UDP protocol or

multicast addresses. Therefore, the Lattice platform is not meant

for automated alerting, visualization and evaluation [30].

JCatascopia [31] is a scalable monitoring platform which is

capable of monitoring federated clouds. This open-source moni-

toring tool is designed for server/agent architecture. Monitoring

Agents are able to measure whether infrastructure-specific

TABLE 2. Overview of container-level monitoring tools.

Tool Open Source License Scalability Alerting TSDB GUI

cAdvisor Yes Apache 2 No No No Yes

cAdvisorIGa Yes Mixed Yes No Yes Yes

Prometheus Yes Apache 2 No Yes Yes Yes

DUCPb Yes Commercial Yes Yes No Yes

Scout Yes Commercial No Yes Yes Yes

aUsing three tools together: cAdvisor (Apache 2) + InfluxDB (MIT) + Grafana (Apache 2).
bDocker Universal Control Plane (DUCP), https://docs.docker.com/ucp/

7cAdvisor, https://github.com/google/cadvisor
8InfluxDB, https://influxdata.com/time-series-platform/influxdb/
9Grafana, http://grafana.org/
10Prometheues, https://prometheus.io/
11Scout, https://scoutapp.com/
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parameters or application-level metrics, and then they send the

monitoring data to a central entity called a Monitoring Server.

3.3. The SWITCH monitoring system

The SWITCH project12 provides a software engineering plat-

form for time-critical cloud applications [12]. In order to

develop a monitoring system for SWITCH, JCatascopia has

been chosen as the baseline technology and was extended to be

able to measure container-level metrics. Each container consists

of two parts: an application instance and a Monitoring Agent.

Monitoring Agents are the actual components that collect indi-

vidual metrics’ values. Since JCatascopia is written in Java,

each container which includes a Monitoring Agent requires

some packages and a certain amount of memory for a Java vir-

tual machine (JVM) even if the monitored application running

alongside the Monitoring Agent in the container is not pro-

grammed in Java. Therefore, Monitoring Agents in the

SWITCH project have been implemented through the StatsD

protocol13 available for many programming languages such as

C/C++ and Python. Accordingly in the SWITCH platform, a

running container includes: (i) a service as application instance

and (ii) a StatsD client as a Monitoring Agent.

The functioning of the SWITCH monitoring system is illu-

strated in Fig. 5.

In Fig. 5, two different container images ( and ) have

been pulled from a local registry, and each one provides a dif-

ferent scalable service, for example Service X and Service Y.

Therefore, there are two different service clusters in this fig-

ure. Starting a new container instance of a given service

means that the service scales up, and stopping it means that it

scales down. Once a new container is instantiated, it is allo-

cated to a logical cluster. The SWITCH monitoring system

keeps track of these logical clusters for every running service.

For example, Fig. 5 shows that Cluster 1 hosts three instances

of Service X and Cluster 2 hosts two instances of Service Y.

The monitoring data streams coming from Monitoring Agents

to the Monitoring Server via the StatsD protocol are stored in a

Cassandra TSDB for the storage of series of time-ordered data

points. The SWITCH web-based interactive development envir-

onment (IDE) allows all external entities to access the

monitoring information stored in the TSDB in a unified way,

via prepared REST-based web services, APIs and diagrams.

For the SWITCH platform, a container image ( as

shown in Fig. 5) has been built to include the following three

entities: (i) a StatsD server as Monitoring Server, (ii) TSDB

and (iii) the SWITCH web-based IDE. This container image

is open-source and publically released on Docker Hub [32]. It

should be noted that it is also possible to have individual con-

tainer images for every one of these three entities. The

SWITCH monitoring system is freely available to researchers

at GitHub [33] under an Apache 2 license.

TABLE 3. Overview of application-level monitoring tools.

Tool Open Source License Scalability Alerting TSDB GUI

Zenoss Yes GPL Yes Yes Yes Yes

Ganglia Yes BSD Yes No Yes Yes

Zabbix Yes GPL Yes Yes Yes Yes

Lattice Yes Apache 2 Yes No No No

JCatascopia Yes Apache 2 Yes No Yes Yes

FIGURE 5. The SWITCH monitoring system.

12The SWITCH project, http://www.switchproject.eu/
13The StatsD protocol, https://github.com/etsy/statsd/wiki
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A Docker registry which can be installed locally is used to

store Docker images. Using a local registry makes it faster to

pull container images and run container instances of services

across cluster nodes. A local Docker registry significantly

reduces deployment latency and network overhead when run-

ning containers across the spread of host machines in a

region. Moreover, it may be possible to design deployment

strategies that make use of cached container images, thus, fur-

ther improving deployment time.

4. METHOD AND ARCHITECTURE

This study introduces a DM auto-scaling method which is

included together with the SWITCH monitoring system in a

functional architecture (shown in Fig. 6) for adaptive contain-

erized applications.

In our work, we consider that each host in a cluster is able to

include at most one container instance per service, while one

host can belong to different clusters at the same time. That

means more than one container instance can be deployed on

one host, but nevertheless they should provide different ser-

vices. This situation is a realistic case of an operational environ-

ment where different types of services should be scaled. When

a specific service is instantiated at the host, it exposes its inter-

faces at specific port numbers, which must not clash with the

port numbers of other instantiated services. Then, it makes

sense to provide an internal, so-called vertical elasticity mech-

anism for the allocation of CPU and memory resources to dif-

ferent services within the same host machine, but, it would

make no sense to instantiate additional instances of the same

service on the same host machine.

Generally, if two or more containers run on a host

machine, by default all containers will get the same propor-

tion of CPU cycles. In this situation, if tasks in one container

are idle, other containers are able to use the leftover CPU

cycles. Moreover, it is possible to modify identical propor-

tions assigned to running containers by using a relative

weighting mechanism. In such a manner, when all containers

running on a host machine attempt to use 100% of the CPU

time, the relative weights give each container access to a

defined proportion of the host machine’s CPU cycles (since

CPU cycles are limited).

When enough CPU cycles are available, all containers run-

ning on a host machine use as much CPU as they need

regardless of the assigned weights. However, there is no guar-

antee that each container will have a specific amount of CPU

time at runtime. Because the actual amount of CPU cycles

allocated to each container instance will vary depending on

the number of containers running on the same host machine

and the relative CPU-share settings assigned to containers. To

ensure that no container can starve out other containers on a

single host machine, if a running container includes a CPU-

bound service, other containers that will be deployed on that

machine should not be identified as computationally intensive

services. This principle has been adopted also for memory-

intensive applications. In this work, all containers have the

same weight to gain access to the CPU cycles and the same

limit at the use of memory. This makes it an appropriate case

of so-called horizontal scaling.

FIGURE 6. Auto-scaling architecture for adaptive container-based applications.
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The proposed architecture includes the following compo-

nents: Load-Balancer, Monitoring Agent, Monitoring Server,

TSDB, Alarm-Trigger and Self-Adapter. These are explained

in detail in the following subsections.

4.1. Load-Balancer

The Load-Balancer (e.g. HAProxy) provides high-availability

support for containerized applications by spreading requests

across multiple container instances.

4.2. Monitoring Agent, Monitoring Server, TSDB and

the SWITCH Web-based IDE

The monitoring system is able to measure both container-

level metrics (e.g. CPU and memory usage of containers) and

application-level parameters (e.g. average response time and

throughput of the application). Therefore, two types of Monitor-

ing Agents which measure container-level and application-level

metrics are included in the architecture.

The application-level Monitoring Agent is in charge of moni-

toring the Load-Balancer. Application-level metrics which are

applied in the context of the proposed auto-scaling method are

AvgRT (average response time to reply to a user’s request), AT

(application throughput which means the average number of

requests per second processed by one container instance), and

cont (number of container instances behind the Load-Balancer).

The distributed nature of our developed agent-based monitor-

ing system supports a fully interoperable, lightweight architec-

ture which quenches the runtime overhead of the whole system

to a number of Monitoring Agents. A Monitoring Agent which

is running alongside the application in a container collects indi-

vidual metrics and aggregates the measured values to be trans-

mitted to the Monitoring Server. The Monitoring Server is a

component that receives measured metrics from the Monitoring

Agents. This monitoring system is able to store measured

values in the Apache Cassandra server as TSDB.

When a container is launched, the Monitoring Agent will

automatically send the Monitoring Server a message to regis-

ter itself as a new metric stream, and then it will start collect-

ing metrics and continuously forward the measured values to

the Monitoring Server.

The SWITCH web-based IDE is also used to set primitive

thresholds needed for adaptation policies. It is also a key tool

used by software engineers to analyse events in a dynamically

changing cloud environment.

4.3. Alarm-Trigger

The Alarm-Trigger is a rule-based component which checks

the incoming monitoring data and notifies the Self-Adapter

when the system is going to experience abnormal behaviour.

The Alarm-Trigger continuously processes two functions.

One function named checking for container instantiation

(CFCI) has been defined in the Alarm-Trigger to investigate

if it is needed to start new container instances. Moreover,

another function named checking for container termination

(CFCT) has been defined in the Alarm-Trigger to evaluate if

one of the running container instances can be terminated

without any application performance degradation.

An important application-level metric which is used in the

operation of the Alarm-Trigger is the service response time. Here

we discuss how the threshold (Tres) for this metric should be set.

In order to make the system avoid any performance drop, the

value of Tres should be set more than the usual time to process a

single job without any issue when the system is not overloaded.

In the case that Tres is set very close to the value of the usual time

to process a single job, the auto-scaling method may lead to

unnecessary changes in the number of running container instances,

whereas the system is currently able to provide users an appro-

priate performance without any threat. Also, if Tres is set too

much bigger than the value of the usual time to process a single

job, the auto-scaling method will be less sensitive to application

performance and more dependent on infrastructure utilization.

Some cloud resource management systems [34–39] use the

value of 80% as the primitive threshold for the utilization of

CPU and memory (TCPU and Tmem). If the value of these two

thresholds is set closer to 100%, then the auto-scaling method

has no chance to react to runtime variations in the workload

before a performance issue arises. If the value of these two

thresholds is set less than 80%, then this may lead to an over-

provisioning problem which wastes costly resources. If the

workload trend is very even and predictable, these two thresh-

olds can be pushed higher than 80%.

According to CFCI (shown in Function 1), if one of average

CPU or memory usage of the cluster (AvgCpu or AvgMem)

exceeds the associated threshold (TCPU or Tmem, 80%) and the

average response time (AvgRT) is over Tres, the number of con-

tainers in the cluster needs to increase on demand. Involving the

average response time in this function tends to prevent ~20%
(100−TCPU or 100−Tmem) resources waste. It means there is the

possibility that the system may work at even 100% resource util-

ization without launching more containers, because the average

response time is thoroughly satisfying, or in other words, below

the Tres. In CFCI, cpu_usage_of_container and memory_usa-

ge_of_container numbered from 1 to N are the CPU and mem-

ory usage of each individual container in the cluster. For

example, cpu_usage_of_container1 is the CPU usage of the first

container, cpu_usage_of_container2 is the CPU usage of the

second container, and so forth. AVG_Cluster is the grouping

operator applied to calculate the average CPU and memory

usage of the cluster nominated as AvgCpu and AvgMem.

CFCT (shown in Function 2) has been specified to check

the feasibility of decreasing the number of running container

instances, without any QoS degradation perceived by users.

In order to improve the stability of the system and to make

sure that the system offers a favourable service quality to

end-users, it is assumed that if a container is initiated and
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added to the cluster, there should not be any container termin-

ation during the next two adaptation intervals, even if the

average CPU or memory usage of the cluster is quite low.

The Alarm-Trigger component is able to fetch a YAML file

which includes all the inputs mentioned in two aforementioned

functions (CFCI and CFCT). This YAML file is being exposed

by the SWITCH Web-based IDE via an API. Instructions for

the utilization of our implemented Alarm-Trigger component

are explained at GitHub [40] published under the Apache 2

license as a part of the SWITCH project software.

4.4. Self-Adapter

The Self-Adapter is called by the Alarm-Trigger and includes

two functions which are responsible for proposing adaptation

actions. One function named CI (Container Instantiation) is to

initiate new container instances to improve the performance

of the application. Another function named CT (Container

Termination) is in charge of possibly terminating container

instances to avoid resource over-provisioning.

The pseudocode of the proposed CI function, defined in

the Self-Adapter, is illustrated in Function 3.

CI function starts predicting the average CPU and memory

usage of the cluster with regard to ‘current number of contain-

ers,’ ‘current average resource usage of the cluster,’ and ‘the

amount of increase in the rate of throughput’ if one or more

new container instance would be added to the cluster. Based on

predicted values (PCPU and Pmem) for the average CPU and

memory usage of the cluster, the number of new containers that

need to be added to the cluster is calculated. If more than one

container instance is needed to be initiated, the Self-Adapter

runs all required containers concurrently. Therefore, the

Function 1 CFCI defined in Alarm-Trigger

Inputs:

Tcpu: Threshold for the average CPU usage of the cluster

Tmem: Threshold for the average memory usage of the cluster

Tres: Threshold for the average response time

Outputs:

If it is needed to notify the Self-Adapter in order to prevent

under-provisioning

Cluster=[Container1,…, ContainerN]

AvgCpu=AVG_Cluster(cpu_usage_of_container1,…,

cpu_usage_of_containerN);

AvgMem=AVG_Cluster(memory_usage_of_container1,…,

memory_usage_of_containerN);

if (((AvgCpu>=Tcpu) or (AvgMem>=Tmem)) and

(AvgRT>Tres)) then call ContainerInitiation(); // call CI() to

start new containers

Function 2 CFCT defined in Alarm-Trigger

Inputs:

Tcpu: Threshold for the average CPU usage of the cluster

Tmem: Threshold for the average memory usage of the cluster

Outputs:

If it is needed to notify the Self-Adapter in order to prevent

over-provisioning

Cluster=[Container1,…, ContainerN]

AvgCpu=AVG_Cluster(cpu_usage_of_container1,…,

cpu_usage_of_containerN);

AvgMem=AVG_Cluster(memory_usage_of_container1,…,

memory_usage_of_containerN);

if (((AvgCpu<Tcpu) or (AvgMem<Tmem)) and (no container

addition in the last two intervals)) then call

ContainerTermination(); // call CT() to stop one of

containers if possible

Function 3 CI defined in Self-Adapter

Inputs:

Tcpu: Threshold for the average CPU usage of the cluster

Tmem: Threshold for the average memory usage of the cluster

AvgCpu: Current average CPU usage of the cluster

AvgMem: Current average memory usage of the cluster

ATt: Application throughput in the current interval per

container

ATt-1: Application throughput in the last interval per container

ATt-2: Application throughput in the second last interval per

container

cont: Current number of running container instances in the

cluster

Outputs:

Launching new container instance(s)

inc1← 0;

if (AvgCpu>Tcpu) then {

do {

inc1++;

Pcpu←
( )æ

è

ççççç

ö

ø

÷÷÷÷÷

´ ´ é
ëê
´ + / ù

ûú

+
-

-
-

cont AvgCpu

cont inc

2 3

1

ATt

ATt

ATt

ATt1

1

2
;

} while (Pcpu>Tcpu);

} // end of if

inc2← 0;

if (AvgMem>Tmem) then {

do {

inc2++;

Pmem←
( )æ

è

ççççç

ö

ø

÷÷÷÷÷

´ ´ é
ëê
´ + / ù

ûú

+
-

-
-

cont AvgMem

cont inc

2 3

2

ATt

ATt

ATt

ATt1

1

2
;

} while (Pmem>Tmem);

} // end of if

inc← max(inc1, inc2);

initiate_new_containers(inc); // start ‘inc’ new container(s)
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adaptation interval (the period when the next adaptation action

happens) should be set longer than a container instance’s start-

up time. In this way, if any auto-scaling event takes place, the

whole system is able to continue operating properly without

losing control over running container instances.

Here we explain how the termination of non-required con-

tainers for a CPU-intensive application happens. Let us sup-

pose that the number of containers in the cluster is two. If the

average CPU utilization of the cluster that includes these two

containers is less than ( ) a-T

2

cpu
, one of the running contain-

ers should be terminated. In this formula, α is a constant with

values between 0% and 10%, which helps the auto-scaling

method conservatively make sure that the container termin-

ation will not result in an unstable situation.

Experimenting with equal workload density and computa-

tional requirements, an up to 10% difference in the average

CPU and memory usage of the cluster (AvgCpu or AvgMem)

can still be observed. This difference is a consequence of run-

time variations in running conditions that are out of the appli-

cation providers’ control. Due to this rationale, we have set

the maximum value for a at 10%.

A value of α closer to 0% may fail to provide the expected

robustness of auto-scaling methodology. Since due to minor

fluctuations in the average CPU utilization of around ( )T

2

cpu
, the

system may stop a container instance at that moment, and after-

wards shortly would start a new one again. A value α closer to

10% may decrease the efficiency of the adaptation method

because, in this case, unnecessary container instances generally

have less possibility of being eliminated from the cluster.

Consequently, a higher value of a would result in longer peri-

ods of over-provisioned resources. For the experimentation in

this study, we have set the value of α to 5%, which causes nei-

ther too frequent changes in the number of running container

instances, nor excessive over-provisioning of resources.

Therefore, given that two containers are running in the clus-

ter, if the average CPU usage of the cluster is less than ( ) -80

2
=5 35 percent, it is possible to stop one of the running con-

tainers. This is so because with the current workload density

after the container termination, the average CPU utilization of the

cluster would be at most ~70%, which is less than Tcpu at 80%.

In similar fashion, it was assumed that if there are three running

containers and the average CPU usage of the cluster is under

( ) a-( - ) * T3 1

3

cpu
, one of the containers could be stopped, as in

this way there would not be any performance issue.

In general, it was presumed if the current number of run-

ning containers in the cluster is cont, and the average CPU

utilization of the cluster is below bCPU defined by Equation

(1), it is possible to terminate one of the running containers in

the cluster without compromising the QoS of the application.

Moreover, for a memory-intensive application, bmem, which

is entirely similar to bCPU, helps to define the possibility of

decreasing the number of container instances in the cluster if

needed upon the memory usage, as Equation (2).

b a=
æ

è
ççç
( - ) * ö

ø
÷÷÷÷
- ( )

Tcont 1

cont
1CPU

cpu

b a=
æ

è
ççç
( - ) * ö

ø
÷÷÷ - ( )

Tcont 1

cont
2mem

mem

The pseudocode of the proposed CT function, defined in

the Self-Adapter, called by the Alarm-Trigger, is presented in

Function 4. According to the average CPU and memory

usage of the cluster, this function determines if it is necessary

to decrease the number of containers running in the cluster.

The auto-scaling method ensures the application QoS by

terminating at most one container in each adaptation interval.

In this way, after any container termination, the proposed CT

function certainly offers acceptable responses within continu-

ously changing, uncertain environments at runtime. For

example, this strategy can be used to handle on-off workload

scenarios in which peak spikes occur periodically in short

time intervals. An example of an on-off workload scenario is

shown in Fig. 7.

In these types of workload scenarios, terminating most of the

running containers at once when the number of requests

instantly decreases a lot is not an appropriate adaptation action

because more container instances running into the pool of

resources will be necessary very soon. This non-conservative

strategy may result in too many container terminations and

instantiations with the consequent QoS degradation. In other

words, the shutdown and start-up times of containers should be

taken into account during on/off workload scenarios.

Function 4 CT defined in Self-Adapter

Inputs:

Tcpu: Threshold for the average CPU usage of the cluster

Tmem: Threshold for the average memory usage of the cluster

AvgCpu: Current average CPU usage of the cluster

AvgMem: Current average memory usage of the cluster

cont: Current number of running container instances in the

cluster

α: Conservative constant to avoid an unstable situation

Outputs:

Terminating an unnecessary container instance if it is

possible

dec1← 0;

bCPU ← Calculate(Tcpu, cont, α);

if (AvgCpu<bCPU) then dec1← 1;

dec2← 0;

bmem ← Calculate(Tmem, cont, α);

if (AvgMem<bmem) then dec2← 1;

dec← min(dec1, dec2);

if (dec==1) then terminate_one_container(); // Stop one

container
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5. RESULTS

In our empirical evaluation, the httperf14 tool has been used

to develop a load generator in order to produce various work-

load patterns for different analyses. To this end, five different

workload scenarios have been inspected, as shown in Fig. 8.

Each workload pattern examined in this work represents

different type of applications. A slowly rising/falling pattern

may imply incoming task requests sent to an e-learning sys-

tem in which daytime includes more traffic than at night. A

drastically changing pattern may represent a heavy workload

to be processed by a broadcasting news channel in which a

video or some news suddenly spreads in the social media

world. This type of system generally has a short active peri-

od, after which the service can be provided at the lowest ser-

vice level. Applications such as batch processing systems

accomplish workload scenarios similar to the on-off workload

pattern in which requests tend to be accumulated around

batch runs regularly over short periods of time. A gently

shaking pattern indicates predictable environments such as

household settings that allow application providers to specify

detailed requirements, and then allocate the exact amount of

resources to the system.

Our proposed method called the ‘DM’ auto-scaling approach

has been compared with different rule-based provisioning pol-

icies explained in Section 2.2. These approaches include HPA

(Horizontal Pod Auto-scaling), TTS1 (Target Tracking Scaling—

first method), TTS2 (Target Tracking Scaling—second method),

SS1 (Step Scaling—first method), SS2 (Step Scaling—second

method), THRES1 (THRESHOLD—first method) and THRES2

(THRESHOLD—second method). We kept the implementation

of all these auto-scaling approaches and experimental data

available at GitHub [41]. However, we did not implement MP,

as this provisioning policy is not revealed clearly in terms of

technical feasibility by Google Cloud Platform.

Each experiment has been repeated for five iterations to

find the average values of significant properties and to verify

the achieved results and hence to reach a greater validity of

results. Therefore, the reported results are mean values over

five runs for each experiment.

In every experiment, each auto-scaling method has been

investigated primarily based on the 95th percentile of the

response time, the median response time, average number of

containers, average CPU usage and average memory usage.

Since the workload trends examined in our experiments are

considered neither even nor predictable, the thresholds TCPU and

Tmem are set to 80%. Hence, the DM method will have enough

chance to react to runtime variations in the workload because these

thresholds are not very close to 100%. This fact will also prevent

an over-provisioning problem because these thresholds are not less

than 80%. The constant α is set to the value of 5 which can pre-

vent not only too frequent changes in the number of running con-

tainer instances, but also too much over-provisioning of resources

according to the rationale explained in Section 4.4.

A finite element analysis application useful for solving engin-

eering and mathematical physics problems has been developed

and containerized to be used in this work as a use case [1]. In

our use case, a single job usually takes 180ms with our experi-

mental setup in situations where the system is not overloaded.

For the DM method, in order to avoid performance drop, the

response time threshold (Tres) has been set to 190ms that is nei-

ther very close to the value of usual time to process a single job

(180ms) nor much bigger than this value. Therefore, the DM

auto-scaling method will be responsive to changes in not only

infrastructure utilization, but also application response time

because Tres is not much bigger than the usual time to process a

single job.

FIGURE 7. On-off workload pattern.

FIGURE 8. Experiment design to compare the new DM method to

existing auto-scaling methods.

14https://github.com/httperf/httperf
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When it comes to response time guarantees, determining the

difference between auto-scaling methods in capability of pro-

viding response time under different workload patterns is con-

sidered informative. To this end, as shown in Table 4, DM was

compared with all other methods using paired Student’s t-tests

with respect to all response time values over the experimental

period for each workload pattern (n = 145). The 95th percentile

value of response time, shown in Table 5, is an indicator of the

auto-scaling methods’ ability to deliver QoS according to a ser-

vice level agreement (SLA). The median response time

achieved by all investigated auto-scaling methods in every

workload pattern is shown in Table 6.

Table 7 presents the resource utilization of all auto-scaling

methods for all workload patterns in terms of average number of

containers, average CPU usage and average memory usage. In

this table, there is a column called resource utilization function

which equals to the average number of containers multiplied by

the 95th percentile of the response time achieved by auto-

scaling methods for each workload pattern. It should be noted

that in order to improve the resource utilization of an auto-

scaling method while producing acceptable response time, the

value of this function should be decreased as much as possible.

Our experiments show that the period of time taken to start

up a container instance is almost 6 s. In the experiments, the

adaptation interval, which is the time period between two pos-

sible successive adaptation events (increasing or decreasing the

number of cluster nodes), was defined as 30 s to make sure

there would be no problem if any auto-scaling action occurs.

While the monitoring interval can be specified as very short in

milliseconds, it is set to 30 s to reduce the communication traf-

fic load and any monitoring overhead for the measurements.

Table 8 shows the features of all machines used in our experi-

ments. All these machines belong to a non-profit cloud-based

infrastructure provider called ARNES (the Academic and

Research Network of Slovenia). In our experiments, all host

machines allocated to the cluster which provides the finite elem-

ent analysis application have the same hardware features. Twelve

hosts have been used in the cluster during the experiments.

5.1. Slowly rising/falling workload pattern

In this scenario as shown in Fig. 9, the workload includes

two steps. In the first step of the workload scenario, the

TABLE 4. P-values obtained by comparison of the DM method with other seven auto-scaling methods using paired t-tests with respect to all

response time values over the experimental period for each workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2

Slowly rising/falling 0.18800 0.14650 0.75633 0.00568 0.00033 0.00118 0.00009

Drastically changing 0.00055 0.00000 0.00000 0.00385 0.00000 0.00000 0.00000

On-off 0.00000 0.00191 0.00115 0.00000 0.00000 0.00000 0.00000

Gently shaking 0.00032 0.15528 0.00004 0.00051 0.63366 0.00000 0.00000

Real-world 0.00014 0.00718 0.00001 0.00000 0.00005 0.00424 0.00000

TABLE 5. The 95th percentile of the response time achieved by all investigated auto-scaling methods in every workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2 DM

Slowly rising/falling 213.07 202.40 208.21 364.70 372.90 365.20 398.90 207.40

Drastically changing 652.82 659.90 619.20 852.06 1623.14 1609.22 1270.98 410.28

On-off 471.75 386.00 387.90 683.70 493.60 550.40 566.50 232.60

Gently shaking 201.83 196.04 195.89 194.80 195.00 268.69 240.47 194.85

Real-world 204.64 208.84 214.26 202.94 233.64 215.66 260.2 197.32

TABLE 6. The median response time achieved by all investigated auto-scaling methods in every workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2 DM

Slowly rising/falling 190.6 189.6 188.7 190.7 192.9 189.6 192.1 191.2

Drastically changing 185.6 193.0 199.1 190.5 197.9 199.4 201.0 190.1

On-off 199.6 191.3 195.5 194.5 200.7 209.7 211.4 190.5

Gently shaking 189.9 186.1 188.7 187.9 184.9 196.1 196.7 185.3

Real-world 193.4 192.0 194.4 195.3 193.9 195.3 197.4 192.3
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number of incoming requests slowly rises from 100 to 1500

requests per 6 s. Afterwards, during the second step, workload

density drops smoothly from 1500 to 100 requests. Figure 9

shows that the number of containers increases in the first step

of the workload scenario, and it decreases in the second step

according to the number of arrived requests at execution time

by all eight provisioning methods.

For the slowly rising/falling workload pattern, the paired

t-tests comparing DM with HPA, THRES1 and THRES2 reveal

no statistically significant difference with P > 0.01. While all

TABLE 7. Comparing the new DM method with existing auto-scaling methods with respect to resource utilization.

Workload scenario Method Resource utilization Resource

utilization function
Average number of

containers

Average

CPU usage

Average

memory usage

Slowly rising/falling pattern DM 3.47 64.36 31.55 719.68

HPA 3.25 65.48 31.60 692.48

THRES1 3.65 62.24 31.50 738.76

THRES2 3.52 64.84 31.64 732.90

SS1 4.36 55.85 31.57 1590.09

SS2 3.84 61.86 31.73 1431.94

TTS1 3.12 71.85 31.56 1139.42

TTS2 3.32 70.78 31.58 1324.35

Drastically changing pattern DM 3.71 41.07 31.69 1522.14

HPA 2.50 50.77 31.68 1632.05

THRES1 3.31 40.72 31.58 2184.27

THRES2 3.31 40.92 31.51 2049.55

SS1 3.53 41.54 31.43 3007.77

SS2 2.47 45.22 31.68 4009.15

TTS1 2.68 45.69 31.63 4312.71

TTS2 2.68 45.84 31.71 3406.23

On-off pattern DM 3.58 53.49 31.40 832.71

HPA 2.77 66.90 31.50 1306.75

THRES1 3.39 57.25 31.55 1308.54

THRES2 3.40 58.27 31.74 1318.86

SS1 3.23 51.50 31.61 2208.35

SS2 2.71 58.53 31.72 1337.66

TTS1 2.33 64.90 31.69 1282.43

TTS2 2.33 64.65 31.70 1319.94

Gently shaking pattern DM 4.00 66.67 31.75 779.40

HPA 3.78 70.46 31.80 762.92

THRES1 4.00 66.94 31.58 784.16

THRES2 3.68 72.10 31.61 720.87

SS1 4.25 64.31 31.49 827.90

SS2 4.00 67.74 31.76 780.00

TTS1 3.41 79.25 31.62 916.23

TTS2 3.38 78.95 31.63 812.79

Real-world pattern DM 10.15 72.38 31.59 2002.80

HPA 9.20 75.81 31.55 1882.69

THRES1 9.86 71.02 31.61 2059.16

THRES2 9.98 70.32 31.56 2138.31

SS1 10.16 73.15 31.60 2061.87

SS2 9.38 74.23 31.59 2191.54

TTS1 7.27 79.09 31.60 1567.85

TTS2 7.64 75.44 31.62 1987.92
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auto-scaling approaches are able to provide acceptable perform-

ance on average, the response time offered by SS1, SS2, TTS1

and TTS2 is sometimes lowin comparison to DM, HPA,

THRES1 and THRES2. This is because the adaptation interval

used in SS1, SS2, TTS1 and TTS2 is 1 minute versus 30 s

used in DM, HPA, THRES1 and THRES2. Hence, the

response time can be inappropriate for a while in some situa-

tions if the adaptation interval is not short enough, as shown in

Fig. 10. This fact resulted in relatively weaker performance of

SS1, SS2, TTS1 and TTS2 compared to DM, HPA, THRES1

and THRES2 with regard to the 95th percentile values.

The length of the adaptation interval, whether 30 s or 1

minute, used by auto-scaling methods affects the overall

application performance. For example when t = 90 s and

before the CPU run queue would start filling up (~96%), DM

decided to allocate one new container because of the increase

in the workload. Therefore, the response time offered by DM

was not affected by the workload increase. Considering

another auto-scaling method called SS1, in such situation

when t = 120 s and after the system was overloaded as a con-

sequence of the growing workload, SS1 added four new con-

tainers to the cluster. However, at this time the processor

utilization already reached almost 100%, and hence the slow

response time was provided by SS1 for a while. Now the

cluster includes five container instances. This cluster size is

more than what is needed to handle the current workload.

Therefore, this decision is reverted after a while when t =

240 s, and two container instances are terminated.

It should be noted that DM, HPA, THRES1 and THRES2

use almost the same number of container instances and have

almost the same level of average resource utilization in terms of

CPU and memory usage for the slowly rising/falling workload

pattern. The SS1 provisioning approach allocated more con-

tainer instances (4.36) compared to all other adaptation policies.

Moreover, the authors simply concluded that the finite

element analysis application is not memory-intensive, as the

average memory usage was almost steady during the con-

ducted experiment, and the same for all auto-scaling

approaches—around ~31% of the whole memory.

5.2. Drastically changing workload pattern

Here, drastic fluctuations appear in the workload intensity. In

this experiment, shown in Fig. 11, the number of arrival

requests changes suddenly from 100 to 1500, and after a

while it instantly comes back to 100 requests again. For this

workload pattern, the paired t-tests implied that there is a stat-

istically significant difference between DM and all other

auto-scaling methods. Figure 11 shows that our proposed

method (DM) properly recognized the sudden increase in the

workload and then tried to timely initiate enough container

instances at the beginning of unexpected workload surge fas-

ter than other auto-scaling approaches. Therefore, for the

drastically changing workload pattern, DM is the only meth-

od able to provide relatively convenient performance in terms

of the 95th percentile of the response time distribution.

After a while, when the workload immediately drops again

to 100 requests per 6 s, all auto-scaling approaches, except

HPA and SS1, do not stop container instances running in the

TABLE 8. Features of infrastructures used in our experiments.

Feature Load-Balancer Monitoring Server Hosts in the cluster

OS Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04

CPU(s) 4 2 4

CPU MHz 2397 2397 3100

Memory 16 384 MB 4096 MB 4096 MB

Speed 1000 Mbps 1000 Mbps 1000 Mbps

FIGURE 9. Dynamically changing number of container instances in

response to a slowly rising/falling workload pattern.

FIGURE 10. Average response time of the application in response

to a slowly rising/falling workload pattern.
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cluster at once, and consequently the number of containers

slightly decreases in successive intervals. The method which

provisioned more container instances than other auto-scaling

approaches was DM. The average number of containers allo-

cated by DM during this experiment was 3.71.

Figure 12 shows that the response time provided by DM,

compared to other approaches, is less inappropriately

impacted by the drastic change in the workload density.

Again, the amount of average memory usage was nearly

constant (~31% of the memory capacity), and the same for all

auto-scaling approaches during the whole conducted experi-

ment in this workload scenario, considered as further confirm-

ation of a slowly rising/falling workload scenario’s result,

implying that the conducted application is not a memory-

intensive benchmark.

5.3. On-off workload pattern

In this experiment, the on-off workload pattern has three

active periods. The active periods include, respectively, 1500,

1200 and 700 requests per 6 s (shown in Fig. 13). Inactive

periods between peak spikes are 30 s. For the on-off work-

load pattern, the paired t-tests showed a statistically signifi-

cant difference in the means of response time metric offered

by all auto-scaling methods. The only method able to timely

provision an appropriate number of container instances in

response to peak spikes is DM. Because it is more agile than

other auto-scaling approaches in order to initiate necessary

container instances at the beginning of unexpected workload

surges, and also it does not terminate most of the containers

immediately when each peak spike disappears. Consequently,

DM has allocated more container instances on average (3.58)

than other approaches during the on-off workload pattern.

The advantage of using 30-s adaptation interval instead of

one-minute interval can be understood in Fig. 13. At the

beginning of the first active period, DM and SS1 took similar

decision to increase the number of containers because of the

sudden increase in the workload. DM allocated three extra

containers starting from t = 90 s whereas SS1 allocated four

new containers when the system is already overloaded at t =

120 s, or in other words 30 s later than t = 90 s. In such situ-

ation, the competence of DM compared to SS1 exists in its

agility to timely adapt the application performance to the sud-

den increase in the workload. As a consequence, in this work-

load scenario the difference between DM and SS1 in terms of

response time can be considered enormous. That is why the

FIGURE 11. Dynamically changing number of container instances

in response to a drastically changing workload pattern.

FIGURE 12. Average response time of the application in response

to a drastically changing workload pattern.

FIGURE 13. Dynamically changing number of container instances

in response to an on-off workload pattern.
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worst response times provided by DM and SS1 during the first

active period were 225.04ms versus 558.88ms, respectively.

For the on-off workload pattern, the median and the 95th

percentile of the response time provided by DM in this

experiment were 191.2 and 232.60 ms, respectively, that can

be considered acceptable with regard to users’ satisfaction.

Whereas sudden active periods inappropriately cause an

increase in the service time of the requests for the other seven

auto-scaling methods, as shown in Fig. 14. Compared to the

DM method, the 95th percentile values of the response time

achieved by all other auto-scaling methods are very slow that

can be considered inappropriate.

In this experiment, the average memory usage was found to

be consistent (~31%) for all auto-scaling methods, and it did

not vary with the increase in the number of requests at runtime.

5.4. Gently shaking workload pattern

In this scenario, there exists a trembling workload which does

not change drastically. As shown in Fig. 15, it frequently var-

ies between 700 and 1000 requests to be processed by the

application. Figure 15 indicates that if the workload does not

change drastically, there is neither increment nor decrement

in the number of running containers for DM, THRES1 and

SS2. This is why, for this workload pattern, the paired t-tests

comparing DM with THRES1 and SS2 showed that we can-

not reject the zero hypothesis (P > 0.01), essentially meaning

that the DM method behaves the same way as the THRES1

and SS2 methods. The number of containers has also not

been changed to a great extent by other approaches namely

HPA, THRES2, SS1, TTS1, and TTS2.

The SS1 auto-scaling policy allocated more container

instances on average (4.25) than other approaches, whereas

the average response time provided by all provisioning

approaches (shown in Fig. 16) was nearly steady and identi-

cal for this workload scenario.

Therefore, allocating more container instances by SS1 in

this workload scenario undesirably caused resource under-

utilization, in terms of less average CPU resource utiliza-

tion, and reported 64.31% in comparison to what was achieved

by other methods. However, all auto-scaling approaches achieved

approximately the same level of memory usage (~31%) during

the experiment.

5.5. Real-world workload pattern

In addition to the previous workload patterns, in order to val-

idate the applicability of our proposed approach against real-

world situations, FIFA World Cup 98 workload dataset [42]

has been also applied in this work. This workload trace has

been widely used in different auto-scaling research works

[7, 43–47] so far. For our experiment, we used a 20-minute trace

(shown in Fig. 17) on the 12 July 1998 starting at 20:30:00. The

number of incoming requests per 6 s is varied between 2112

and 2858 during this time period that represents a large variance

(~750) in the workload density at runtime.

To adapt the application to the changing workload and

achieve a desired performance, the number of running container

instances allocated by auto-scaling methods varies over time.

DM and SS1 provisioned the same amount of resources in

terms of container instances on average for the real-world work-

load pattern. For both methods, the average number of contain-

ers was equal to 10.1. Other methods allocated fewer container

instances compared to DM and SS1 in this experiment.

Figure 18 shows the average response time provided by all

investigated auto-scaling methods in response to this real-

world workload pattern.

FIGURE 14. Average response time of the application in response

to an on-off workload pattern.

FIGURE 15. Dynamically changing number of container instances

in response to a gently shaking workload pattern.
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For the real-world workload pattern, the response time offered

by DM was not affected by the workload variations, since it

was quite steady in comparison to what was provided by other

approaches. In other words, there is no big difference between

the 95th percentile of the response time distribution (197.32ms)

and the median response time (192.3ms) obtained by DM.

Similar to the result concluded in previous workload pat-

terns, the experiment in this scenario also re-implies that the

memory resource utilization of the cluster does not have any

influence on the performance of the finite element analysis

application regardless of the number of incoming requests,

because, it was ~31% for all auto-scaling methods during

execution. This fact fortunately helps the cloud-based service

provider to achieve efficient memory allocation for running

container instances in advance.

For each auto-scaling method, all values of resource utilization

functions achieved in every workload pattern were summed

together to form an overall score. The scores are DM =

5856.73, HPA = 6276.89, THRES1 = 7074.89, THRES2 =

6960.49, SS1 = 9695.98, SS2 = 9750.29, TTS1 = 9218.65

and TTS2 = 8851.23. These results show that the DM auto-scaling

method is the best among eight investigated approaches. This is

because our proposed DM auto-scaling approach achieved the

minimum overall score in comparison to the other approaches. It

means that it is able to avoid over-provisioning of resources

while offering optimal application performance in terms of the

response time. Considering all workload scenarios examined in

this work, the strength of the DM method lies in its ability to

apply a multi-level monitoring framework and timely adjust

itself to changes in the workload density over time.

The cumulative distribution function (CDF) of response

time observed by all auto-scaling methods is shown from

Fig. 19 to Fig. 23 for each workload pattern. It can be con-

cluded that DM performs better than other methods as it has

higher probability to offer desired response time under varied

amount of workloads, and hence improve the application

QoS. The probability that the response time provided by DM

would be slow is approximately zero for all workload scen-

arios, except for the drastically changing pattern. Figure 20

shows that the response time provided by DM was relatively

more appropriate than other seven auto-scaling methods dur-

ing the drastically changing workload. In this workload scen-

ario, the probability of response time being fast provided by

other methods is significantly small.

6. DISCUSSION

The obtained results allow analysis of the developed auto-

scaling method and its limitations, its usability in the software

FIGURE 16. Average response time of the application in response

to a gently shaking workload pattern.

FIGURE 17. Dynamically changing number of container instances

in response to a real-world workload pattern.

FIGURE 18. Average response time of the application in response

to a real-world workload pattern.
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engineering domain, comparisons with other rule-based meth-

ods, and the level of improvement in the effectiveness of self-

adaptation for handling different workload scenarios.

An important part which has been investigated is the moni-

toring interval. Setting up an appropriate monitoring interval

is required to ensure the reliability of the whole system, to

avoid overhead, and to prevent losing control over the run-

ning environment during auto-scaling actions [48]. Defining

an effective measurement interval is a challenging task,

because a low level of measurement ratio may lead to missing

dynamic changes of operational environments, and hence the

system is not capable of adapting to a new situation to con-

tinue its operation without any performance issue.

In some cases, the difference between the monitoring inter-

val and the average response time of the application may

cause stability issues to the elasticity mechanism, which is

not the case for many applications such as finite element ana-

lysis. For example, within video conferencing systems, viola-

tions of QoS constraints need to be monitored carefully, since

even a small amount of violation should not be disregarded.

Therefore, the monitoring interval should be short enough to

adequately capture all necessary characteristics of the applica-

tion over time. Moreover, self-adaptation of such applications

also requires a high level of agility, which has recently gained

a wide range of attention as a research field that still needs to

be fully improved.

FIGURE 19. CDF of response time observed for the slowly rising/
falling workload pattern.

FIGURE 20. CDF of response time observed for the drastically

changing workload pattern.

FIGURE 22. CDF of response time observed for the gently shaking

workload pattern.

FIGURE 21. CDF of response time observed for the on-off work-

load pattern.
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The proposed method can be extended to also consider verti-

cal scaling of containers [49]. Vertical scaling is an option to

resize processing power, memory capacity, or bandwidth

assigned to container instances depending on runtime workload

variations. However, the maximum amount of resources such

as CPU or memory available for each container is limited to

the host machine capacity. Therefore, the combination of verti-

cal and horizontal scaling techniques can be applied to the

same application in order to take advantages of both mechan-

isms. However, it should be noted that some applications such

as Java/J2EE solutions [50] are not able to dynamically man-

age the memory allocation even if the memory capacity can be

resized at the infrastructure or operating system (OS) level. In

such cases, the applications have to be restarted with new

resized memory when vertical scaling occurs.

The experiments in this work are based on Docker technol-

ogy, however the proposed auto-scaling architecture can be

implemented in other containerization technologies such as

OpenVZ,15 LXC16 and lmctfy.17 This is because all functions

defined in both Alarm-Trigger and Self-Adapter, as well as

the StatsD protocol used to send, collect, and aggregate moni-

toring statistics related to any application or infrastructure, are

independent from not only container virtualization technolo-

gies, but also underlying cloud infrastructure providers.

The implemented multi-level monitoring system of the

SWITCH platform used in this work is capable of monitoring

different container-level metrics namely CPU, memory, band-

width, and disk [2]. This monitoring system has been

employed to measure bandwidth and disk for a containerized

file upload use case in our previous work [51].

Over the entire course of experimentation, different threats

to the validity of the results have been analysed as follows:

• Variations in runtime conditions (e.g. time-varying

processing delays, I/O and CPU load factors, etc.)

may slightly affect the results shown in Table 5. In

order to reach a greater validity of results, each experi-

ment on each workload pattern was repeated five times

to avoid this threat. Therefore, the reported results are

presented as average values over independent runs.

• Cloud infrastructure QoS properties, e.g. availability,

bandwidth quality etc. may vary over time, independ-

ently of the workload features. Therefore, when a con-

tainer has to be deployed on a host machine, the

application provider needs to make sure that the host

is able to fulfil the requirements of the containerized

application. To this end, the performance of infrastruc-

tures should also be continuously characterized. This

is currently facilitated by the employed multi-level

monitoring system of the SWITCH platform.

• Various additional external factors (e.g. end-users’ net-

work channel diversity, unstable network conditions at

the client’s side and the mobility of the clients) may

affect the users’ experience. In reality, cloud-based

services are being used by different end-users from all

over the world. This type of quality problems due to

connectivity issues are currently being addressed by

edge computing approaches [2].

• Proposing a container-based auto-scaling method with-

out relying on over-provisioning of resources is an

important challenge in the adaptation of cloud-based

applications. The principle which allows host machines

to include one container instance per application type

(e.g. CPU, memory, or bandwidth intensive), explained

in Section 3.3, may cause over-provisioning among

some clusters when there are applications which

experience a small number of incoming requests. To

come up with a solution to solve this limitation, in add-

ition to the containers, host machines can be also

adjusted vertically at runtime [52]. Another solution

can be using different host machines in terms of hard-

ware features allocated for each cluster according to

the application types. For example, hardware character-

istics of nodes which host a CPU-intensive application

can be different from configurations of nodes which

host a memory-intensive application. The former needs

host machines with sufficient CPU, and the later

requires host machines with enough memory.

7. CONCLUSION

Fine-grained auto-scaling mechanisms are needed to cope with

highly dynamic workloads in the cloud environment. Existing

FIGURE 23. CDF of response time observed for the real-world

workload pattern.

15OpenVZ Linux Containers, http://openvz.org
16LXC, http://www.ibm.com/developerworks/linux/library/l-lxc-containers
17lmctfy, https://github.com/google/lmctfy
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traditional application adaptation approaches using a set of fixed

rules unfortunately cannot accurately provide favourable service

quality while offering optimal resource utilization. This paper

introduced a new DM auto-scaling method which applies dynamic

rules to automatically increase or decrease the total number of

computing instances in order to accommodate varied workloads.

The proposed adaptation method innovatively uses a multi-

level monitoring system since the adaption of containerized

applications should be tuned and handled at various levels of

cloud environments—container level and application level. The

conducted experiments have demonstrated the benefits of our

approach which can be considered the best among eight investi-

gated auto-scaling methods. Particular benefits of using the pro-

posed DM method are that it avoids under-provisioning as well

as over-provisioning of resources, while it prevents QoS deg-

radation and cost overruns at execution time.

We have begun extending our proposed method towards a

multi-instance architecture and high level of service custom-

ization [53]. This architecture applies one application instance

per one user or one type of users. It means there are different

application instances for different users with various needs. In

this model, any self-adaptation mechanism would need to

consider more sophisticated options, such as setting up a new

monitoring environment for a different type of application

instance, which will add to the complexity of the adaptation

process for the application.
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