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Abstract

Advanced hashing technique is essential in large s-
cale online image retrieval and organization, where
image contents are frequently changed. While tra-
ditional multi-view hashing method has achieve
promising effectiveness, its batch-based learning
based scheme largely leads to very expensive up-
dating cost. Meanwhile, existing online hash-
ing scheme generally focuses on single-view da-
ta. Good effectiveness can not be expected when
searching over real online images, which typically
have multiple views. Further, both types of hashing
methods only can generate hash codes with fixed
length. Thus they have limited capability on com-
prehensive characterization of streaming image da-
ta. In this paper, we propose dynamic multi-view
hashing (DMVH), which can adaptively augment
hash codes according to dynamic changes of im-
age. Meanwhile, DMVH leverages online learning
to generate hash codes. It can increase the code
length when current code is not able to represent
new images effectively. Moreover, to gain further
improvement on overall performance, each view is
assigned with a weight, which can be efficiently
updated in the online learning process. In order
to avoid the frequent updating of code length and
view weights, an intelligent buffering scheme is de-
signed to preserve significant data to maintain good
effectiveness of DMVH. Experimental results on t-
wo real-world image datasets demonstrate superior
performance of DWVH over several state-of-the-
art hashing methods.

1 Introduction
With the explosive growth of online image repositories,
techniques to facilitate fast and effective large scale con-
tent access are getting more and more attentions. In re-
cent years, hashing has emerged as a promising technolo-
gy to support large-scale image retrieval [Mu et al., 2010;
Zhen and Yeung, 2012a; Guo et al., 2017b; Wu et al., 2017;
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Zhu et al., 2017]. Except various visual features, the Web im-
ages are associated with various text information such as tags
or short comments. In order to improve Web image search
performance, various multi-view hashing methods have been
recently proposed [Zhang et al., 2011; Wu et al., 2014; 2015;
Xie et al., 2016; Liu et al., 2017; Lin et al., 2017b; 2017a;
Guo et al., 2017a]. Multi-view hashing integrates the ad-
vantages of hashing technology and multi-view learning, it
enjoys better performance than single-view hashing, and can
support the queries from different views such as visual fea-
tures or text features.

Web image database is highly dynamic and frequently up-
dated. Traditional multi-view hashing methods are developed
based on batch-based learning, which is very expensive in
terms of updating cost. Multi-view hashing methods may
accumulate all data to retrain the hash codes and functions
when new images arrive, however their time complexity will
be extremely high and unaffordable. Recently, several on-
line hashing methods [Leng et al., 2015; Cakir and Sclaroff,
2015b] are proposed to support effective search over dynam-
ic image databases. However, their performance is far be-
yond satisfactory. When applying existing multi-view hash-
ing and online hashing methods for web image retrieval, they
generally suffer from several issues. Existing online hash-
ing methods aim at generating the binary codes with fixed
length, which is not suited to the dynamic image data. In real
world, the contents of new image data could be semantically
different from the old one. When new image data is inserted
into the database, longer codes should be required to preserve
more discriminative information to support search over up-
dated image database. According to previous results [Zhou et
al., 2014], longer hash code can lead to more comprehensive
image representation and better search performance. For ex-
ample, Wikipedia dataset [Rasiwasia et al., 2010] consisting
of 2866 images only needs 32 bits codes to achieve the best
performance. However, for NUS-WIDE having 269648 im-
ages, at least 128 bits are required to achieve the best perfor-
mance. However, larger code length does not mean the better
performance, in that hashing for data with small size may get
trapped in local minima [Zhen and Yeung, 2012b]. There-
fore, general hashing methods usually choose an appropriate
code length for a particular database, which is not suitable
to dynamic database, whose size is continuously changed.
To solve this problem, the code length for dynamic image
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database needs to be intelligently augmented to guarantee
hashing performance. Another problem is how to measure
importance of different views in the online learning of hash
codes. Although each view will contribute to the final hash
codes, they can not be equally treated. For example, text fea-
ture usually contains more semantic information than visual
feature [Caicedo et al., 2012], thus it should be assigned with
the higher weight. Several multi-view hashing methods take
the view weights into account and thus they achieve signifi-
cant performance improvement. However, to the best of our
knowledge, none of existing online hashing methods focus on
developing intelligent scheme to estimate optimal weighs for
different views.
In this paper, we propose a novel unsupervised online

hashing method: Dynamic Multi-view Hashing (DMVH) to
support the effective and efficient dynamic online image re-
trieval. Towards this goal, DMVH uses a dynamic hashing
scheme, where length of hashing codes can be adaptively aug-
mented. In DMVH, a dictionary is used to construct the hash
codes of images. When a new data cannot be represented
by current dictionary, it will be added to augment the dic-
tionary. Moreover, DMVH applies multi-view features for
hashing, and proper weight is assigned to each view. In the
online learning process, to avoid the frequent updating of dic-
tionary and modality weights, a buffer is used to preserve sig-
nificant images for purpose of subsequential updating. The
core technical contributions of our work can be summarized
as follows:

• In DMVH, the code length can be dynamically augment-
ed with the changes of image data. As a result, DMVH
can better represent the streaming images. In addition,
users are not required to predefine the appropriate code
length which will be automatically obtained by DMVH.

• DMVH can effectively estimate proper weights for dif-
ferent views to reflect their different importance in hash-
ing. Previous online hashing methods generally don’t
have weighting scheme. An intelligent buffer scheme
is designed for the online learning process of DMVH,
which enables highly efficient learning process of hash
codes and view weights.

• Experimental results on real-world image datasets show
the superiority of DMVH in terms of both search effi-
ciency and accuracy.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces related work; Section 3 comprehensively in-
troduces the proposed multi-view hashing (DMVH) method;
Section 4 introduces the experimental configurations and re-
ports the experimental results and main findings. Finally, Sec-
tion 5 concludes the paper with future work.

2 Related Work
Multi-view Hashing - In recent years, much attention has
been paid for multi-view hashing. Most multi-view hash-
ing methods can be divided to two categories according to
the query types supported. Several multi-view hashing meth-
ods combine all features to construct database hash codes,
but they require that query has the same features as database
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Figure 1: The overall illustration of DMVH.

data. This type of multi-view hashing usually aims to gain
the effective combination of multi-view features. Composite
Hashing withMultiple Information Sources (CHMIS) [Zhang
et al., 2011] uses graphs of multi-views features to learn the
hash codes, and each view is assigned with a weight for com-
bination. Since graph learning is inefficient, anchor graph is
adopted to accelerate the learning process. Multi-view An-
chor Graph Hashing (MVAGH) [Kim and Choi, 2013] ex-
ploits anchors to construct graphs for hashing. Multiview
Alignment Hashing (MAH) [Liu et al., 2015] combines ma-
trix factorization with anchor graph learning for hashing, and
it achieves good performance based on multi-view features.
Multi-view methods also can support queries based on dif-

ferent views. This type of multi-view hashing is also called as
cross-view hashing. Generally, cross-view hashing methods
aim at modeling the correlation of different views. Cross-
view Hashing (CVH) [Kumar and Udupa, 2011] optimizes
the hamming distance of different views, it can be regarded
as an extended version of Canonical Correlation Analysis (C-
CA). Inter-media Hashing (IMH) [Song et al., 2013] both op-
timizes the intra-media and inter-media consistency. Seman-
tic Correlation Maximization (SCM) [Zhang and Li, 2014]
maximizes the semantic correlation between image and text
features, and it further considers the quantization loss of hash
codes. Semantic Topic Multimodal Hashing (STMH) [Zhou
et al., 2014] firstly generates text topics and image concepts,
and then correlates them in a common hash space.
Online Hashing is more practical than traditional batch-

based learning methods, in that many new images in real-
world are generated. In recent three years, a few online
hashing methods are proposed. Online Kernel Hashing
(OKH) [Huang et al., 2013] and Adaptive Hashing [Cakir
and Sclaroff, 2015a] are supervised methods, they use similar
image pairs as training data. Although they can effectively p-
reserve the correlation of images in hash codes, they require
labeled training examples which are difficult to collect. On-
line Sketching Hashing (OSH) [Leng et al., 2015] is unsuper-
vised online hashing method, thus it is not relied on labeled
data. The main disadvantage of existing online hashing meth-
ods is that they are not designed for multi-view features, so
they cannot perform well for the retrieval of multi-view im-
ages.

3 Dynamic Multi-View Hashing
DMVH consists of two main modules: online learning pro-
cess and search process. Figure 1 illustrates the overall struc-
ture of DMVH. In the dynamic hash codes, blue area, red area
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and yellow area denote the old codes, hash codes of new data
and the augmented codes respectively. The database consists
of many images having both visual and text contents. When
new image arrives, multiple kinds of visual features and one
text feature are extracted and combined via multi-view dic-
tionary learning. The differentiation threshold Lt determines
whether the image can be represented by current hash codes.
If not, it is added to the buffer, and the buffer data are used
to augment hash codes till no more space is available in the
buffer. In the following sections, more details about Lt will
be presented.

3.1 Model Formulation
In DMVH, at step t, the database contains old image features
added at previous steps Xm

t−1

∣∣M
m=1

, where M is the number
of views. Xm

t−1 ∈ R(t−1)×dm , and dm is the dimension of
mth view feature. The old images are represented with hash
codes Ht−1 ∈ {0, 1}(t−1)×C , where C is the code length.
Then new image xm

t |Mm=1 is added into the database, and
Xm

t = [(Xm
t−1)

T , (xm
t )T ]T . Our goal is to learn new hash

codes ht ∈ {0, 1}1×C to represent new image. The hash
function also needs to be learnt to project any views into the
learned hash space. Towards the goal, the kernel dictionary
representation is gained to construct hash codes. Dictionary
learning is effective in learning hash codes [Yu et al., 2014;
Zhang et al., ], and the kernel projection will make the hash
codes preserve more discriminative information. Thus, at
time t, the dictionary consists of a subset of the database sam-
ples with muti-view features. For each view, its correspond-
ing dictionary is denoted as Dm

t = [(xm
a1
)T , . . . , (xm

aC
)T ]T .

Assuming each sample can be constructed from its hash codes
and dictionary, we have the following formulation:

min Lt

(
Ht, D

m
t |Mm=1

)
=

M∑
i=1

α2
m ∥Htϕ (Dm

t )− ϕ (Xm
t )∥2F + λ ∥Ht∥2F

s.t.
M∑

m=1
αm = 1 (1)

where ϕ(·) is a kernel projection function, λ is the regulariza-
tion parameter, α = [α1, . . . , αM ] denotes the view weights.

3.2 Online Learning
Basic process
At each step t, when new image is added into the database,
the overall objective function can be reformulated as:

min Lt

(
Ht, D

m
t |Mm=1

)
=

Lt−1

(
Ht−1, D

m
t |Mm=1

)
+ lt

(
ht, D

m
t |Mm=1

)
(2)

If dictionary Dm
t |Mm=1 is not changed, D

m
t = Dm

t−1, the con-
straint Lt−1

(
Ht−1, D

m
t |Mm=1

)
has been satisfied by previous

learning steps. Thus, We only need to consider the optimiza-
tion of lt

(
ht, D

m
t |Mm=1

)
, and the objective function is:

min lt
(
ht, D

m
t |Mm=1

)
=

M∑
m=1

α2
m ∥htϕ (Dm

t )− ϕ (xm
t )∥2F + λ ∥ht∥2F (3)

After applying the kernel trick, the objective function (3) can
be rewritten as:

M∑
m=1

α2
m

(
htK̃

m
t hT

t − 2ht(z
m
t )

T
+ kmtt

)
+ λhth

T
t (4)

where K̃m
t ∈ RC×C is the kernel matrix of the dic-

tionary Dm
t , and K̃m

t (i, j) = ϕ(xm
ai
)ϕ(xm

aj
)T , (zmt )i =

ϕ(xm
t )ϕ(xm

ai
)T , ai is the index of ith dictionary element.

kmtt = ϕ(xm
t )ϕ(xm

t )T .
By setting the derivative of Eq.(4) to zeros, we can obtain

ht as:

ht = zt

(
K̃t + λI

)−1

(5)

where K̃t =
M∑

m=1
α2
mK̃m

t , zt =
M∑

m=1
α2
mzmt .

For each modality m, if vector ϕ (xm
t ) is linearly indepen-

dent on vectors of dictionary ϕ (Dm
t ). Then ht computed by

Eq.(5) cannot satisfy Eq.(3), and xm
t should be added into the

dictionary. Therefore, we have to determine the linear depen-
dence of new vectors. By substituting Eq.(5) into Eq.(3), it
can be transformed to:

lt
(
ht, D

m
t−1|Mm=1

)
=

M∑
m=1

α2
m (kmtt − zmt ht) + λhth

T
t (6)

We use a threshold ρ to determine the linear dependence.
If lt

(
ht, D

m
t−1|Mm=1

)
< ρ, then the approximate linear depen-

dence described by Eq.(3) can be satisfied. And we do not
need to change dictionary. If lt

(
ht, D

m
t−1|Mm=1

)
≥ ρ, then

new hash codes cannot be effectively represented by current
dictionary. As a result, both dictionary and hash codes need to
be augmented, and the modal weights should be recomputed
accordingly.

Dictionary augment with buffer scheme
Considering the worst case that new image is always very d-
ifferent to database images and cannot be represented by cur-
rent dictionary, we have to frequently update the dictionary,
which is obviously inefficient. Therefore, a buffer scheme is
applied to avoid the frequent updating process. The buffer
scheme relaxes the restrict linear dependence in Eq.(3). At
each step t, if the new image satisfies lt

(
ht, D

m
t−1|Mm=1

)
≥ ρ,

then image t is added into the buffer with maximum size
Bmax. After the updating, in case that the buffer is full,
image b will be selected from the buffer with highest val-
ue of lt. Then we augment the dictionary with image b and
update the view weights α. The dictionary is updated with
Dm

t = [(Dm
t−1)

T , (xm
b )T ]T , and the hash codes construct-

ed from dictionary have to be augmented accordingly. We
should optimize the following overall objective function:

min Lt

(
Ht, D

m
t |Mm=1

)
=

Lt\b
(
Ht\b, D

m
t |Mm=1

)
+ lb

(
hb, D

m
t |Mm=1

)
s.t.

M∑
m=1

αm = 1 (7)
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Where Ht\b denotes the hash codes of database images ex-
cept b. Since image b is linearly independent on other dictio-
nary images, we can only use it to represent itself. Therefore
we have hb = [0, 1], and lb

(
hb, D

m
t |Mm=1

)
= 0. Then Eq.(7)

can be simplified as:

Lt

(
Ht, D

m
t |Mm=1

)
= λTr

(
HtH

T
t

)
+

M∑
m=1

α2
mTr

(
Ht\bK̃

m
t HT

t\b − 2Ht\b

(
Zm
t\b

)T

+Km
t\b

)
(8)

After the dictionary is augmented, the new K̃m
t and Zt\b

can be computed as:

K̃m
t =

[
K̃m

t−1 zTb
zb kbb

]
Zm
t\b =

[
Zm
t−1\b, k

(
Xt\b, xb

)]
(9)

Lemma 1. If Ht\b =
[
Ht−1\b,0

]
, then the following equa-

tion is satisfied:

Lt

(
Ht\b, D

m
t |Mm=1

)
= Lt−1

(
Ht−1\b, D

m
t−1|Mm=1

)
(10)

Proof. From Eq.(9), we can obtain:

Ht\bK̃
m
t HT

t\b =
[
Ht−1\b,0

] [ K̃m
t−1 zTb
zb kbb

] [
HT

t−1\b
0

]
= Ht−1\bK̃

m
t−1H

T
t−1\b (11)

Similarly, we have:

Ht\b

(
Zm
t\b

)T

= Ht−1\b

(
Zm
t−1\b

)T

(12)

Based on above two equations and Eq.(8), we can easily ob-
tain that each element in Lt and Lt−1 is equivalent, thus
Eq.(10) is satisfied.

Theorem 1. The objective function Lt

(
Ht, D

m
t |Mm=1

)
will

be decreased after we set Ht =
[
HT

t\b, h
T
b

]
, and Ht\b =[

Ht−1\b,0
]
and hb = [0, 1].

Proof. According to Lemma 1 and Eq.(7), we can ob-
tain that Lt

(
Ht, D

m
t |Mm=1

)
= Lt−1

(
Ht−1\b, D

m
t−1|Mm=1

)
+

lb
(
hb, D

m
t |Mm=1

)
, and lb

(
hb, D

m
t |Mm=1

)
= 0 can be satis-

fied by hb = [0, 1]. Before the dictionary augment, image
b in the buffer always has a high lb

(
h̄b, D

m
t−1|Mm=1

)
which

describes the linear dependence, where h̄b denote old codes
of b. It is obviously that lb

(
h̄b, D

m
t−1|Mm=1

)
> ρ > 0 =

lb
(
hb, D

m
t |Mm=1

)
. Finally we have Lt

(
Ht, D

m
t |Mm=1

)
<

Lt−1

(
Ht−1, D

m
t−1|Mm=1

)
. Therefore, the objective function

can be decreased.

Theorem 1 confirms that our objective function is consis-
tently decreased by the buffer scheme. By specially consid-
ering the image with largest lb and reduce it to 0 by using
dictionary augment, the objective functions Lt can be large-
ly decreased. If the buffer is full and we augment the codes,
then we preserve half images with highest l to ensure that

Algorithm 1 Online learning process of DMVH at step t.

Input:
xm
t |Mm=1,D

m
t−1|Mm=1,K̃

m
t−1|Mm=1, α

Output:
Ht, Dm

t |Mm=1, K̃
m
t |Mm=1, α

1: Compute ht by Eq.(5);
2: Compute lt(ht, D

m
t−1|Mm=1) by Eq.(6)

3: if lt(ht, D
m
t−1|Mm=1) < δ then

4: Ht = [HT
t−1, sgn(h

T
t )]

T ;
5: K̃m

t = K̃m
t−1 and Dm

t = Dm
t−1;

6: else if lt(ht, D
m
t−1|Mm=1) >= δ then

7: Add t into the buffer, and use Algorithm 2 to optimize
Ht, α and K̃m

t ;
8: end if

Algorithm 2 Augment dictionary with buffer scheme.

Input:
Buffer, Ht, Dm

t−1|Mm=1, K̃
m
t−1|Mm=1, α

Output:
Ht, Dm

t |Mm=1, K̃
m
t |Mm=1, α

1: Add image t and corresponding lt(ht, D
m
t−1|Mm=1) into

buffer;
2: Buffer size B = B + 1;
3: if B = Bmax then
4: Select image b in buffer with highest lb;
5: Remove 1/2 of buffer data with lowest l;
6: Augment dictionary Dm

t = [(Dm
t−1)

T , (xm
b )T ]T ;

7: Update K̃m
t according to Eq.(9);

8: Update Ht\b =
[
Ht−1\b,0

]
;

9: Update hb = [0, 1];
10: Update α according to Eq.(13)
11: else if B < Bmax then
12: K̃m

t = K̃m
t−1, D

m
t = Dm

t−1;
13: end if

high l can be preserved for further process to decrease objec-
tive function. The frequency of augmenting depends on the
buffer size, if buffer size is large, then the learning process
is more efficient, but objective function can not be effectively
decreased. Thus we should make a tradeoff between learning
efficiency and effect by adjusting the buffer size.
At last, the view weights need to be updated to further re-

duce the objective function (7). by using the lagrange multi-
plier for Eq.(7), we can compute αm by:

αm =
1/δm∑M
i=1 1/δi

(13)

where δm = Tr
(
HtK̃

m
t HT

t − 2Ht(Z
m
t )

T
+Km

tt

)
.

The basic online learning process and dictionary augmen-
tation process are shown in Algorithm 1 and 2 respectively.
DMVH is efficient in learning hash codes. From Algorith-
m 1 we can find that the only the hash codes of new data is
computed, and the old codes are not needed to update. Al-
though Algorithm 2 updates the old hash codes of previous
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Figure 2: The MAP scores of MIR Flickr at different database sizes.
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(c) Multi-view query
Figure 3: The MAP scores of NUS-WIDE at different database sizes.

data, they are only augmented with all zero elements, which
can be efficiently implemented. The time complexity of D-
MVH is independent of database size, it only relies on buffer
size B and code length C.

Extension to visual and text features
In real-world applications, users may not use all the views
as query and be likely to choose parts of them. Besides the
multi-view features, we specifically consider the case of vi-
sual features and only text feature. For the query based on
visual features, its hash codes can be computed as:hv =

sgn

(
M−1∑
m=1

α2
mzmv

(
K̃t

)−1
)
. Where view 1 toM − 1 are the

visual features and view M is text feature. If the query only
contains text feature (e.g. several keywords), we can compute

its hash codes ashte = sgn

(
zMte

(
K̃t

)−1
)
.

4 Experiments
4.1 Datasets
We use two multi-view image datasets: MIR Flickr [Huiskes
and Lew, 2008] and NUS-WIDE [Chua et al., 2009] to com-
pare the hashing performance in the online scenario.

• MIR Flickr contains 25000 images collected from Flick-
r. All images are annotated with 38 class labels which
are used as the ground truth. In the retrieval process, im-
ages which share at least one same label are considered
as relevant. We select 1% images as queries, and the rest
images are added to the database sequentially. We use 3
visual features [Guillaumin et al., 2010], including 100-
D Hue histogram, 1000-D SIFT BoVW, 4096-D RGB
histogram and 512-D GIST. Each image is associated
with text tags, thus we use 457-D BoW as text feature.

• NUS-WIDE contains 269648 images collected from
Flickr, each images is labeled by 81 concepts which can
be used for evaluation. We select 1% images as queries
and the rest images forms the streaming database. We
use 3 visual features, including 500-D SIFT BoVW, 64-
D color histogram, 144-D color correlogram, 73-D edge
direction histogram, 128-D wavelet texture and 225-D
block-wise color. Each image is associated with text
tags, thus we also use 1000-D BoW as text feature.

4.2 Experimental Settings
In the implementation of DMVH, we use Gaussian kernel for
all visual features, and histogram intersection kernel for text
feature. DMVH does not contain many parameters to set.
The regularization λ is set to 10−3, it is used to avoid the
matrix singularity and has little influence on the results. The
maximum buffer size is set to 1000 on MIR Flickr and 5000
on NUS-WIDE respectively, the threshold ρ is set to 0.5.
Since our methods does not use any supervised informa-

tion, we compare our method with several representative
unsupervised hashing methods, including Online Sketching
Hashing (OSH) [Leng et al., 2015], Collective Matrix Fac-
torization Hashing (CMFH) [Ding et al., 2014], Multiview
Alignment Hashing (MAH) [Liu et al., 2015] and Inter-media
Hashing (IMH) [Song et al., 2013]. OSH cannot support any
single-view or partial-view query such as text query and im-
age query. CMFH can only cope with two views, thus we
concatenate all visual features into a visual feature. MAH
cannot support visual or text query, it only supports multi-
view query. IMH supports visual and text query, but cannot
support multi-view query.
Mean average precision (MAP) [Song et al., 2013] is used

to measure the effect of retrieval, and MAP scores are com-
puted on the top 50 retrieved documents of each query. More-
over, we evaluate the learning time of all methods to measure
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Table 1: Learning time and code length at different sizes on NUS-WIDE.

Database size (104) 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 26.7
OSH time (s) 227 510 852 1269 1728 2248 2870 3610 4518 5844 7337

DMVH time (s) 135 287 469 684 932 1223 1558 1922 2317 2742 3099
DMVH code length 72 82 92 101 111 121 130 139 149 158 165

the efficiency of retrieval. Learning time is computed as the
total time of learning hash codes and functions, thus it accu-
mulates the time of all learning processes from first step to
current step. All the experiments are conducted on a comput-
er with Intel Core(TM) i5 2.6GHz 2 processors and 12.0GB
RAM.

4.3 Experimental Results

In the experiments, we consider three types of queries: visu-
al query, text query and multi-view query. The visual query
contains all visual features, text query contains only one text
feature, and multi-view query consists of all features.
On MIR Flickr, images are added to database sequentially,

thus we have to evaluate the hashing performance at different
database size. More specifically, we evaluate the MAP scores
at t = {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25} × 103.
The code length of DVMH is changed with the increase of
database size, therefore is not appropriate to evaluate the per-
formance of other methods at various code lengths. Accord-
ing to previous results [Ding et al., 2014], we choose the best
code length as 64 bits. In order to make a fair comparison,
DMVH will not increase the code length when it reaches 64
bits.
Figure 2 shows the MAP scores of MIR Flickr at different

database sizes. In image query and text query, we compare
DMVH with IMH and CMFH. In multi-view query, we com-
pare DMVH with CMFH, MAH and OSH. From this figure
we can find that DMVH obtains higher MAP scores than oth-
er methods. In image and multi-view query, the MAP scores
DMVH are increased with the data size. This phenomenon il-
lustrates the effectiveness of our dynamic scheme where code
length is adaptively augmented. With the augmentation of
code length, the performance of DMVH can be consistently
improved.
Similar to MIR Flickr, on NUS-WIDE we evaluate the

MAP scores at different sizes, the best code length of com-
pared methods is set to 128 bits. The code length of DMVH
will not increase when it reaches 128 bits. Figure 3 shows the
MAP scores at different database sizes. Similar to the results
of MIR Flickr, DMVH outperforms other multi-view hashing
methods. On all types of queries, the MAP socres of DMVH
are improved with the increase of data size. The increase of
MAP scores on NUS-WIDE are more significant than MIR
Flickr, the reason is that NUS-WIDE contains much more
images, thus the increase of code length are more benefit to
NUS-WIDE. Note that on NUS-WIDE, we use all 81 labels
for evaluation, other works such as [Ding et al., 2014] use a
reduced version which only contains 10 labels. Therefore the
overall scores reported in this paper are relatively lower.
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Figure 4: Effects of buffer size on NUS-WIDE.

4.4 Efficiency Analysis
we also compare the learning time of DMVH to online hash-
ing method OSH. Table 1 shows the learning time of two
methods, and the code length of DMVH at different sizes. We
can find that DMVH consumes less learning time than OSH.
DMVH uses the buffer scheme to avoid the frequent updating
process. It is more efficient than OSH while guarantees the
hashing performance. In addition, we can find that the code
length of DMVH is dynamically changed with the increase of
data size.

4.5 Effects of Buffer
At last we evaluate the effects of buffer size. Table 4 shows
the comparison of MAP and training time with buffer size
{500,1000,3000, 5000, 7000, 10000}. All the results are e-
valuated at the final step of NUS-WIDE, where all 269648
images are included in database. We can find that the results
are relatively steady at different buffer size, which demon-
strates the robustness of DMVH. Moreover, both MAP s-
cores and training time decrease with the buffer size, thus we
can choose a proper size by considering the tradeoff between
MAP scores and training time.

5 Conclusions
In this paper we propose Dynamic Multi-view Hashing (D-
MVH) for online retrieval of streaming image data. DMVH
can adaptively augment code length to preserve more infor-
mation of new image. It constructs hash codes by a dynamic
dictionary, when new data cannot be effectively represented
by current hash codes, DMVH can augment the dictionary to
better represent this data. To avoid the frequent updating of
dictionary. A buffer scheme is designed and only data which
are significantly different to current dictionary elements are
considered for updating. Experimental results on MIR Flick-
r and NUS-WIDE demonstrate the efficiency and effective-
ness of DMVH compared to representative online hashing
and multi-view hashing methods.
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