
1354 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Dynamic Multilevel Workflow Management
Concept for Industrial IoT Systems

Dániel Kozma , Pál Varga, Member, IEEE, and Felix Larrinaga

Abstract— Workflow management is implemented in
manufacturing at many levels. The nature of processes varies
at each level, hindering the use of a standard modeling or
implementation solution. The creation of a flexible workflow
management framework that overarches the heterogeneous
business process levels is challenging. Still, one of the promises
of the Industry 4.0 initiative is precisely this: to provide
easy-to-use models and solutions that enable efficient execution
of enterprise targets. By addressing this challenge, this article
proposes a workflow execution model that integrates information
and control flows of these levels while keeping their hierarchy.
The overall model builds on the business process model and
notation (BPMN) for modeling at the enterprise level and recipe
modeling based on colored Petri net (CPN) at the production
level. Models produced with both alternatives are implemented
and executed in a framework supported by an enterprise service
bus (ESB). Loosely coupled, late-bound system elements are
connected through the Arrowhead framework, which is built
upon the Service-Oriented Architecture (SOA) concept. To prove
its feasibility, this article presents the practical application of
the model via an automotive production scenario.

Note to Practitioners—The methodology detailed in this article
can serve as a basis for experts who are dealing with industrial
workflows. Reacting to the requirements of Industry 4.0, i.e., the
virtualization, decentralization, modularity, real-time capability,
and service orientation, this article provides a concept that
can answer all the defined criteria. First, it adopts a new
two-level approach to workflow management, which makes the
understanding and control of workflows easier, enhancing trans-
parency. Furthermore, it demonstrates how—even completely
different—applications and modeling languages can be integrated
into a Service-Oriented Architecture (SOA). The presented com-

Manuscript received December 2, 2019; revised March 6, 2020; accepted
June 9, 2020. Date of publication July 2, 2020; date of current version
July 2, 2021. This article was recommended for publication by Editor
B. Vogel-Heuser upon evaluation of the reviewers’ comments. This work
was supported in part by the Department of Education, Universities, and
Research of the Basque Government under the projects Ikerketa Taldeak
(Grupo de Sistemas Embebidos), in part by the European H2020 Research
and Innovation Program, ECSEL Joint Undertaking, and National Funding
Authorities from 19 involved countries under the project Productive 4.0 under
Grant GAP737459 and 999978918, in part by the Grant EU ECSEL JU
through the H2020 Framework Programme under JU Grant 826452 (Arrow-
head Tools project), and in part by the Partners’ National Funding Authorities.
(Corresponding author: Dániel Kozma.)

Dániel Kozma and Pál Varga are with the Department of Telecom-
munications and Media Informatics, Budapest University of Technology
and Economics, 1111 Budapest, Hungary (e-mail: kozma@tmit.bme.hu;
pvarga@tmit.bme.hu).

Felix Larrinaga is with the Embedded System Group, Mondragon Univer-
sity, 20500 Mondragon, Spain (e-mail: flarrinaga@mondragon.edu).

This article has supplementary downloadable material available at
https://ieeexplore.ieee.org, provided by the authors. It includes one multimedia
AVI format movie clip, which shows the built prototype based on the presented
concept and toolset by this article. This material is 51.6 MB in size.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2020.3004313

position and the used tools are all tried and tested. Behind the
solution described in this article, there is a genuine, working
code wherewith the presented end-to-end workflow management
can be achieved. Following the methodology detailed in this
article, the readers can construct their workflow management
composition. In order to report on the performance of the created
solution, this article presents different measurement compositions
that allow the investigation of the essential components sepa-
rately, demonstrating the scalability and temporal parameters.

Index Terms— Business process management, industrial engi-
neering, Internet of Things (IoT), manufacturing automa-
tion, Petri nets, service-oriented systems engineering, systems
modeling.

I. INTRODUCTION

ONE of the promises of the Industrial Internet of
Things (IIoT) concept regarding production is to gain

better control over complete processes through dynamic
information capture, processing, and feedback. While current
production systems function well, their efficiency can be
further improved through fast reconfiguration according
to production orders’ timing and corresponding resource
availability. In order to enable dynamic reconfiguration,
the system elements (from the enterprise level to the
production workstations (WSs) on the shop floor) need to
share status information and commands.

Information sharing is limited due to heterogeneous
infrastructures and the incompatibility of legacy proto-
cols. Cyber-physical system (CPS) and service-oriented archi-
tecture (SOA) approaches enhance interoperability among
systems and open the door to the Industry 4.0 initiative.
This initiative [1] raises expectations on methods [2], proce-
dures [3], safety and security compliance [4], and tools to
support flexible interoperable and smart manufacturing [5]
throughout the organization—or even among organizations.
The SOA [6] approach enables the automation of distributed
processes supported by services provided through product
lines. It is essential to have efficient process management in
this hierarchical environment with different actuation levels.

This article addresses the dynamic construction of models
for business processes, considering the different requirements
at two levels. The proposal integrates Business Process Model
and Notion (BPMN) modeling [7] at the enterprise level and
colored Petri net (CPN) [8] at the production level. The
solution automatically deploys those models over an Enter-
prise Service Bus (ESB) [9] where the processes are imple-
mented and monitored. An Arrowhead system, the workflow
choreographer [10], builds the models from the production
order. In general, the Arrowhead framework [11] provides

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7334-0546
https://orcid.org/0000-0003-1971-0048

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1355

Fig. 1. Development lifecycle phases, and the processes, tasks, and tools
used within the proposed dynamic, multilevel workflow management concept.

interoperability and integrability for heterogeneous systems in
an IIoT architecture.

This article proposes the integration of two different mod-
eling techniques for workflow design at enterprise and pro-
duction levels in heterogeneous and dynamically changing
environments. The novelty of this article strives as follows:

1) the dynamic construction of those workflows using
BPMN and CPN from a production recipe;

2) the automatic deployment of those models over an ESB
where the processes are implemented and monitored.

Fig. 1 shows the elements of the integrated model. The
internal rings of this model are a merge of the ITIL service
lifecycle [12] and other product lifecycle models [13]. They
describe the central development and operation stages of the
lifecycle, i.e., (from inside to outside) the design, transition
and operation phases, and their subprocesses, tasks, and related
tools, which is the outer ring of Fig. 1, and implementation
specific to our current proposal.

The structure of this article is as follows. Section II
discusses the related work. Sections III–V present our
approach, including the architecture and frameworks to be
used. Section VI demonstrates a use case for the proposal.
Section VII discusses the implementation, Section VIII pro-
vides the results on its performance, and Section IX concludes
this article.

II. RELATED WORK

This section presents related work on the field of business
processes, the modeling techniques employed for their rep-
resentation, the capability to adapt to process changes, and
the ability to share resources among processes. The results
expounded here describe the research process of the design
phase in Fig. 1.

A. Modeling Business Processes

In recent years, modeling business processes has attracted
the interest of various research communities. Workflow-
related concerns—such as the management of resources [14],
optimization [15], scalability [16], adaptability [17], and effi-
ciency [18]—are continuously evolving and changing. Work-
flow processes have become a popular and essential topic
partially due to the Industry 4.0 initiatives. This section
summarizes the recent advancements that are most relevant to
our approach. According to the survey of Krishna et al. [19],
business processes describe the production of goods or ser-
vices as a set of local tasks and interorganization exchanges.
They found that the current primary business process modeling
notations have a workflow perspective of business processes.
Brouns et al. [20] presented a thorough state-of-the-art study
that identifies the gap between the digital world and IoT
about business process design and implementation. The study
reinforces the importance of creating a uniform way of repre-
senting IoT in business process models. Modeling languages
do not fully cover concepts, such us availability and mobil-
ity of resources or process context information. Among the
alternatives for modeling analyzed, such as the BPMN 2.0,
Event-driven Process Chains (EPCs), and Unified Modeling
Language (UML), their article pinpoints BPMN as the best
position to represent IoT although some improvements are
necessary. BPMN 2.0 is an ISO standardized notation for mod-
eling business processes that can be made executable either
using process engines (e.g., Activiti, Bonita BPM, or jBPM) or
using model transformations into executable languages [e.g.,
Business Process Execution Language (BPEL)].

Enhancing the processing capacity of IoT devices makes
them active participants in business processes by executing
parts of the business logic. IoT devices can manage data
and make decisions locally, reducing the amount of data
exchanged and the need for central processing. This decentral-
ization of business processes requires support at both design
and execution time. Domingos and Martins [21] proposed a
solution, which uses BPMN to model both centralized and
IoT decentralized business processes with the same level of
abstraction.

Mass et al. [22] presented a comparison between two
business process workflow execution approaches—an embed-
ded workflow engine and a coding program representing the
workflow. They conclude that executing business processes on
a workflow engine cannot be justified in cases where system
resources are sparse, and the model is not reused. In cases
where the same process is executed multiple times and lot of
memory is available, a workflow engine is a viable solution.

B. Workflows at Enterprise Level

Several business process modeling tools and languages have
been proposed to describe, analyze, and evaluate business
processes [23]. The BPMN [7] is one of the most widely
used and standardized modeling languages that can be used
to describe workflow structure, organizational level tasks,
helping to manage process-related resources effectively. Con-
sequently, BPMN serves as a universal language that bridges

1356 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

the communication gap that often occurs between business
process planning and implementation. The primary goal with
BPMN is to support business process management and provide
a structure that is easy to understand for every participant
during the production. The BPMN specification also provides
a graphical description and has the following components.

1) Events: Start, intermediate, and end.
2) Activities: Tasks: service, user, script, mail, receive, and

business; multiple instances; subprocesses; and Loop.
3) Gateways: Exclusive, inclusive, parallel, event-based,

and complex.
4) Data and Flows: Data object, association, and sequence,

default, and message flow.
There are several possibilities for creating and executing

BPMN workflows, depending on the solution preferred by
the designer. The most common process engines are [24]
Activiti, jBPM, or Bonita BPM. Model transformation to some
executable language, such as BPEL, is also possible [19].

C. Modeling Parallel Workflows at Production Level

Modeling languages, such as BPMN or BPEL, are relatively
easy to interpret, but they are not entirely suited to describe
very complex production cases. In contrast, based on a pre-
vious comparison [10], Petri nets are useful for describing
complex logic that can represent distributed systems and pro-
duction flows as well. The Petri net [8], [25] is a widely known
and used graphical-mathematical model-description language.
Briefly described, it is a directed bipartite graph consisting of
places and transitions. Directed arcs carry “firing” conditions
between places and transitions. Although the language satisfied
the industrial expectations in the past, the requirements of
Industry 4.0 already set higher demands on modeling lan-
guages in general, in which traditional Petri net can no longer
satisfy in the sense of, e.g., timing or hierarchy. However,
along with the recent digital industrial revolution, the Petri net
has also undergone many iterations—resulting among others
the CPN [26]. This extension adds the ability to carry more
complex information in the tokens to Petri nets, becoming
the token “colored." It also allows the use of time as a
parameter and supports a hierarchical composition. For the
efficient modeling of CPN, several tools have been developed,
and the best known is the CPN Tools [27]. CPN Tools is
based on the Standard Meta Language (SML)—which is a
functional programming language—but the CPN Tools also
extends SML with functions such as color sets and constructs
for declaring variables, multisets, and related operators and
functions. SML enables simulation, state-space analysis, and
performance analysis [28]. Section III puts our proposal in
context with the related work.

III. CONCEPT OF ADAPTABLE WORKFLOW MANAGEMENT

IN DYNAMICALLY CHANGING ENVIRONMENTS

A. Motivation and Requirements

On the one hand, the literature related to workflow process
changes concentrates on ensuring the correctness of the

changed workflow processes [29]–[31], where the focus is
mainly on the preciseness of task sequences or structural
errors. On the other hand, the preservation of workflow process
consistency is the goal in [32] and [33], where the purpose
is to examine the persistence of changed workflow processes
considering availability and reliability. However, nowadays,
the IIoT-supported business processes are characterized by
frequent changes during their life cycle, which have an impact
on the management of workflows. Du et al. [34] highlighted
that fast-changing business environments and their workflows
bring many challenges for the workflow execution and pro-
posed an off-line approach using temporal constraints that
impacts during the design stage. They identified that systems
must adapt and respond dynamically to changes throughout
the life cycle. Therefore, the ultimate goal is to provide
a solution that can operate in real-time circumstances and
can adapt to changes on-the-fly, such as the substitution
of a given resource (occupied) by another available. The
approach presented in this article especially emphasizes this
expectation, demonstrating how the workflow can dynamically
adapt to unexpected events. The availability of resources
(devices, machines, assembly lines, and so on) and the abil-
ity to share them in real-time are one of the most impor-
tant requirements to support IIoT business processes based
on services. Therefore, a framework is needed to manage
these processes and resources according to the following
requirements.

1) Requirements at the Enterprise Level:

a) To provide a high-level graphical vision of work-
flows for easy understanding and monitoring.

b) To provide a universal language for easy commu-
nication.

c) The technique modeling processes must be easily
implemented and deployed in real scenarios.

2) Requirements at Production Level:

a) To represent complex processes involving distrib-
uted systems and production flows.

b) To accommodate timing constraints and enable
hierarchical composition.

3) Requirements at the Framework Level:

a) To accommodate standard modeling techniques.
b) To provide a single framework for the implemen-

tation, execution, and monitoring of processes.
c) To maintain the hierarchy for enterprise and pro-

duction levels.
d) To provide tools for the agile and dynamic con-

struction of workflows.
e) To enable the automatic deployment of workflows.
f) To enable business process changes during the

whole lifecycle.
g) To enable the sharing of resources (reallocation and

substitution) in real time.
h) To enable interoperability and integrability for het-

erogeneous systems.
i) To enable a service-oriented-driven architecture

guaranteeing adaptable, loosely coupled, and late-
bound services.

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1357

B. Overall Architecture

To address these requirements during the whole life cycle of
the workflow process, we propose an architecture that supports
the usage of the previously described modeling languages,
namely BPMN and CPN, in a common infrastructure. Many
solutions have been introduced during the years about how
to translate BPMN into CPN and vice versa [35]–[37],
or even how CPN can verify new BPMN-based
approaches [38].

However, the purpose of this article is not to introduce yet
another solution, such as the mentioned ones, but to show
how the two languages can be used together on a common
platform. On the enterprise level, BPMN is easy to understand
and enables monitoring of processes. Furthermore, it is easy
to create and edit new processes. On the contrary, it is not
suitable for modeling complex manufacturing processes [39]—
among other reasons because of incompleteness on the per-
formance for: 1) multiple, parallel starting events; 2) excep-
tion handling for concurrent subprocess instances; 3) more
complex gateways such as OR-Join; and 4) process instance
completion [40]. BPMN is developed for modeling business
processes and satisfies the requirements at the enterprise level
but not at the production level. In contrast, CPN is suitable
for production modeling, but it is more difficult to understand
and use at the enterprise level. Although there are solutions
for translation between CPN and BPMN, a single solution
does not satisfy business processes at both workflow levels.
Therefore, the task is to find a solution that can combine these
two approaches and offers a satisfying option for enterprise
and production levels at the same time. Our solution provides
an Arrowhead support system (Workflow Choreographer) that
builds models at both levels from a recipe. This design
document includes the sequence of tasks for the enterprise
process and the details (e.g., services involved, the sequence of
resources, and so on) to build the production-level processes.
The Workflow Choreographer converts the recipe in a BPMN
model (for the first part) and a CPN code (in the form of
classes) for each of the production-level classes. At the tran-
sition phase (deployment), our approach proposes to deploy
both modeling techniques, BPMN at the enterprise level and
CPN at the production line level over a single workflow
engine provided by an ESB. The hierarchical relation between
both levels is maintained during execution. The architecture
is complemented using the Arrowhead framework, which
enables the connection of loosely coupled systems at both
levels in an SOA. Plant-independent resources and services are
discovered and accessed through Arrowhead at the production
level. The enterprise-level services are also available using
Arrowhead.

The operation phase is supported by the Arrowhead frame-
work providing service management through its core systems
and workflow management using a new element, the workflow
choreographer and furthermore monitoring the established
workflows through the WSO2 Business Process Server (BPS)
and Explorer platforms. The elements of the architecture
and the methodology to model and implement processes are
described in Sections V and VI.

Fig. 2. Generic example of using intercloud servicing within Arrowhead.

IV. ARROWHEAD FRAMEWORK

System architects of the IIoT have been looking for methods
and frameworks that enable interoperability and integrability
of heterogeneous systems in the last decade. The Arrowhead
framework [11] has been designed and developed for satis-
fying precisely those needs, supporting effective and secure
service sharing through the SOA approach.

The Arrowhead framework introduced the concept of local
automation clouds [41], providing security, engineering sim-
plicity, and real-time communication for application systems
(see Fig. 2). Each local cloud has three mandatory core sys-
tems (Service Registry, Orchestration System, and authoriza-
tion system) to enable essential SOA and security functions.
Arrowhead provides supporting core systems as well for
intercloud servicing (through the Gatekeeper and Gateway
systems) [42], homogeneous event handling (Event Handler),
different protocol mapping (Translator System) [43], and
many more [44]. One of the main principles of Arrowhead is
technology independence. Nevertheless, the current reference
implementation of the mentioned components is already
widely used [45], which is open source, written in Java.

Workflow management is also supported through data-
driven [10] concepts as well as separated workflow manager
and executor entities [46]. Arrowhead allows to implement
and maintain local cloud [41] specific systems as well, which
are the custom applications, CPSs of the cloud. To increase
its applicability, the homogeneous integration concept of how
the framework can support enterprise and production levels is
presented in this article.

The overall model benefits Arrowhead due to its SOA
approach—it supports service lookup, together with loose
coupling and late binding of the service provider and consumer
systems, resulting in dynamic service interactions. Since the
presented approach also integrates the BPMN and CPN-based
task execution using an ESB, the overall model also serves as
a proof of concept for Arrowhead flexibility.

1358 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 3. Simplified service exchange for workflow choreography [10].

A. Requirements of Digital Production in the Arrowhead

Now, the development of the Arrowhead framework is in
that stage where the requirements of the automated production
must be satisfied. While addressing automated production
issues through the Arrowhead framework, several alternatives
came alive. These approaches defined the critical elements
of the automated production, i.e., implemented following
an SOA [44], using distributed systems and resources [46]
and based on predefined but dynamically changing state
machines [10], [47]. Considering the proposals, Section IV-B
introduces the proposed new supporting core system, namely
the Workflow Choreographer, which combines the mentioned
concepts.

B. Workflow Choreographer for Supporting Automated

Production Within the Arrowhead

The Workflow Choreographer [10] is the main engine of
automated production within the Arrowhead framework. From
the production point of view, it processes the production order
and accordingly implements the production recipe [46]. The
industrial world has diverse scenarios; therefore, it is not
possible to define a universal workflow manager. Considering
that, the proposal is that the Workflow Choreographer must
execute workflows based on predefined templates according
to the specific procedures. The production recipe uses these
templates, and based on the production steps, the workflow
choreographer creates the WS specific Workflow Executors
(WEs), which are the real production accomplishments of the
WSs. It executes the related activities and tasks according
to the production recipe, which will be given to WSs for
performing modifications on goods. Based on the production
recipe, the devices and systems of a WS will be coordinated to
complement the related workflow step. From the Arrowhead
point of view, the Workflow Choreographer sends requests to
the Orchestration System regarding the services to be used,
and it subscribes to the related events, which are reported by
the Event Handler, and it manages the allocated application
systems of WEs accordingly (see Fig. 3).

Fig. 4. Architecture of the WSO2 enterprise integrator.

V. ENTERPRISE SERVICE BUS AND ITS INTEGRATION

The ESB [9] is a software architecture model used for
designing and implementing the collaboration and communi-
cation between mutually interacting software applications and
components in an SOA [48]. The ESB motivation comes from
the need to find a standard, structured and general concept for
describing the implementation of loosely coupled services that
are expected to be independently deployed, running, hetero-
geneous and disparate within a network. The main functional
areas for an ESB are as follows.

1) Architecture: Including error tolerance, scalability, per-
formance, as well as hierarchical composition and exten-
sibility and the ability to communicate with other ESBs.

2) Change and Control: Service monitoring, lifecycle man-
agement, and ESB supporting tools.

3) Connection: It provides a wide range of support for most
messaging standards and communication protocols.

4) Mediation: It dynamic provision, discovery, and man-
agement of resources.

5) Orchestration: Lightweight orchestration and support for
BPEL and BPMN.

A. WSO2 Enterprise Integrator Architecture

Our solution proposes the usage of an ESB named WSO2
(Web Services Oxygenated 2) [49].

WSO2 EI (WSO2 Enterprise Integrator) is a generic open-
source platform that makes possible the integration of different
applications, systems, or even data. It enables enterprise ser-
vices to collaborate dynamically between SOA-based systems.
The WSO2 EI block architecture is outlined in Fig. 4.

Out of the modules offered by WSO2 EI, we propose to
use the following ones.

1) Enterprise Service Bus: The enterprise integration
capabilities enable the creation of service endpoints,
sequences of services, and software artifacts to fully
deploy a service architecture and integrate other SOA-
based frameworks such as Arrowhead.

2) Business Process and BPMN Explorer Server: It enables
us to easily deploy business processes written in BPMN
or BPEL and also serves as the business process man-
agement and hosting environment for SOA systems.
It is supported by the Activiti engine [50] and Apache
Orchestration Director Engine (ODE). On the BPMN
Explorer server, the current status of workflows can be
monitored.

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1359

3) Tooling: The WSO2 Developer Studio is an Eclipse
plugin that enables the modeling of processes using
BPMN or BPEL. Models are created using the graphical
interfaces provided by the tool and generate XML files.
The plugin enables to compile processes for Activiti.

B. Using ESB Together With the Arrowhead Framework

Both the Arrowhead framework and the ESB are SOA-
based, and the features offered by ESB meet Arrowhead’s
expectations. Thus, the following components of ESB have
been used during integration.

1) Providing APIs for Arrowhead Service Consumption:

Artifacts and endpoints have been constructed to consume
services offered by the Arrowhead framework. These services
are related to service registration and orchestration.

2) Running Business Processes: The business process
engine has been used to deploy and run processes designed
in BPMN or BPEL. Embed the recipes for business process
parts at enterprise and production levels.

3) Supporting Container-Based Solutions: There are
already directions suggesting container-based workflow
management [51], which is also possible with the WSO2 EI
provided infrastructure.

The ESB can provide a lightweight orchestration of services
and BPEL, BPMN support. For creating BPMN diagrams,
Activiti has been used. Activiti also makes possible the defin-
ition of BPMN service tasks using Java classes. WSO2 work-
flow engines can interpret and execute such models. In order
to be able to run the two modeling alternatives at different
levels over the same platform, we need to perform some
adaptations. WSO2 ESB can implement and run BPMN mod-
els, but it cannot process CPN. The CPN model needs to be
compiled and converted into a form that can be handled by
the WSO2 ESB. As a starting point, the CPN models can be
exported as XML code. Besides, the BPMN processes can be
converted into XML format as well, which is an essential basis
for integration [52]. Since the Activiti engine allows defining
service tasks using Java classes and embeds them into the
BPMN model as service tasks, we propose to transform the
production-level processes written in CPN into Java code that
includes the tasks to be performed in the Java class. Then,
the obtained Java classes have been deployed into the BPMN
processes using WSO2 ESB. In general, the production steps
are different, which means that the CPN models should be
designed accordingly. Manufacturing processes are varied and
always company-specific; therefore, production recipes need
to be created in advance. The CPN models represent those
production recipes at the production level, and consequently,
they must be prepared before the construction of enterprise
workflows. These models can be used as templates when
the Workflow Choreographer creates the production-specific
workflows based on the production order.

VI. USE CASE: AUTOMOTIVE ASSEMBLY PLANT

This section presents a use case example for an automotive
production system—considered as system of systems powered
by the Arrowhead framework. This production system runs

business processes, and the Workflow Choreographer manages
their execution.

A. Company-Specific Production Systems

The company-specific production system is called XPS [53],
where “X” denotes the company. XPS is a strategic devel-
opment program, which ensures consistency and stability of
development. It creates a common development language that
facilitates communication between plants and helps the sharing
of information and resources efficiently.

The XPS includes the assembly plants [54], which can
usually be divided into four major units, so-called shops,
shown in Fig. 5.

1) Press Shop: Here, the various body elements are man-
ufactured, e.g., doors, pillars, roofs, and many more
elements.

2) Body Shop: The first stage in car assembling, where
body parts are mounted, using various techniques, such
as welding, laser brazing, riveting, clinching, or bonding.

3) Paint Shop: Where the car body elements will be
painted, including processes from the chemically clean
parts to the coating and required repairs.
item Final Assembly Shop: The automobile will be fin-
ished here. Chassis subassemblies and trim, e.g., glass,
doors, seats, electronics, and other optional parts, are
applied to the body.

Except for the press shop, the shops should be in one plant,
but the paint shop must be separated from the others because
of the purity, processing, and airing problems. Besides, there
is another department where cars are repaired. Because man-
ufacturing is usually faster in certain sections, high-capacity
storage buffers are located between the shops; however, it is
not shown explicitly in Fig. 5.

B. Assembly Flow Used as an Example

In this use case, the focus is on the final assembly shop and
its WSs, which involves many devices or systems (different
types of robots), executing specific activities with a common
goal. From the standard processes, three production steps are
taken and described.

The workflow consists of the following tasks.
1) Tank Installation: The conveyor belt moves to

WS14 with the smart product (Transport service), where
welding and assembling services are consumed, and the
tasks are assigned to the robots of this WS. The services
are available, and the tasks will be executed. At the
end of the process, the Workflow Choreographer will be
notified (notify service) (this is the default assumption
for the next steps as well).

2) Seat Installation: The conveyor belt moves to the WS15
(transport service), where the welding, assembling, and
trimming services are consumed, and the tasks are
assigned to WS robots. Meanwhile, the welding robot
of this WS crashes; therefore, another welding robot is
needed to take over the job. The WS17 welding robot is
reconfigured and redirected (transport service) to do the
job. At the end of the process, the redirected welding

1360 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 5. Typical automotive assembly plant: the example use case of Section VI-B refers to the production steps of final assembly shop.

Fig. 6. Modeling the use case in BPMN with Activiti.

robot will be moved back to its original place, and it
will be reconfigured again for WS17 tasks.

3) Gear Installation: The conveyor belt moves to the
WS16 (transport service), where welding, assembling,
and nutrunner services are consumed, and the tasks are
assigned to the WS robots.

C. Workflow Choreographer at Enterprise Level

The input of the Workflow Choreographer is the production
order that should be first preprocessed. It is complex and bound
documentation that describes the product specification. Based
on this, the Workflow Choreographer creates the production
recipe, which will precisely contain the related workflow steps
and the appointed systems. The production recipe can be
dynamically changed by the Workflow Choreographer dur-
ing the production, according to the available resources and
unexpected events. Using this, the Workflow Choreographer
allocates the tasks to the appropriate WSs with the necessary
production configuration.

Fig. 6 shows a part of the production steps in the final
assembly shop. Unlike the production-level execution shown
in Fig. 7, the BPMN model merely shows the high-level
workflow steps that will be executed, although it provides
enough information about the current state of production on
the enterprise level. According to the use case, the production
will start only when the smart product arrives at WS14. The
production-specific workflows are defined and coded in the
visible BPMN Service Task objects whose logic is described
in Section VI-D.

D. Workflow Choreographer at Production Level

When the Workflow Choreographer has defined the enter-
prise -level workflow, the created workflow steps will be filled
with the related production logic based on the production
recipe. From the Workflow Choreographer point of view,
these production steps are considered as WEs, i.e., the WE
is encapsulated in the Workflow Choreographer. Implemen-
tationwise, the Workflow Choreographer sees the WE as a
simple service task (BPMN notation) that implements a Java
class. This class holds the production recipe represented as a
CPN that interacts with the Arrowhead framework for resource
allocation, service provisioning, and other production-related
activities. When the task is executed, the WE reports it to
the workflow choreographer. Fig. 7 shows the production-level
logic.

Using the opportunities provided by CPN tools, the hier-
archical composition can be seen on top. For simulating the
interaction between the mentioned elements, three main parts
are defined from the hierarchical point of view: Arrowhead
mandatory core systems, Workflow Choreographer, and WEs.

The Arrowhead mandatory core systems are the
Authorization System, Service Registry, and Orchestration
System (through service discovery). The Workflow
Choreographer manages the sequence of service consumption
for the WEs, and it can reconfigure the reserved devices
for the WEs according to the current step. To keep it
simple, the WE contains only the basic logic of the current
WS where a service is used from an application system.
Here, the workflow steps of the specific business processes
can be found (e.g., tank installation)—together with the
corresponding actions such as when, how long, and which
robots should work on the smart product during this process.

In Fig. 7, it holds the following.
1) The Workflow Choreographer sends a serviceRequest()

to the Orchestration System, which will ideally offer a
provider who can give the requested service.

2) The allocated provider will be reported by the event
handler. Until the Workflow Choreographer receives the
notification about the allocated service, it will wait.

3) Then, the Workflow Choreographer examines the offered
provider, which can be any systems, robots, and so on.

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1361

Fig. 7. Model represents the initiative CPN model of Workflow Choreographer (in the middle) and shows roughly the interaction with mandatory Arrowhead
systems (left) and a possible example WE (right).

In the first step, the Workflow Choreographer checks
the configuration of the allocated provider. Here, three
scenarios can be considered.

a) If the provider is currently configured for another
task, then the Workflow Choreographer first makes
a software update on the robot, which is basi-
cally a preconfigured patch with the regarding task
execution logic.

b) For some reason, the provider is not able to com-
plete the task; therefore, the Workflow Choreog-
rapher must send a newServiceRequest() to the
Orchestration System and 1–3 points will be
executed again.

c) The provider has the appropriate configuration.
4) Then, the provider will be passed to the regarding

WE, where the production level workflow is executed
synchronized with other possible systems, robots, and
so on at the current WS.

5) According to the prewritten CPN logic of the production
level, the task will be executed by the WE, where the

current states of the production is continuously evaluated
(processState()).

6) The WEs will report the statuses according to the events,
which can be a successor, in case of unexpected events,
can be a failure.

7) The Workflow Choreographer analyses the results
(analyseResult()), and based on, it brings the proper
decisions. Here are two relevant possibilities.

a) If the result is a failure, then this has to be
analyzed. The current model does not represent the
possible scenarios.

b) If the result is a success, then the workflow
choreographer will give back the reserved service,
i.e., sendSuccess() message to the Orchestration
System, which can interpret this and will make the
used provider free (serviceUnlock()).

VII. DISCUSSION ON IMPLEMENTATION

During the creation of the workflow engine, various
approaches for solution integration were considered, and as

1362 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 8. Integration of the BPMN model on enterprise level and the CPN templates on production level. The execution order is managed by the Workflow
Choreographer.

always, finding the optimal solution depends on the application
area. Considering the requirements of Industry 4.0 concerning
production, we aimed at providing a feasible solution both for
business and production participants [47].

Combining the two modeling languages (BPMN and CPN)
at the two levels (enterprise and production) is shown in Fig. 8.
Here, transparent business workflow elements include verified
and CPN-based production WEs.

Behind the BPMN tasks, a template-based and verified
CPN model can be found, which ensures the correctness of
the particular production step. These templates are simple
although company- and production-specific, hence, have to be
created by the competent expert for the given product.

A. Reference Implementation of the Multilevel Workflow

In our reference implementation of the workflow model,
as it can be seen in Fig. 1 in the transition and operation phases
and their subprocesses, the models at enterprise and production
levels are developed by using Eclipse Java EE IDE, including
the necessary plugins to model and deploy processes. In order
to provide dynamically adaptable workflows, automated code
generation is required. We used the JavaPoet [55], which is an
open-source library that provides APIs for creating the Java
source code. Section VII-B describes in detail the main steps
of the workflow generation.

1) Workflow Model at Enterprise Level: Based on the pro-
duction order, which is a JSON document [47], the workflow
choreographer generates the respective production recipe and,
based on it, the BPMN model automatically. To achieve this,
we use the eclipse plugin version of the Activiti process engine
developed by Alfresco [50], which is the leading lightweight,
Java-centric open-source BPMN engine supporting real-world
process automation needs. The Workflow Choreographer iden-
tifies the steps and services from the production recipe, and
it creates the enterprise-level workflow dynamically with the
appropriate steps. These are the high-level workflow steps that
define the functional description of WEs at the same time.
In the current implementation, we use the Activiti engine

service tasks function where—among others—Java classes can
be passed as input of the service tasks. This is the central pillar
of the implementation because the production-level logic has
then got implemented into these Java classes.

2) Workflow Model at Production Level: The created steps
of the enterprise-level workflow must be filled with the appro-
priate production-specific logic based on the prewritten CPN
Templates. These steps are the WEs from the production point
of view. To use the features provided by Activiti, the CPN
logic must be converted automatically (with JavaPoet) into
Java code—however, the presentation of the mapping algo-
rithm is one of the further works. The following options
can be considered for compiling CPN into running (in our
implementation: Java) code.

1) Export CPN logic as XML and create a compiler
that will generate BPMN service tasks [37] or BPEL
model [56].

2) Automatically generated pseudocode based on the SML
logic from CPN Tools that will be converted into Java-
code, which will be implemented as BPMN service tasks
or BPEL model;

3) Combining the two solutions and based on the generated
XML of CPN Tools, creating pseudocode that will be
converted into Java-code, which will be used in the
BPMN Service Task or BPEL model.

B. Deployment of the Artifacts

When the workflow is generated, it is ready to be delivered.
For this, first, we identified the mandatory artifacts of WSO2.
Here, the first step is the creation of a composite application
project (CAR). The CAR includes the service task artifacts
of WEs as dependences and enables the selection of the
WSO2 BPS where the workflow will run. The second step
is the creation of the BPMN graph based on the logic of the
production recipe. The result after implementing the software
leaves to main archives.

1) A .bar zip file that holds the enterprise-level model
implemented in BPMN. This process is represented in
XML.

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1363

Fig. 9. Tree structure of CAR artifact.

Fig. 10. Monitoring the workflow with BPMN explorer.

2) A .car zip file that holds the WE artifacts. This file holds
an XML file (artifacts.xml) indicating that the archive
holds a carbon-type application, runs on a BPS, and
indicates which is the artifact that holds the jar files
and its version. The artifact is also included in the .car

zip file. This artifact includes the.jar files holding the
classes used in the service tasks built with BPMN. The
structure of the .car file of the current case is shown
in Fig. 9.

These two files can be deployed onto the WSO2 infrastruc-
ture, available in our experiment environment. However,
regarding the delivery, two kinds of solutions can be used.

1) Manually: Uploading the .bar and .car files using the
management console utility provided in the WSO2 BPS
web interface.

2) Automatically: There are several ways [49] to deploy
CAR files onto the environment, e.g., using the Maven
Deploy feature of WSO2 Developer Studio, by which it
will be sent directly to the server.

Our approach adds further functionality to the workflow
choreographer by enabling the automatic deployment of the
zip files. The Workflow Choreographer collects the .bar and
.car files produced after the design stage (development) and
transfers them to the regarding folders of the WSO2 BPS
where the workflow process will be executed.

1) The path of the .car file: "$CARBON_HOME/
repository/deployment/server/carbonapps."

2) The path of the .bar file: "$CARBON_HOME/
repository/deployment/server/bpmn."

After the delivery, the WSO2 ESB runs and monitors the
processes by using the BPMN explorer utility, as it is shown
in Fig. 10.

VIII. PERFORMANCE MEASUREMENT

OF THE PROOF OF CONCEPT

In order to get an objective view of the previously presented
automated deployment, it is crucial to measure the efficiency

TABLE I

DEPLOYMENT TIMES DEPENDING ON THE BPMN OBJECTS

Fig. 11. Average deployment time relative to the number of BPMN objects.

of workflow generation based on specific parameters. In this
case, two factors are worth examining. First, how the number
of BPMN objects (in our case, the WEs) affects the gener-
ating times of a workflow, and second, how long the service
consumption and provision processes will last.

A. Performance Test of Workflow Generation

Regarding the first factor, Table I presents the information
about the slowest, the fastest, and the average deployment time
(given in ms) to produce BPMN objects (given in number).
One thousand runs were made for each studied BPMN object
number. The tests were run on a machine with Intel Core
i7-8650U CPU 1.90 GHz (4 cores), 16 GB of memory, and
Microsoft Windows 10 x64.

Based on the results, the diagram of the average deploy-
ment time is shown in Fig. 11, where it can be shown
that the increasing number of BPMN objects is linear with
time. This is as expected. However, this measurement was
needed to demonstrate how long a possible update will take
compared with the number of BPMN objects under real-time
circumstances.

1364 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

TABLE II

SERVICE CONSUMPTION TIMES

Fig. 12. Architecture of service-related performance tests.

B. Performance Test of Service-Related Processes

Regarding the second factor, the goal is to estimate the
additional load introduced by the WSO2 BPS in comparison
with a simple service consumption through the Arrowhead
framework. The objective is to measure the increase in latency
introduced when the processes generated by the workflow
choreographer consume services. Note that it is using the APIs
constructed in the ESB to access the Arrowhead framework.
The test environment composition is shown in Fig. 12 with
the following subparts.

1) Machine 1: VMWare ESXi Virtual Machine with 2 GB
memory, 16 GB disk, and Ubuntu Server 16.04.5. The
following components run on this machine:

a) WSO2 Enterprise Integrator 6.5.0 (Docker);
b) WSO2 BPS 6.4.0 (Docker);
c) Arrowhead framework 4.0 (Core Systems).

2) Machine 2: Intel Core i5-4200M CPU 2.50 GHz, 8 GB
Memory, and Microsoft Windows 10 x64. The following
components run on this machine:

a) service application provider written in Java;
b) service application consumer, written in Java.

Using this architecture, two types of tests were executed—
for which the results are summarized in Table II.

The first one measures the time incurred by several serial
calls from the Java Application Client to the Java Application
Provider using the Arrowhead framework (orange arrows
in Fig. 12). The requests are placed after each other; the
total time for all calls is measured. Fig. 12 shows the time
needed for 1000 serial calls. The performance of Java Client
and Arrowhead (orange) is shown in Fig. 13. Each call implies
a call to the Orchestration System to obtain the endpoint for
the final service offered by the Service Application Provider
1) and the actual consumption of that service 2).

Fig. 13. Results of the service-related performance tests.

The second test considers a simple business process
[see Fig. 12 (top)] that invokes the Arrowhead adaptation API
deployed in the enterprise integrator, which in turn redirects
the call to the Arrowhead orchestrator service to obtain the
final service endpoint (arrows in blue). Once the endpoint is
available, the process calls on to the service offered by the
service application provider.

Fig. 13 shows the comparison between 1000 serial calls
using the BPS, the WSO2 EI API, and the Arrowhead frame-
work to those of just directly using the Arrowhead framework.
On average, the WSO2 introduces only 9-ms delay in a
regular service discovery consumption sequence. The results
also show a total delay of approximately 9 s at the end of the
1000 iterations, which agrees with the previous average value,
and bearable for the users.

C. Performance Evaluation

In the case of the presented scenario in Section VI-B,
where in the second step (seat installation), the welding
robot is crashed, the other welding robot can be allocated
approximately in 368 ms, summing up the measured average
values (see Tables I and II). In this case, one WE (BPMN
object) of the three needs to be updated with one new service.
The performance test results provide a reasonable basis for
designing automated workflows using the described technolo-
gies. Furthermore, even the response time to unexpected events
can be easily estimated by considering the identified metrics.
Noticeably, the delay from the WSO2 architecture cannot be
reduced because it is a particular and noncontrollable compo-
nent of this composition. However, in the final implementation,
the WSO2 architecture will be used at the enterprise level and
not at the production level where those unexpected events take
place; therefore, the additional time introduced by WSO2 will
not impact the performance, which will allow for faster service
consumption and end-to-end deployment time.

IX. CONCLUSION

The novelty of this article is the integration of dynamic
task executions at the enterprise and production levels through
actual workflow management models and tools (such as ESB,
BPMN, CPN, and Arrowhead), enabling efficient and flexible
workflow management even in heterogeneous and dynamically

KOZMA et al.: DYNAMIC MULTILEVEL WORKFLOW MANAGEMENT CONCEPT FOR INDUSTRIAL IoT SYSTEMS 1365

changing environments. The overall method translates to oper-
ative, executable code, due to the available toolset. While there
are many well-known methodologies for workflow modeling
in the industrial fields, Industry 4.0 brought new requirements,
which must be considered and fulfilled in the next generation
of manufacturing.

Accepting the challenge, this article proposes a workflow
execution model that integrates information and control flows
at different workflow levels. The goal is to provide a solution
that is transparent and easy to manage at the enterprise level
and can also verify and execute the workflow at the production
level. To achieve this, in the first step, the requirements of
the related workflow levels were identified. For the enterprise
level, the recommended modeling language is BPMN, and
for the production level, it is CPN. This article provides
a generic overview of the two chosen modeling languages,
identifying their advantages and disadvantages. The presented
combination of the models satisfies the requirements of both
levels. The further novelty of this article is to show how
the Arrowhead framework can assist in automated production
while fitting in the abovementioned approach. In line with
the identified requirements of workflow levels, expectations
for the framework level have also been defined. Based on
the described criteria, we introduce a new workflow-engine
supporting system, namely the Workflow Choreographer, man-
aging the parallel execution processes at the WSs. In order to
show an alternative to a fully Arrowhead-driven implementa-
tion, as proof of concept, another SOA compatible open-source
solution, the WSO2 ESB is integrated with the Arrowhead
framework. Using these together, we verified and validated
the Workflow Choreographer through an example from the
automotive industry.

Regarding future work, the prototype of the Arrowhead-
specific Workflow Choreographer has already been released
based on the presented proof of concept. Therefore, the goal
is to test, develop, and fine-tune the system until it is suitable
for operation in a real industrial environment.

REFERENCES

[1] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, “Indus-
trial Internet of Things and cyber manufacturing systems,” in Industrial

Internet of Things. Cham, Switzerland: Springer, 2017, pp. 3–19.
[2] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architec-

ture for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3,
pp. 18–23, Jan. 2015.

[3] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” J. Ind. Inf. Integr., vol. 6, pp. 1–10, Jun. 2017.

[4] A. Bicaku, C. Schmittner, P. Rottmann, M. Tauber, and J. Delsing,
“Security safety and organizational standard compliance in cyber phys-
ical systems,” Infocommun. J., vol. 11, p. 2, Mar. 2019.

[5] S. Mittal, M. A. Khan, D. Romero, and T. Wuest, “Smart manufacturing:
Characteristics, technologies and enabling factors,” Proc. Inst. Mech.

Eng., B, J. Eng. Manuf., vol. 233, no. 5, pp. 1342–1361, Apr. 2019.
[6] T. Erl, Service-Oriented Architecture. London, U.K.: Pearson, 2005.
[7] S. A. White, Introduction to BPMN. Armonk, NY, USA: IBM, 2004.
[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.

IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.
[9] D. A. Chappell, Enterprise Service Bus. Newton, MA, USA: O’Reilly

Media, 2004.
[10] P. Varga, D. Kozma, and C. Hegedus, “Data-driven workflow execution

in service oriented IoT architectures,” in Proc. IEEE 23rd Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), Sep. 2018, pp. 203–210.

[11] P. Varga et al., “Making system of systems interoperable—The core
components of the Arrowhead framework,” J. Netw. Comput. Appl.,
vol. 81, pp. 85–95, Mar. 2017.

[12] A. Nabiollahi and S. bin Sahibuddin, “Considering service strategy in
ITIL v3 as a framework for IT governance,” in Proc. Int. Symp. Inf.
Technol., Aug. 2008, pp. 1–6.

[13] D. Kozma, P. Varga, and G. Soós, “Supporting digital production,
product lifecycle and supply chain management in industry 4.0 by the
Arrowhead framework—a survey,” in Proc. IEEE 17th Int. Conf. Ind.

Inform. (INDIN), Jul. 2019, pp. 126–131.
[14] W. Du, J. W. Davis, and M.-C. Shan, “System and method for enterprise

workflow resource management,” U.S. Patent 6 308 163, Oct. 23, 2001.
[15] J. Saives, G. Faraut, and J.-J. Lesage, “Automated partitioning of con-

current discrete-event systems for distributed behavioral identification,”
IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 832–841, Apr. 2018.

[16] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,
and E. Deelman, “A characterization of workflow management systems
for extreme-scale applications,” Future Gener. Comput. Syst., vol. 75,
pp. 228–238, Oct. 2017.

[17] M. Reichert, “Enabling flexible and robust business process automation
for the agile enterprise,” in The Essence of Software Engineering. Cham,
Switzerland: Springer, 2018, pp. 203–220.

[18] H. A. Reijers, I. Vanderfeesten, and W. M. P. van der Aalst, “The
effectiveness of workflow management systems: A longitudinal study,”
Int. J. Inf. Manage., vol. 36, no. 1, pp. 126–141, Feb. 2016.

[19] A. Krishna, P. Poizat, and G. Salaün, “Checking business process
evolution,” Sci. Comput. Program., vol. 170, pp. 1–26, Jan. 2019.

[20] N. Brouns, S. Tata, H. Ludwig, E. S. Asensio, and P. Grefen, “Mod-
eling iot-aware business processes-a state of the art report,” IBM Res.
Division, San Jose, CA, USA, Tech. Rep. RJ 10540, 2018.

[21] D. Domingos and F. Martins, “Using BPMN to model Internet of Things
behavior within business process,” Int. J. Inf. Syst. Project Manage.,
vol. 5, no. 4, pp. 39–51, 2017.

[22] J. Mass, C. Chang, and S. N. Srirama, “Workflow model distribution or
code distribution? Ideal approach for service composition of the Internet
of Things,” in Proc. IEEE Int. Conf. Services Comput. (SCC), Jun. 2016,
pp. 649–656.

[23] M. Havey, Essential Business Process Modeling. Newton, MA, USA:
O’Reilly Media, 2005.

[24] K. Baina and S. Baina, “User experience-based evaluation of open source
workflow systems: The cases of Bonita, Activiti, jBPM, and Intalio,” in
Proc. 3rd Int. Symp. ISKO-Maghreb, Nov. 2013, pp. 1–8.

[25] K. Jensen, W. M. Van der Aalst, G. Balbo, M. Koutny, and K. Wolf,
Transactions on Petri Nets and Other Models of Concurrency VII,
vol. 7480. Berlin, Germany: Springer-Verlag, 2013.

[26] S. Christensen, L. M. Kristensen, and T. Mailund, “Condensed state
spaces for timed Petri nets,” in Proc. Int. Conf. Appl. Theory Petri Nets.
Berlin, Germany: Springer-Verlag, 2001, pp. 101–120.

[27] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri nets and CPN
tools for modelling and validation of concurrent systems,” Int. J. Softw.

Tools for Technol. Transf., vol. 9, nos. 3–4, pp. 213–254, May 2007.
[28] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and

Application. Berlin, Germany: Springer-Verlag, 2012.
[29] D. Habhouba, S. Cherkaoui, and A. Desrochers, “Decision-making

assistance in engineering-change management process,” IEEE Trans.

Syst., Man, Cybern., C (Appl. Rev.), vol. 41, no. 3, pp. 344–349,
May 2011.

[30] N. Ahmad, D. C. Wynn, and P. J. Clarkson, “Change impact on a product
and its redesign process: A tool for knowledge capture and reuse,” Res.

Eng. Des., vol. 24, no. 3, pp. 219–244, Jul. 2013.
[31] P. Sun and C. Jiang, “Analysis of workflow dynamic changes based on

Petri net,” Inf. Softw. Technol., vol. 51, no. 2, pp. 284–292, Feb. 2009.
[32] M. L. Rosa, W. M. Van Der Aalst, M. Dumas, and F. P. Milani, “Business

process variability modeling: A survey,” ACM Comput. Surv., vol. 50,
no. 1, p. 2, 2017.

[33] W. Song, X. Ma, S. C. Cheung, H. Hu, and J. Lü, “Preserving data flow
correctness in process adaptation,” in Proc. IEEE Int. Conf. Services

Comput., Jul. 2010, pp. 9–16.
[34] Y. Du, B. Yang, and H. Hu, “Incremental analysis of temporal constraints

for concurrent workflow processes with dynamic changes,” IEEE Trans.

Ind. Informat., vol. 15, no. 5, pp. 2617–2627, May 2019.
[35] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Hierarchical verifi-

cation for the BPMN design model using state space analysis,” IEEE
Access, vol. 7, pp. 16795–16815, 2019.

[36] M. Ibrahim, “Formal semantics of BPMN process models using CPN,”
IREIT. J, vol. 5, no. 3, pp. 1–7, 2017.

1366 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

[37] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Transformation of
the BPMN design model into a colored Petri net using the partitioning
approach,” IEEE Access, vol. 6, pp. 38421–38436, 2018.

[38] Y. Ji, H. Sun, X. Liu, J. Zeng, and S. Bai, “A decentralized framework for
executing composite services based on BPMN,” in Proc. Comput. World:

Future Comput., Service Comput., Cognit., Adapt., Content, Patterns,
Nov. 2009, pp. 332–338.

[39] J. Lenhard, V. Ferme, S. Harrer, M. Geiger, and C. Pautasso, “Lessons
learned from evaluating workflow management systems,” in Proc.

Int. Conf. Service-Oriented Comput. Málaga, Spain: Springer, 2017,
pp. 215–227.

[40] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics and
analysis of BPMN process models using Petri nets,” Queensland Univ.
Technol., Brisbane, QLD, Australia, Tech. Rep. 7115, 2007, pp. 1–30.

[41] J. Delsing, J. Eliasson, J. van Deventer, H. Derhamy, and P. Varga,
“Enabling IoT automation using local clouds,” in Proc. IEEE 3rd World

Forum Internet Things (WF-IoT), Dec. 2016, pp. 502–507.
[42] C. Hegedus, D. Kozma, G. Soos, and P. Varga, “Enhancements of the

Arrowhead framework to refine inter-cloud service interactions,” in Proc.

42nd Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Florence, Italy,
Oct. 2016, pp. 5259–5264.

[43] H. Derhamy, J. Eliasson, J. Delsing, P. P. Pereira, and P. Varga,
“Translation error handling for multi-protocol SOA systems,” in Proc.

IEEE 20th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2015,
pp. 1–8.

[44] J. Delsing et al., “Arrowhead framework core systems and services,” in
IoT Automation: Arrowhead Framework. Boca Raton, FL, USA: CRC
Press, 2017, ch. 4.

[45] Arrowhead Consortia. Accessed: Jun. 16, 2020. [Online]. Available:
https://github.com/arrowhead-f/core-java-spring

[46] H. Derhamy, M. Andersson, J. Eliasson, and J. Delsing, “Workflow
management for edge driven manufacturing systems,” in Proc. IEEE
Ind. Cyber-Physical Syst. (ICPS), May 2018, pp. 774–779.

[47] D. Kozma, P. Varga, and F. Larrinaga, “Data-driven workflow manage-
ment by utilising BPMN and CPN in IIoT systems with the Arrowhead
framework,” in Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory

Autom. (ETFA), Sep. 2019, pp. 385–392.
[48] M. Keen et al., “Patterns: Implementing an SOA using an enterprise

service bus,” IBM Redbooks, vol. 336, pp. 20–28, Jul. 2004.
[49] K. Indrasiri, Beginning WSO2 ESB. New York, NY, USA: Apress, 2016.
[50] T. Rademakers, Activiti Action: Executable Bus. Processes BPMN 2.0.

Shelter Island, NY, USA: Manning Publications, 2012.
[51] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner,

“Container-based architecture for flexible industrial control applica-
tions,” J. Syst. Archit., vol. 84, pp. 28–36, Mar. 2018.

[52] R. Shiraki and Y. Shinkawa, “Verification of business processes with
time constraints,” in Proc. 6th IIAI Int. Congr. Adv. Appl. Informat.

(IIAI-AAI), Jul. 2017, pp. 72–75.
[53] T. H. Netland, “Company-specific production systems: Managing pro-

duction improvement in global firms,” Ph.D. dissertation, NTNU, Trond-
heim, Norway, 2013, p. 340.

[54] G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, and G. Chrys-
solouris, “Automotive assembly technologies review: Challenges and
outlook for a flexible and adaptive approach,” CIRP J. Manuf. Sci.

Technol., vol. 2, no. 2, pp. 81–91, Jan. 2010.
[55] Introduction to JavaPoet, Baeldung, Bucharest, Romania, 2019.
[56] K. B. Lassen and W. M. Van der Aalst, “WorkflowNet2BPEL4WS: A

tool for translating unstructured workflow processes to readable BPEL,”
in Proc. OTM Confederated Int. Conf. ‘Move Meaningful Internet Syst.’

Berlin, Germany: Springer-Verlag, 2006, pp. 127–144.

Dániel Kozma received the M.Sc. degree in elec-
trical engineering from the Budapest University of
Technology and Economics (BME), Budapest, Hun-
gary, in 2015, where he is currently pursuing the
Ph.D. degree.

He was an experienced database software engi-
neer with a demonstrated history of working in
telecommunications. He is working currently as
an Information Security Officer. In parallel, he is
also a Researcher with BME within the Productive
4.0 project. His research focuses on the different

areas of Industry 4.0, such as automated production, supply chain and lifecycle
management, cybersecurity, and information security.

Pál Varga (Member, IEEE) received the M.Sc.
and Ph.D. degrees from the Budapest University
of Technology and Economics (BME), Budapest,
Hungary, in 1997 and 2011, respectively.

He is currently an Associate Professor with BME.
He is also the Director of the Telecommunica-
tions Division, AITIA International Inc., Budapest.
His main research interests include communication
systems, network performance measurements, root
cause analysis, fault localization, traffic classifica-
tion, end-to-end QoS and SLA issues, as well as

hardware acceleration and Industrial Internet of Things.

Felix Larrinaga received the B.Sc. degree (Hons.)
in industrial electronics and the M.Sc. degree in
computing engineering from Mondragon University,
Mondragon, Spain, in 1995 and 2010, respectively,
and the Ph.D. degree in mobile communications
from Staffordshire University, Stoke-on-Trent, U.K.,
in 1999.

He is currently a Lecturer and a Researcher with
Mondragon University, Basque, Spain. Since 2000,
he has been lecturing and researching at Mondragon
University with extensive experience in industrial

work as a Project Leader. His research interests include web engineering,
interoperability, social web technologies, and semantic web.

