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Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time.
Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized
simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history
information to guide future search, but there is no common successful method to solve di	erent DMOPs. In this paper, we de
ne a
kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model
namedADLMfor solvingDMOP-TPS.Wehave tested and compared the proposed predictionmodel (ADLM)with three traditional
prediction models on several classic DMOP-TPS test problems. �e simulation results show that our proposed prediction model
outperforms other prediction models for DMOP-TPS.

1. Introduction

Due to the introduction of evolution algorithms, optimiza-
tion algorithm research has got a great development, espe-
cially in the 
eld of multiobjective optimization. However, in
the last ten years, most of researchers focused on the station-
ary environment whose optimization process and evaluation
functions are both clear and static. On the contrary, there are
many important dynamic optimization problems in the real-
world whose objective functions, constraints, and parameters
may change with environment. �ese dynamic optimiza-
tion problems with multiple objective functions are called
dynamic multiobjective optimization problem (DMOP).

Multiobjective evolutionary algorithms (MOEAs) per-
form well for Multiobjective problems [1–3]; meanwhile they
are adapted for DMOPs. Due to the dynamic characteristic,
dynamic multiobjective evolutionary algorithms (DMOEAs)
put more emphasis on the ability to track the new optimal
front by coping with the environmental changes. �ere are
mainly two ways to cope with changes in the environment:
one way is to maintain diversity in MOEAs, which introduce

new individuals when diversity of population decreases.
Another way is to predict next Pareto solutions set using
history information. Nowadays several successful prediction
models have been proposed particularly for special problems;
however, high-performance DMOEAs are the pursuits for
solving DMOPs.

In this paper, when a change is detected in the dynamic
environment, we study how to generate an initial population
according to the ownnature of theDMOP such that the closer
the distance between initial population and the new Pareto
set (PS) is, the more easily the new PS will be found. �e
initial population for the changed environment is generated
by adding some new predicted individuals into current
population; in this way the changed PS can be found more
e	ectively by DMOEA. First, since the prediction model
is relevant with the optimization problems, we de
ne the
DMOP-TPS problemwhose PS translates regularly with time;
then inspired by the nature of DMOP-TPS, the prediction
strategies in [4, 5], and the strategy to generate an initial pop-
ulation in [6], we build a new prediction model to estimate
the location of the new PS based on the information collected
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from previous search to solve DMOP-TPS. Finally, we test
and compare our prediction model with other three superior
prediction models on several DMOP-TPS test problems and
we analyze the time complexity of the four predictionmodels.
From the simulation results, it is obvious that our prediction
model outperform the other three prediction models on
DMOP-TPS. Moreover, from the time complexity analysis,
it can be seen that the time complexity of ADLM is very
low. In addition, we perform some interesting analysis on
the simulation results about the eciency of our proposed
prediction model with particular problems.

2. Related Work

Recently, Evolutionary Dynamic Multiobjective Optimiza-
tion (EDMO) has been intensively studied by many
researchers. Benchmarks are famous for solving DMOPs
through designing and testing relevant algorithms. In [7, 8],
test problems are created by adding time-varying terms to
the objectives in SMOPs. Yaochu Jin and Bernhard Sendho	
developed amethod for constructing dynamicmultiobjective
test problems which clustered di	erent objectives of existing
stationary multiobjective problems (SMOPs) and changing
the weights dynamically [9].

�ere are many ways to maintain population diversity;
the simplest way is to reinitialize the population randomly
[6]. Other common techniques include hypermutation [10],
which increases the mutation rate when the improvement is
not evident. Also, multiple population explorations can be
treated as a diversity strategy; its basic idea is to use multiple
populations to explore di	erent regions, tracking the next
optimal solutions [11–13]. Additionally, niche algorithm [14,
15] and crowding technique [16, 17] can be also applied
in dynamic environment to maintain diversity. Although
the diversity of population maintenance is necessary for
DMOEA, most researchers maintained the diversity blindly
rather than e	ectively when changes occur in the environ-
ment.

�e method based on prediction model accelerates algo-
rithms convergence. Zhou et al. used the Gaussian noise to
update the current population, where the Gaussian param-
eters are determined by the historical changes [4]. Hatzakis
and Wallace used the random time series forecasting model
to evaluate the location of next optimal solutions, and then
create individuals on the estimated location, which is used
to seed the population when changes occur [5]. Since the
predictionmodel is relevant to the optimization problems, we
need to choose suitable prediction models to solve di	erent
problems. If the prediction is not precise, it may misguide
the population to an incorrect region. Consequently, the
convergence would slow down.

Arguably, diversity maintenance is essential in dynamic
objective evolutionary optimization algorithms [18–20];
however, it is interesting to see that in multiobjective evolu-
tionary algorithms, the diversity of population is inherently
maintained due to themultiobjective nature. Accordingly, it is
probably of greater importance to ensure that the population
is able to follow the moving PS more quickly. To this end, a

good guess of the new location of the changed PS is of great
interest.

3. DMOP-TPS Problem

�ere are many kinds of DMOPs in the real-world, and dif-
ferent DMOPs have di	erent natures. One of the di	erences
between DMOPs is the changing rules of the PS, as the PS
of some DMOPs changes regularly while the PS of others
changes irregularly even randomly. In this section, we will
de
ne a special DMOP (DMOP-TPS), whose PS changes
regularly with time.

3.1. De
nition of DMOP. DMOP-TPS is aDMOPwith special
nature, so we will introduce the details of DMOP 
rst.

De
nition 1 (DMOP [8]). Let � be the time variable, V and
W be the �-dimensional and�-dimensional continuous and
discrete vector spaces, g and h be the two functions de
ning
constraints inequalities and equalities, and f be a function
from V × � to W. A dynamic multiobjective minimization
problem with� objectives is de
ned as

min
v∈V
s.t. f = {�1 (k, �) , . . . , �� (k, �)} ,

g (k, �) ≤ 0, h (k, �) = 0. (1)

Like stationary MOP, we call the PS at time �(PS(�)) and
the PF (Pareto front) at time �(PF(�)) of the set of Paretoop-
timal solutions at time � in decision variable and objective
spaces, respectively; therefore, there are four possible ways
for a problem to demonstrate a time-varying change [7] as
follows.

�e PS changes, whereas the PF does not change.

(1) Both PS and PF change.

(2) PS does not change, whereas the PF changes.

(3) Both PS and PF do not change, whereas the problem
can change.

It is a possible that while the problem changes, more types
of above changes can occur simultaneously in the time scale.

3.2. De
nition of DMOP-TPS. Now, the de
nition of DMOP-
TPS could be given as follows.

De
nition 2 (DMOP-TPS). PS(�) and PS(� + 1) are the Pare-
tooptimal set of DMOP at time � and �+1, respectively;	(�) =(
1(�), 
2(�), . . . , 
�(�)) is �-dimensional vector. A DMOP is
a DMOP-TPS if and only if for any decision variable �� =(��1, ��2, . . . , ���) ∈ PS(�), there must be a decision variable��+1 = (��+11 , ��+12 , . . . , ��+1� ) ∈ PS(� + 1), which satis
es

the constraints {��+11 = ��1+
1(�), ��+12 = ��2+
2(�), . . . , ��+1� =��� + 
�(�)}.
From the intuitive point of view, DMOP-TPS is a kind of

DMOPwith special nature whose PS translates regularly with
time.
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(1) Begin
(2) � ← 1, � ← 1; % � is generation index, � is time window
(3) �� ← �����
����();
(4) while (not termination condition) do
(5) �ℎ
���� = �V��������������();
(6) if (changed)
(7) �� ← ��;
(8) ��+1 ← ��-�����
����(��, � �, ��);
(9) � ← � + 1;
(10) else
(11) � ← �V��!���� �"��
��(��); % � is o	spring population
(12) ��+1 ← ��#��V� (� ∪ ��);
(13) � ← � + 1;
(14) end
(15) end

Algorithm 1: Dynamic multiobjective evolutionary algorithm with prediction model.

4. Dynamic Multiobjectives
Evolutionary Algorithm with
ADLM Model (DMOEA/ADLM)

DMOEA is the mainstream for solving DMOP, and it was
built based on the static MOEA. However, in order to
e	ectively solve DMOP, DMOEA built its own framework
because of the dynamic property of DMOP. Also, some
operators coping with environmental changes have been
added, where the prediction is one of these operators.

4.1. �e Framework of DMOEA with Prediction Model
(DMOEA/PRI). �e main steps of the dynamic multiobjec-
tive evolutionary algorithm with prediction model could be
described as in Algorithm 1.

In this paper, we focus on the population reinitialization
once a change is detected in the environment. In the follow-
ing, other operators are brie�y introduced.

To detect the environmental change, we take the strategy
proposed by Deb et al. [6] to recalculate the function values
of some individuals selected from current population. If their
objective values change, then the environmental change will
occur. In (8), %% of �� is replaced with randomly selected
solutions fromPD� to generate a reinitialized populationwith
size & when the environment changed; otherwise, a new
population is generated by reserving & better individuals
from the union set of current population � and the o	spring
population �� in (12). �e population size maintains & in
each iteration.

In [1], Deb et al. have proposed the famous algorithms
(NSGA-II) to tackle static multiobjective optimization prob-
lems. By taking into account the regularity property ofMOPs,
NSGA-II can approximate the PF eciently. In this paper,
the operators in NSGA-II are used in (11) of the above
framework; its basic idea is to use SBX crossover operator
and polynomial mutation operator to generate o	spring.
Nondominated sorting of NSGA-II is used in (12) to select
better solutions to be retained. �e details of (4) will be
discussed in the following subsection.

4.2. General Prediction Model. To insure faster convergence
of the newPFwhen a change is detected in the environment, it
is a good choice to predict the new locations of the Paretoop-
timal solutions with historical information. We assume that��, . . . , �1 can provide enough information for predicting the
new location of PS�+1 and the location of PS�+1 is a function
of the locations ��, . . . , �1:

PD� = ' (��, . . . , �1, �) . (2)

�e prediction now becomes how to use the historical infor-
mation ��, . . . , �1 to generate new individuals PD� which
should be close enough to PS�+1.

In practice, it is very hard to build a general prediction
model for all kinds of problems. Sometimes, a prediction
model performs well on one kind of problem and performs
poorly on another one. �is is because the changing rule of
the PS(�) is unknown and not consistent for di	erent kinds
of problems. �erefore, if one prediction model is designed
for a speci
c kind of problem, the accuracy of the prediction
model will be improved obviously. In the following, we
discuss how to generate initial solutions for timewindow �+1.

Suppose that ��, ��−1, . . . , �1 (�� ∈ ��, � = �, . . . , 1) are
a set of individuals in the decision space which describes
the movements of the PS. A generic model that predicts the
location of the initial individuals for the (�+1)th timewindow
could be formulated as follows:

��+1 = ' (��, ��−1, . . . , ��−�+1, �) . (3)

For one individual �� ∈ ��, the location of its parent in
the previous time window could be de
ned as the nearest
individual in ��−1; that is,

��−1 = arg min
	∈
�−1

////� − ��////2. (4)

Any time series models [21] could be used for modeling ' in
(3).

Any linear or nonlinear prediction model could be used
to predict the location of the individual for the next time
window, when time series are identi
ed for each individual
in the population.
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4.3.�e New Prediction Model (ADLM). One reasonable and
accurate predictionmodel is always designed according to the
special nature of DMOP. �is way guarantees that the pre-
diction model will be suitable to solve corresponding DMOP.
Since the proposed ADLM is designed based on the nature of
DMOP-TPS, the mathematical properties of DMOP-TPS will
be introduced 
rst.

4.3.1. Mathematical Properties of DMOP-TPS. Assume that�� is a Paretooptimal solution of DMOP-TPS, if�� translates
with time � according to a continuous di	erentiable func-
tion, then we get mathematical properties of DMOP-TPS as
�eorem 3.

�eorem3. �(�) is a continuous di�erentiable function of time�, �1, �2, �3, and �4 are four adjacent time, and Δ� is the interval
between two adjacent time; if Δ� → 0, then the following
equation is accordant:

� (�4) = � (�3) +
666666666
� (�3) − � (�2)� (�2) − � (�1)

666666666 × (� (�3) − � (�2)) . (5)

Proof. �(�) is continuous and di	erentiable, so the deriva-
tive of �(�), which is marked as ��(�), is also continuous;
that means that the interval between ��(�1), ��(�2), ��(�3),
and��(�4) will become smaller when Δ� → 0; thus, the
following equation is true:

�� (�3) =
666666666
�� (�2)�� (�1)

666666666 × �
� (�1) ,

�� (�) = � (� + Δ�) − � (�)Δ� .
(6)

Combining the above two equations, we get

� (�3 + Δ�) − � (�3)Δ�
= 666666666
(� (�2 + Δ�) − � (�2)) /Δ�(� (�1 + Δ�) − � (�1)) /Δ�

666666666 ×
� (�2 + Δ�) − � (�2)Δ� .

(7)

Multiplying (7) with Δ�, then we get

� (�3 + Δ�) − � (�3)
= 666666666
� (�2 + Δ�) − � (�2)� (�1 + Δ�) − � (�1)

666666666 × (� (�2 + Δ�) − � (�2)) .
(8)

Based on function�(��+1) = �(��+Δ�), (8) could be simpli
ed
to

� (�4) − � (�3) =
666666666
� (�3) − � (�2)� (�2) − � (�1)

666666666 × (� (�3) − � (�2)) . (9)

Equation (9) is equal to (5); thus, the proof is completed.

4.3.2. ADLM. In this paper, in order to solve DMOP-TPS,
the following linearmodel which is designed according to the
mathematical properties of DMOP-TPS will be adopted and
herea�er will be called ADLM for short:

��+1 = �� + Gaussian (mean (�) , V) × (�� − ��−1) ,
mean (�) = 666666666

�� − ��−1��−1 − ��−2
666666666 .

(10)

Gaussion(mean(�), V) is Gaussian random distribution func-
tion. �� − ��−1 is the distance between average �� ∈ �� and
average ��−1 ∈ ��−1; likewise, ��−1 − ��−2 is the distance
between average��−1 ∈ ��−1 and average��−2 ∈ ��−2.

Apparently, mean(�) and �� − ��−1 are corresponding
to |(�(�3) − �(�2))/(�(�2) − �(�1))| and �(�3) − �(�2) in (5),
respectively. �erefore, ADLM is reasonable and accurate as
a prediction model for solving DMOP-TPS problem.

5. Experiments on DMOP-TPS

�is section is devoted to present the experiments performed
in this work. First, we introduce the set of MOPs used as
a benchmark. Next, we describe the indicators applied for
measuring the performance of the obtained PF. �en, we list
the predictionmodels for comparison. Finally, we present the
comparisons of the four prediction models.

5.1. Benchmarks. To examine the performance of our pro-
posed algorithm (DOMEA/ADLM) on DMOP-TPS, we have
used six test benchmarks in our simulation studies. �e 
rst
three test problems are FDA1 [7], FDA1E, and FDA1L:

�1 (�Ι) = �1,
� (�ΙΙ) = 1 + ∑

�∈	ΙΙ
(�� − < (�))2,

ℎ (�1, �) = 1 − √�1� ,
< (�) = sin (0.5@�) , � = 1�� ⌊

���⌋ ,
�Ι = (�1) ∈ [0, 1] , �ΙΙ = {�2, . . . , ��} ∈ [−1, 1] .

(11)

Formula (11) represents the FDA1 problem, while FDA1E and
FDA1L are the exponential and logarithmic style of FDA1 are
respectively. �e FDA1E and FDA1L are as follows

�1 (�Ι) = �1,
� (�ΙΙ) = 1 + ∑

�∈	ΙΙ
(�� − < (�))2,
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ℎ (�1, �) = 1 − √�1� ,
< (�) = 2� − 1, � = 1�� ⌊

���⌋ ,
�Ι = (�1) ∈ [0, 1] , �ΙΙ = {�2, . . . , ��} ∈ [−1, 1] ,

�1 (�Ι) = �1,
� (�ΙΙ) = 1 + ∑

�∈	ΙΙ
(�� − < (�))2,

ℎ (�1, �) = 1 − √�1� ,
< (�) = log�+1, � = 1�� ⌊

���⌋ ,
�Ι = (�1) ∈ [0, 1] , �ΙΙ = {�2, . . . , ��} ∈ [−1, 1] .

(12)

�e second three test problems are FDA5 [7], FDA5E, and
FDA5L:

min
	
�1 (�) = (1 + � (�ΙΙ))�−1∏

�=1
cos(E�@2 ) ,

min
	
�� (�) = (1 + � (�ΙΙ))(�−�∏

�=1
cos(E�@2 ))

× sin(E�−�+1@2 )
I = 2, . . . , (� − 1) ,

min
	
�� (�) = (1 + � (�ΙΙ)) sin(E1@2 ) ,

where � (�ΙΙ) = < (�) + ∑
�∈	ΙΙ

(�� − < (�))2,
E� = ��(�)� for � = 1, . . . , (� − 1) ,< (�) = |sin (0.5@�)| ,' (�) = 1 + 100 sin4 (0.5@�) ,

� = 1�� ⌊
���⌋ ,�ΙΙ = (��, . . . , ��) , �� ∈ [0, 1] ,� = 1, . . . , �.

(13)

Formula (13) represents the FDA5problem,while FDA5E and
FDA5L are the exponential and logarithmic style of FDA5,
respectively.

In all the six test problems, � is the generation counter,�� is the number of generations in each time window, and ��
controls the distance between two consecutive PS (the bigger
the �� is, the smaller the distance is). In fact, �� and ��
represent the frequency of change, and severity of change
respectively.

FAD1, FAD1E, FAD1L, FAD5, FAD5E, and FAD5L are all
DMOP-TPS problems; the 
rst three belong to the DMOP
problems of (I) and the second three belong to the DMOP
problems of (II).

Above all, as test problems, the six DMOPs are compara-
tively comprehensive for testing the performance ofDMOEA.

5.2. Prediction Models for Comparison. In this experiment,
four prediction models will be tested; they are MM, VARM,
PREM, and ADLM; all predictionmodels are listed as follows
besides ADLM.

(1) MM: MM is a very simple prediction model [6]; it
generates new individuals based on all individuals�� ∈ �� by polynomial mutation operator; that is,

��+1 = mutation (��) . (14)

(2) VARM: the model of VARM [5] is listed as follows

��+1 = �� + J, (15)

where J is a normal distribution; that is,

J ∼ & (0, L�) , (16)

where � is an identity matrix and L is the standard
deviation, which is de
ned by

L2 = 14�////�� − ��−1////22,
��−1 = arg min

	∈
�−1
////� − ��////2.

(17)

(3) PREM: the model of PREM [5] is listed as follows:

��+1 = �� + (�� − ��−1) + J, (18)

where J is the same with the J in VARM.

5.3. Performance Indicators. In this paper, a distance-based
performance indicator  (�) suggested in [3] is used to
measure the convergence of DMOEA:

�(�) =  (�) = 1|�∗| ∑∈�∗
////� − E (�)////2, (19)

where � is an obtained nondominated set, �∗ is a reference
PF, and

E (�) = argmin
�∈�
////� − E////2. (20)

Let�(��)measure the performance (the smaller, the better)
of population � at time �; to assess the performance of an
algorithm fairly, we record the following averages of the
means over � in our experiments:

Ave (� (�)) = 1M
�∑
�=1
�(��) . (21)
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Figure 1: �e statistical results of Ave(�(�)) for four prediction
models on FDA1.

Supposing an algorithm runs& times on a given problem, we
use

Ave (� (�)) = 1M × &
�∑
�=1

�∑
�=1
�(���) , (22)

to denote themean of the performance indicator� at all time
in all runs, which is inspired by the idea of the o�ine error
metric [20].

5.4. Results and Discussion. In our experiments, the number
of dimensions of the decision variables is 30 for FDA1,
FDA1E, andFDA1L and 11 for FDA5, FDA5E, andFDA5L.�e
severity of change �� is set to be 10, noted that our proposed
algorithm is suitable for solving the problems with big ��.
�e frequency of change �� is set to be 10, 15, 20, 25, or 30
generations.

To detect environmental changes, 10 randomly selected
individuals are recalculated at the beginning of each genera-
tion, and the algorithm will stop a�er detecting 10 environ-
mental changes.

�e population size for the four algorithms is 100; the
o	spring parameters in (10) of DMEA/PRI framework, that
is, the crossover probability and mutation probability, are set
to 0.8 and 0.08, respectively, and the variance of ADLM is
set to 0.2. It is worth mentioning that 50% of population
members are replaced with randomly selected predicted
solutions to generate an initial population when a change
occurs.

�e statistical results on FDA1, FDA1E, FDA1L, FDA5,
FDA5E, and FDA5L with Ave(�(�)) indicators are shown in
Figures 1, 2, 3, 4, 5, and 6.

In this experiment, the horizontal and the vertical axis of
all 
gures are �� and the performance indicator Ave(�(�)),
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Figure 2: �e statistical results of Ave(�(�)) for four prediction
models on FDA1E.
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Figure 3: �e statistical results of Ave(�(�)) for four prediction
models on FDA1L.

respectively. Based on this experiment, the following con-
clusions can be drawn through the comparative analysis of
Figures 1–6:

(1) �e Ave(�(�)) value of any model in all 
gures
decreases while �� increases from 10 to 30. �e
reasons for this conclusion could be stated as follows.
NSGA-II is a very classic and e	ective Multiobjective
evolutionary algorithm (MOEA); it is able to 
nd the
new PS a�er environmental change as long as there is
enough time (generations) for NSGA-II to search for
the new PS. Moreover, the increment of �� from 10 to
30means that NSGA-II gets more time to look for the
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Figure 4: �e statistical results of Ave(�(�)) for four prediction
models on FDA5.
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Figure 5: �e statistical results of Ave(�(�)) for four prediction
models on FDA5E.

new PS.�erefore, the Ave(�(�)) value of all models
decreases while �� increases from 10 to 30.

(2) From the convergence point of view, in all 
gures,
ADLM is better than PREM, PREM is better than
MM, and MM is better than VARM. �e reasons for
this observation could be listed as follows. First, MM
does not use historical information its randomness
is strong and its convergence performance is weak,
while VARM makes use of the historical information
in the last two periods. However, VARM is not
accurate enough to solve DMOP-TPS; therefore, the
performance of MM is better than VARM. Second,
compared to VARM and MM, PREM has plus the
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Figure 6: �e statistical results of Ave(�(�)) for four prediction
models on FDA5L.

di	erence between two PSs in the last two periods,
respectively, which guarantees the rationality and
accuracy of the PREM on DMOP-TPS; therefore, the
performance of PREM is better than that of MM and
VARM. Last, ADLMmakes use of the historical infor-
mation in the last three periods, which is more abun-
dant than the historical information used by any other
models. Furthermore, ADLM, based on the analysis
of mathematical properties of DMOP-TPS, is consis-
tent with the dynamic translating law of DMOP-TPS.
�us ADLM can make the individuals predicted by
itself very close to the new real PS. �erefore, the
performance of ADLM is better than the other three
prediction models.

(3) �e performance of ADLM on FAD1E (FAD5E) is the
best in all 
gures. �e reasons for this observation
could be explained as follows. �e PS of FAD1E
(FAD5E) translates in a way of exponential function�(�) = 2� − 1, � = (1/��)⌊�/��⌋, whose value changes
very 
ercely with time �, and ADLM simulates
the translation tendency of the exponential function
better than the other three models; therefore, the per-
formance of ADLM is far better than that of the other
three models on FAD1E (FAD5E).

(4) �e series of FAD1 problems are more dicult to
be optimized than the series of FAD5 problems. In
Figures 1–6, obviously, when �� is larger than 10,
most of values of Ave(�(�)) in Figures 1–3 are larger
than these in Figures 4–6; this is because the number
of dimensions of decision variables is 30 for FDA1,
FDA1E, and FDA1L and 11 for FDA5, FDA5E, and
FDA5L; that is, the number of dimensions of the

rst three test problems is far bigger than that of the
second three test problems; therefore, the series of
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FDA5 problems are easier to be optimized than the
series of FDA1 problems.

6. Comparison of Time Complexity

In this section, the time complexity of the four prediction
models will be analyzed and compared.

Generally, when designing one predictionmodel we need
to consider not only the rationality of the prediction model
but also the time complexity of the prediction model; that is
because the time complexity is also an important measure for
the performance of a prediction model.

Assuming that the population size is &, the dimension
of the individual (decision vector) is �, and then the time
complexity analysis is listed as follows.

(1) �e time complexity analysis of MM: because what
MM needs to do is just to mutate every dimension
of all individuals in current population without the
use of historical information, so its time complexity isP(�&).

(2) �e time complexity analysis of VARM: VARM uses
the historical information in the last two periods
to predict new individuals. �ere are two steps for
VARM to predict new individuals: 
rst, 
nding �� ∈�� and corresponding ��−1 ∈ ��−1 according to (16);
second, updating every dimension of all individuals
in current population according to the model of
VARM.�e time complexities of 
rst and second step
are P(�&2) and P(�&), respectively; therefore, the
total time complexity of VARM is P(�&2).

(3) �e time complexity analysis of PREM: the steps of
PREM are very similar with those of VARM when
predicting new individuals, so the time complexity of

PREM is P(�&2).
(4) �e time complexity analysis of ADLM: ADLM uses

the historical information in the last three periods to
predict new individuals. �ere are two main steps for
ADLM to predict new individuals: 
rst, computing�� − ��−1 and corresponding ��−1 − ��−2; second,
updating every dimension of all individuals in cur-
rent population according to the model of ADLM.
�e time complexities of 
rst and second step are
both P(�&); therefore, the total time complexity of
ADLM is P(�&).

From the above analysis on the time complexity of four
prediction models, it can be seen that the time complexity
of ADLM and MM is the same and the time complexity of
PREM and VARM is also the same. On the contrary, the
time complexity of ADLM and MM is lower than that of
PREM and VARM; therefore, from the convergence and time
complexity point of view, ADLM outperform other predic-
tion models when solving DMOP-TPS.

7. Conclusions

In this paper, we de
ne a Multiobjective problem with
translational Paretooptimal set (DMOP-TPS), and then we

propose a new prediction model named ADLM to address
DMOP-TPS. We have tested the proposed prediction model
(ADLM) and compared it with other three superior pre-
diction models on several DMOP-TPS benchmarks; further-
more, we analyzed the time complexity of the four prediction
models.

From the simulation results on several DMOP-TPS test
problems, four conclusions could be drew: (1) the Ave(�(�))
value of all models gets smaller while �� increases from 10 to
30; (2) from the convergence point of view ADLM is better
than PREM, PREM is better thanMM, andMM is better than
VARM; (3) the performance of ADLM on FDA1E (FDA5E)
outperforms other models; (4) the series of problems FDA1
are more dicult to be optimized than the series of problems
FDA5. In addition, from the time complexity analysis of the
four prediction models, it is clear that the time complexity of
ADLM is very low.

Although a rich work has been made in this paper, the
research on dynamic Multiobjective optimization is still in
its very infancy and our work presented in this paper is also
rather preliminary. More work remains to be done in the
future; for example, it is important not only to detect the envi-
ronmental changes but also to estimate the severity of changes
in objective space; moreover, more appropriate variance
selection for ADLM needs to be found, designing dedicated
diversity controller by taking into account the problem struc-
ture, testing the suggested method onmore benchmarks, and
comparing it with other methods.
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