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Abstract 
Dynamic multiple fault diagnosis (DMFD) is a challenging and 
difficult problem due to coupling effects of the states of 
components and imperfect test outcomes that manifest themselves 
as missed detections and false alarms. The objective of the 
DMFD problem is to determine the most likely temporal 
evolution of fault states, the one that best explains the observed 
test outcomes over time.   
 
Here, we discuss four formulations of the DMFD problem.  These 
include the deterministic situation corresponding to a perfectly-
observed coupled Markov decision processes, to several partially-
observed factorial hidden Markov models ranging from the case 
where the imperfect test outcomes are functions of tests only to 
the case where the test outcomes are functions of faults and tests, 
as well as the case where the false alarms are associated with the 
nominal (fault-free) case only.  All these formulations are 
intractable NP-hard combinatorial optimization problems.  We 
solve each of the DMFD problems by decomposing them into 
separable subproblems, one for each component state sequence.   
 
Our solution scheme can be viewed as a two-level coordinated 
solution framework for the DMFD problem. At the top 
(coordination) level, we update the Lagrange multipliers 
(coordination variables, dual variables) using the subgradient 
method. The top level facilitates coordination among each of the 
subproblems, and can thus reside in a vehicle-level diagnostic 
control unit.  At the bottom level, we use a dynamic programming 
technique (specifically, the Viterbi decoding or Max-sum 
algorithm) to solve each of the subproblems.  The key advantage 
of our approach is that it provides an approximate duality gap, 
which is a measure of suboptimality of the DMFD solution.  
Interestingly, the perfectly-observed DMFD problem leads to a 
dynamic set covering problem, which can be approximately 
solved via Lagrangian relaxation and Viterbi decoding. 
Computational results on real-world problems are presented. 

 
 

Introduction 
 

Safety critical systems, such as aircraft, automobiles, 
nuclear power plants and space vehicles, are becoming 
significantly more complex and interconnected. The recent 
advances in wireless technology, remote communication, 
computational capabilities, sensor technology and 
standardized hardware/software interfaces have further 
increased the complexity of these systems. This complexity 
may result in failures of multiple components. Hence, there 
is a need to develop smart on-board diagnostic algorithms 
that can determine the most likely set of failure causes in a 
system, given observed test outcomes over time.  
 
The multiple fault diagnosis (MFD) problem originates in 
several fields such as medical diagnosis [1], error 
correcting codes, speech recognition, distributed computer 
systems and networks [2]. The MFD problem in large-
scale systems with unreliable tests was first considered by 
Shakeri et al. in [3]. They proposed near-optimal 
algorithms using Lagrangian relaxation and subgradient 
optimization methods for the static MFD problem. In the 
area of distributed system management, the MFD problem 
is studied by Odintsova et al. in [2]. They utilized an 
adaptive diagnostic technique, termed active probing, for 
fault diagnosis and isolation. A probe can be viewed as a 
test in our terminology; the purpose of a probe is to check 
the set of system components on the probed path. The 
probe outcomes determine if one or more of the 
components on the probed path are faulty or normal. Given 
the probe outcomes, a diagnostic matrix (D-matrix, 
diagnostic dictionary, reachability matrix) defining the 
relationship among the probes and component faults, and 
the initial system state, they developed a sequential multi-
fault algorithm to diagnose the system state. They 
considered the probe outcomes as being deterministic, 



which is analogous to the assumptions made in our 
Problem 4, and in the work described in [11]-[14]. In [4], 
Le et al. applied graphical model-based decoding 
algorithms to the MFD problem in the presence of 
unreliable tests. They proposed a suboptimal belief 
propagation algorithm used to decode low density parity 
check codes. They considered a fault model, where tests 
are asymmetric, i.e., the D-matrix is not binary and the test 
outcomes are also unreliable, and they termed it the Y 
model. Their implementation is parallel to our Problem 
formulation 1; however, they considered only the static 
case. 
 
The DMFD problem refers to determining the most likely 
temporal evolution of component states, given a set of 
partial and unreliable test outcomes over time. The 
dynamic single fault diagnosis problem using a hidden 
Markov model (HMM) formalism was first proposed by 
Ying et al. [5], where it is assumed that, at any time, the 
system has at most one fault state present. This modeling is 
somewhat unrealistic for most real-world systems. Another 
version of the dynamic fault diagnosis problem was studied 
in [6]: unknown probabilities of sensor error, incompletely-
populated sensor observations, and multiple faults were 
allowed, but the faults could only occur or clear once per 
sampling interval. Another approach, developed by Ruan 
et al. [7], decomposes the original DMFD problem into a 
series of decoupled subproblems, one for each epoch. For a 
single epoch MFD, they developed a deterministic 
simulated annealing (DSA) method, which is inspired by 
its sibling stochastic simulated annealing and the 
approximate belief revision (ABR) heuristic algorithm [1]. 
This algorithm enlarges the search space of ABR via DSA, 
and is guaranteed to provide a solution no worse than 
(often significantly better) than ABR.  The single epoch 
MFD was extended to incorporate fault states of multiple 
consecutive epochs. In addition, they applied a local search 
and update scheme to further smooth the “noisy” diagnoses 
stemming from imperfect test results and, thereby, increase 
the accuracy of fault diagnosis. 
 
The DMFD problem can also be viewed as a factorial 
HMM (FHMM), a simplified Markovian dynamic 
Bayesian network, discussed in the machine learning 
literature [8]. Here, the HMM state is factored into 
multiple state variables, and is represented in a distributed 
manner. The authors in [8] discussed an exact algorithm 
for inference in FHMM. Here, the inference and learning 
involves computing the posterior probabilities of multiple 
hidden layers (or states), given the test outcomes. 
However, due to the combinatorial nature of the hidden 
state representation, the exact algorithm is intractable. 
They presented approximate inference algorithms based on 
Gibbs sampling and variational methods.  The latter 
methods are similar to Lagrangian relaxation, although 
motivated from a Fenchel duality perspective [1], [17]. 

In our recent work [9], we extended the work of Ruan et al. 
[7], Shakeri et al. [3] and Tu et al. [11] on MFD to solve 
the DMFD problem by combining the Viterbi algorithm 
and Lagrangian relaxation in an iterative way. This paper is 
an extension of our work in [9]. Depending on the 
probabilistic assumptions on fault-test relationships and 
test outcomes, one obtains various DMFD formulations. In 
[9], we discussed only DMFD formulation 1 and it was 
solved only for small-scale systems. In this paper, we 
provide three other formulations of the DMFD problem 
along with their solutions. Here, we also compare the 
results between the subgradient and the deterministic 
simulated annealing methods [7]. Simulation results on 
several real world systems are provided for our earlier 
formulation of the DMFD problem (formulation 1). 
 

DMFD Problem Formulations 
 

The dynamic multiple fault diagnosis problem consists of a 
set of possible fault states in a system, and a set of binary 
test outcomes that are observed at each sample 
(observation, decision) epoch. Fault states are assumed to 
be independent.  Each test outcome provides information 
on a subset of the fault states. At each sample epoch, a 
subset of test outcomes is available. Tests are imperfect in 
the sense that the outcomes of some of the tests could be 
missing, and tests have missed-detection/false-alarm 
processes associated with them. The observations consist 
of imperfect binary test outcomes, and are characterized by 
sets of passed tests outcomes,  and failed tests 

outcomes, 
pO

fO . Formally, we represent the DMFD problem 

as { , , , , , , }DM S T O D P Aκ= , where  is a 
finite set of m components (failure sources) associated with 
the system. The state of component s

1{ mS s s= ,..., }

i  is denoted by ( )ix k  
at epoch k, where ( ) 1ix k =  if failure source si  is present; 

( ) 0ix k = , otherwise. Here,  is the set of 
discretized observation epochs. The status of all 
component states at epoch k is denoted 
by

{0 1, }k Kκ = , ..., , ...

1 2( ) { ( ) ( ) ( )}mx k x k x k x k= , ,..., . We assume that the 
initial state (0)x  is known (or its probability distribution is 
known).  
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Figure 1: Tri-partite digraph for DMFD problem  

 



 
The observations at each epoch are subsets of binary 
outcomes of tests , i.e., 

.  Figure 1 shows the DMFD 
problem as a tri-partite digraph at epoch k. Component 
states, tests and test outcomes represent the nodes of the 
digraph. Here, the true states of the component states and 
tests are hidden. represents a set of 
probabilities of detection and false alarm, which is defined 
differently for each of the DMFD problem formulations. 
We also define the matrix 

1 2{ nO o o o= , ,..., }
,1}jo pass fail∈ , ={ } {0

{ , }P Pd Pf=

[ ]ijD d=  as the dependency 
matrix (D-matrix), which represents the full-order 
dependency among failure sources and tests.  
 
Each component state is modeled as a two-state non-
homogenous Markov chain. For each component state, 
e.g., for component si at epoch k, ( ( ), ( )i i )A Pa k Pv k=  
denotes the set of fault appearance probability  and 
fault disappearance probability  defined as 

 and  

( )iPa k
( )iPv k

( ) Pr( ( ) 1 ( 1) 0)i i iPa k x k x k= = | − =
=

}

( ) Pr( ( ) 0 ( 1) 1)i i iPv k x k x k= = | − . These probabilities 
are required to model the intermittent faults. Here, 

 is a finite set of n available binary tests, 
where the integrity of the system can be ascertained. We 
denote the set of passed tests,  and failed tests 

1 2{ nT t t t= , ,...,

pT fT . At 

each observation epoch, k, , test outcomes upto and 
including epoch k are available, i.e., we let 

k κ∈

1{ ( ) ( ( ) ( ))}k k
p f bO O b O b O b == = , k, where O  is the set of 

observed test outcomes at epoch k, with  and 
 as the sets of passed and failed tests at epoch 

, respectively. The tests are partially observed in the 
sense that outcomes of some tests may not be available, 
i.e., . In addition, tests exhibit missed 
detections and false alarms. Here, we also make the noisy-
OR (“causal independence") assumption [10]. 

( )( )pO b O⊆

( )( )fO b O⊆

b

( ( ) ( ))p fO b O b O⊂∪

The DMFD problem can be formulated in the following 
ways, arranged from the general to simplified:  
 
Problem 1: When the probability of detection ( ijPd ) and 
false alarm probability ( ijPf ) are associated with each test 
and each fault class, i.e.,  and 

of a failure source 

Pr( ( ) 1 ( ) 1)ij j iPd o k x k= = | =

=Pr( ( ) 1 ( ) 0)ij j iPf o k x k= = | is  and 
test . For notational convenience, when jt is  does not 
affect the outcome of test , we let the corresponding 

. This problem scenario frequently arises in 
medical fault diagnosis. For example, the QMR-DT (Quick 
Medical Reference, Decision-Theoretic) database used in  

jt
0ij ijPd Pf= =
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Figure 2: Bi-partite graph for DMFD problem 1 and 2 

 
the domain of internal medicine, contains approximately 
600 disease nodes (faults or failure sources) and 4000 
symptoms (tests) [7]. Each of the symptoms could have a 
probability pair ( ,ij ijPd Pf ) associated with them. Figure 2 
shows the bi-partite graph, where the edges represent the 
probability pair ( ,ij ijPd Pf ). These probabilities can be 
obtained from the tri-partite digraph (Figure 1) using the 
total probability theorem as follows: 

{0,1}

Pr( ( ) | ( )) Pr( ( ), ( ) | ( ))
j

j i j j i
t

o k x k o k t k x k
∈

= ∑      

      
{0,1}

Pr( ( ) | ( )) Pr( ( ) | ( ))
j

j j j i
t

o k t k t k x k
∈

= ∑    (1) 

  
Problem 2: In situation where the probability of detection 
( ijPd ) is associated with each failure source-test pair, but 
the false alarm probability is specified only for the normal 
system state, i.e., 1( ( ) 1| ( ) 0,..., ( ) 0)j j mPf P o k x k x k= = = = , 
we obtain a slightly complicated variation of Problem 
formulation 1 (in terms of computational complexity, but 
not in terms of parameterization).  This type of scenario 
arises when we design class-specific classifiers that 
distinguish between normal system operation and failure 
source, si only, or when the false alarms are defined on an 
overall system basis. Here, the probability pair ( ijPd , jPf ) 
is associated with test outcomes to model imperfect test 
outcomes [3]. This model is also called the Z model in [4]. 
Similar to problem 1, the probability pair ( ijPd , jPf ) is 
shown as edges between the hidden component states and 
test outcomes in Figure 2, and they can be obtained from 
the tri-partite digraph (Figure 1) using the total probability 
theorem on the nodes of test layer.  
 
Problem 3:  When the probability of detection ( jPd ) and 
false alarm probability ( jPf ) are associated with each test 

only. The probability pair (jt jPd , jPf ) is shown as the 
edges between the tests and test outcomes in the tri-partite 
digraph (Figure 1). This formulation is quite useful in 
classifier fusion using error correcting codes. In the error 
correcting code (ECC) matrix, each column corresponds to 
a binary classifier with the associated ( jPd , jPf ) pair, 
which are learned during training and validation. This type 
of formulation is also considered in [6].  
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Figure 3: Detection and false alarm probabilities for problem 1 

 
This formulation provides a nice vehicle for the dynamic 
fusion of classifiers, where each column of the ECC matrix 
is a classifier, and their associated probability pairs 
( jPd , jPf ) are uncertainties associated with classifier 
outcomes. When the learned parameters and the ECC 
matrix are fed as an input to the DMFD algorithm, it 
performs dynamic fusion of classifier outputs over time.  
Note that the sampling interval of the dynamic fusion 
algorithm can be different from the sampling interval of 
the raw sensor data.  
 
Problem 4:  This is the deterministic case when tests are 
perfect i.e.  and  [11]. This formulation 
reduces the tripartite digraph in Figure 1 to a bipartite 
graph between the components and tests. This scenario is 
useful in situations where the tests are highly reliable (e.g., 
automated testing of electronic cards), and leads to a novel 
dynamic set covering problem.  

1ijPd = 0ijPf =

Next, we discuss the DMFD formulations in detail. 
 

DMFD Problem 1 
 
In this problem, we assume that the detection and false 
alarm probabilities ( ijPd , ijPf ) are associated with each 
failure source and each test. Figure 3 illustrates these 
probabilities. We have presented this problem in detail in 
[9]. Here, we revise only the key steps of the problem and 
solution. 
 
The DMFD problem is one of finding, at each decision 
epoch k, the most likely fault state candidates 

( ) {0 1}mx k ∈ , , i.e., the fault state evolution over time, 
{ (1) ( )}KX x x K= ,..., , that best explains the observed test 

outcome sequence KO . We formulate this as one of 
finding the maximum a posteriori (MAP) configuration:  

  arg max Pr( )
K

K K K

X
X OX = |         (2) 

In [9], we showed that we obtain optimal fault sequence 
K

X  using the following primal problem:       

, , 1
arg max ( , ) arg max ( ( ), ( 1), ( ))

K K K K

K
K

k
X Y X Y k

J X Y f x k x k y kX
=

= = −∑
                        (3) 
where the fault state sequence is 

{ (1), (2),..., ( )}KX x x x K=  and { (1), (2),..., ( )}KY y y y K=  

( ) { ( ), ( )}j fy k y k j O k= ∀ ∈ are  new variables  such that 

1
ln ( ) ( ) , ( )

m

j ij i j f
i

y k c x k j O kη
=

= + ∀ ∈∑ .        (4) 

Here, the primal objective function for an individual fault 
state, i.e., ( ( ), ( 1), ( ))kf x k x k y k−  is defined as 

 
( ) 1 1

( ) 1

( ( ), ( 1), ( )) ( ) ( ) ( )

ln(1 ( )) ( ) ( 1)              

j p

j f

m m

k ij i
o O k i i

m

j i i
o O k i

f x k x k y k c x k k x k

y k k x k

µ

σ

∈ = =

∈ =

− = +

+ − + −

∑ ∑ ∑

∑ ∑

i i

     

1
( ) ( ) ( 1) ( ) ( )             

m

i i i
i

h k x k x k k g kγ
=

+ − + +∑       (5) 

where, the parameters ,ijc ( )kγ , jη  are functions of 

ijPd and ijPf  and ( )i kµ , ( )i kσ , , ( )ih k ( )g k  are functions 
of , . Note that the multiple HMMs are 
coupled here because their states are observed only via 
a set of test outcomes. In equation (5), the terms 
involving   and  shows the coupling 
effects. The detailed steps of deriving the primal problem 
are provided in [9]. 

( )iPa k ( )iPv k

( )jy k ( )ih k

 
The primal DMFD problem posed in (3)-(5) is NP-hard 
which, for all practical purposes, means that, unless P=NP, 
it cannot be solved to optimality within a polynomially 
bounded computation time. The NP-hard nature of the 
primal DMFD problem motivates us to decompose it into a 
primal-dual problem using a Lagrangian relaxation 
approach. By defining new variables and constraints, the 
DMFD problem reduces to a combinatorial optimization 
problem with a set of equality constraints. The constraints 
are relaxed via Lagrange multipliers. 
 
In [9], we also showed that the dual problem of the primal 
DMFD problem as posed in (3)-(5), can be written as  

 
min ( )Q
Λ

Λ  

subject to { ( ) 0, (1, ), ( )}j fk k K j O kλΛ = ≥ ∈ ∈       (6) 
where the dual function  is defined by ( )Q Λ

      
1

( ) max ( ).
K

m

i
X i

Q
=

QΛ = ∑ Λ           (7) 

Here 

1

1( ) ( ( ), ( 1), ( )) ( )
K

i i i i j k
k

Q x k x k k w
m

ξ λ
=

Λ = − +∑ Λ       (8) 

 



( ) ( )

( ( ), ( 1), ( ))

( ) ( ) ( )
j p j f

i i i j

ij i ij j i
o O k o O k

x k x k k

c k c k x k

ξ λ

µ λ
∈ ∈

− =

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑
( ) ( 1) ( ) ( ) ( 1)     i i i i ik x k h k x k x kσ+ − + −          (9) 

and 

( )

( ) ( ) ( )

( ) ln ( ) (1 ( )) ln(1 ( )) ( )
j f

k

j j j j j
o O k

w k g k

k k k k k j

γ

λ λ λ λ λ
∀ ∈

Λ = +

⎡ ⎤+ − + + −⎣ ⎦∑ η

                         (10) 
represents the dual function for the component. The 
main benefit of (7) is that now the original problem is 
separable. Using the Lagrangian relaxation method, we 
decomposed the original DMFD problem into m separable 
subproblems, one for each component state sequence 

thi

ix , 
where { (1), (2),..., ( )}i i i ix x x x K= ,  and 

. The relaxation procedure generates an upper 
bound for the primal objective function. The procedure of 
minimizing the upper bound via a subgradient subgradient 
optimization produces a sequence of dual feasible, and the 
concomitant primal feasible solutions to the DMFD 
problem. If the objective function value for the best 
feasible solution and the upper bound are the same, the 
feasible solution is the optimal solution. Otherwise, the 
difference between the upper bound and the feasible 
solution, termed the approximate duality gap, provides a  

( ) {0,1}ix k ∈
{1, }i m∈

measure of suboptimality of the DMFD solution; this is a 
key advantage of our approach. Details of the DMFD 
algorithm, subgradient method and dynamic programming 
are provided in [9].  
 
In this paper, we also compared results of subgradient 
method with deterministic simulated annealing method [7] 
in the results section. 
 

DMFD Problem 2 
 
In this formulation, we define ijPd  as 

and 
. This 

scenario is depicted in Figure 4. 

Pr( ( ) 1 ( ) 1)ij j iPd o k x k= = | =

1 2Pr( ( ) 1| ( ) 0, ( ) 0,..., ( ) 0)j j mPf o k x k x k x k= = = = =

 
Here, the DMFD problem is equivalent to 

1
arg max ( ( ) ( 1)) arg max ( ( ) ( 1))

K K

K
K

k
X X k

J x k x k f x k x kX
=

= , − = ,∑ −

                      (11) 
where the primal objective function for an individual 
component state, i.e., kf  is defined as  
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Figure 4: Detection and false alarm probabilities for problem 2 
 

1 ( ) ( ) ( ) ( )

1 1 1

( ( ) ( 1), ( ), ( )) ( ) ( ) ( ) 

( ) ln(1 ) ln(1- ( ))

( ) ( ) ( ) ( 1) ( ) ( ) ( 1)   

j p j f

k

m

i ij j
i o k O k o k O k

m m m

i i i i i i i
i i i

f x k x k y k z k z k k g k

x k Pd y k

k x k k x k h k x k x k

η

τ σ
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= = =

, − = +

+ − +

+ + − +

∑ ∑ ∑

∑ ∑ ∑ −

                      (12) 
where  

1
ln ( ) ln(1 ( ))

m

i
i

z k x
=

= −∑ k

ij

,         (13) 

 ,   (14) 
1

ln( ( )) ( ) ln(1 ) ( ) ln(1 )
m

j j i
i

y k z k Pf x k Pd
=

= − + −∑
( )kη  is a function of jPf  and ( ),i kτ ( )i kσ , ,( )ih k ( )g k  

are functions of , . Appending constraints 
(13) and (14) via Lagrange multipliers 

( )iPa k ( )iPv k

( )kµ ,{ }
( )

( )
f

j j O k
kλ

∈
, the Lagrangian function 

( , , , )L X Y z Λ  can be obtained. Using the Lagrange 
multiplier theorem, we optimize the Lagrangian function 

( , , , )L X Y z Λ  w.r.t.  to obtain optimal  and 

optimizing w.r.t. , we obtain optimal 

( )jy k *( )jy k

( )z k *( )z k . The dual 
function ( )Q Λ  of problem 2 is defined by       
     

, ,
( ) max ( , , , )

K K KX Y z
Q L X Y zΛ = Λ .            (15) 

Substituting ( ,*( )jy k *( )z k ) into ( , , , )L X Y z Λ  and 
simplifying further by rearranging and combining the 
terms, we obtain the dual function as 

     
1

( ) max ( )
K

m

i
X i

Q Q
=

Λ = Λ∑            (16) 

where  

1
( ) ( ( ), ( 1), ( ), ( ))

K

i i i i j
k

Q x k x k kξ λ
=

Λ = −∑ kµ        

   1 ( ( ), ( ))k jw k k
m

λ µ+            (17) 

and 



( ) ( ) ( ) ( )

( ( ), ( 1), ( ), ( ))

ln(1 ) ( ) ( ) ln(1 ) ( )
j p j f

i i i j

ij i j ij i
o k O k o k O k

x k x k k k

Pd k k Pd x k

ξ λ µ

τ λ
∈ ∈

−

⎛ ⎞
= − + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

( ) ( 1) ( ) ( ) ( 1) ( ) ln(1 ( ))i i i i i ik x k h k x k x k k x kσ µ+ − + − − − (18)                                                                                                                                

 

and 

( )

( )
( )

( ) ln( ( ))
( ( ), ( )) ( )

( ) ( ) ln(1 )

( ) ln(1 )
( )

( ) ( ) ln(1 )

j f

j f

j f

j
k j

j j
o O k

j j

o O k j j j
o O k

k k
w k k k

k k

k Pf
k

k k Pf

η µ
λ µ µ

η λ

λ
µ

η λ

∀ ∈

∀ ∈
∀ ∈

⎛ ⎞
+⎜ ⎟

= ⎜ − + −⎜ ⎟
⎝

⎛
−⎜

− ⎜ − + −⎜
⎝ ⎠

∑

∑ ∑

( )

( ) ( ) ln ( ) (1 ( )) ln(1 ( ))
j f

j j j j
o O k

jPf ⎟

⎠
⎞
⎟
⎟
⎟

g k k k kλ λ λ λ
∀ ∈

⎡ ⎤+ + − + +⎣ ⎦∑ k  

                       (19) 
The dual problem posed in (15)-(19) is separable and it can 
be solved by following a procedure similar to that used for 
solving Problem 1. The only difference is that we also need 
to  update the Lagrange multiplier ( )kµ  using a 
subgradient method.  
 

DMFD Problem 3 
 
In this formulation, we consider the case where the 
probabilities of detection and false alarm ( jPd , jPf ) are 
associated only with each test (see Figure 5). Formally, jt

Pr( ( ) 1| ( ) 1)j j jPd o k t k= = = = and . 
We can convert these probabilities into a special case of 
Problem Formulation 1 by computing (

Pr( ( ) 1 | ( ) 0)j j jPf o k t k= =

ijPd , ijPf ) using 
(1):  

     ( ) (1 )ij ij j ij jPd d Pd d P= + − f           (20) 
Similarly 

   ( ) (1 )ij ij j ij jPf d Pf d Pd= + −           (21) 
The solution of Problem 3 can be obtained by substituting 

ijPd  and ijPf  in (20)-(21) in the solution of Problem 1. 
 

DMFD Problem 4 
 
Next, we consider the case when the system consists of 
reliable tests, and the fault-test relationships are 
deterministic, i.e. and  for 1ijPd = 0ijPf = 1,...,i m=  
and  or equivalently, the D-matrix completely 
characterizes the fault-test relationships [11]. This 
formulation can be represented as a bipartite graph 
between the components and tests. In this case, if some 
tests have passed, then we can infer that all the failure 
sources covered by these tests are good components.  

1,...,j = n

( ) 0jt k = ( ) 1jt k =

Test
Outcome 

jPf
jPd

1 jPd−

Test 

1 jPf−

( ) 0jo k = ( ) 1jo k =

( ) 0jt k = ( ) 1jt k =

Test
Outcome 

jPf
jPd

1 jPd−

Test 

1 jPf−

( ) 0jo k =( ) 0jo k = ( ) 1jo k =( ) 1jo k =

 
Figure 5: Detection and false alarm probabilities for problem 3 

 
Thus, we need to infer failed components from those 
covered by the failed tests only, i.e., by excluding those 
components covered by the passed tests. Consequently, the 
size of the DMFD problem can be reduced by removing all 
failure sources{ | 0, 1,  and ( )}i ik ik k ps Pf Pd t T k= = ∈ . For 
each failed test ( ) ( )j ft k T k∈ , the optimal solution contains 
at least one component  state ( )ix k  = 1 that satisfies 

1ijd = . Thus, there must be one or more failure sources 
that cover the failed tests.  Let us consider a matrix A , 
which has each row representing the list of failure sources 
covered by a failed test. After excluding the failure sources 
covered by the passed tests, the resulting matrix A is a 
binary matrix such that . After substituting ij jia d=

1ijPd = and 0ijPf =  in (5), the reliable test scenario with a 
binary D-matrix simplifies to a dynamic set covering 
problem with the following objective function term at 
epoch k: 

1 1
( ( ), ( 1)) ( ) ( ) ( ) ( 1)

m m

k i i i
i i

f x k x k k x k k x kµ σ
= =

i− = +∑ ∑ −

+

   

          (22) 
1

( ) ( ) ( 1) ( )  
m

i i i
i

h k x k x k g k
=

+ −∑
subject to following constraints: 

     ( ) ( )A k x k e≥  for     (23) ( ) ( )j ft k T k∈
where e  is a vector of one’s. Appending constraints (23) 

to (22) via Lagrange multipliers { }
( )

( )
f

j j T k
kλ

∈
, the 

Lagrangian function  can be obtained. The dual 
function 

( , )L X Λ
( )Q Λ  is defined by 

     ( ) max ( , )
KX

Q L XΛ = Λ

Q

.          (24) 

Simplifying further by rearranging and combining the 
terms, we obtain the dual function as 

      
1

( ) max ( )
K

m

i
X i

Q
=

Λ = ∑ Λ          (25) 

where  

1

1( ) ( ( ), ( 1), ( )) ( )
K

i i i i j k
k

Q x k x k k w
m

ξ λ
=

Λ = − +∑ Λ      (26) 

( )

( ( ), ( 1), ( )) ( ) ( ) ( )
j f

i i i j j ji i
t T k

x k x k k k a k x kξ λ λ
∈

− = − ∑
( ) ( ) ( ) ( 1) ( ) ( ) ( 1) i i i i i i ik x k k x k h k x k x kµ σ+ + − + −    (27) 



and 
 .              (28) 

( )

( ) ( ) ( )
j f

k
t T k

w g k λ
∀ ∈

Λ = + ∑ j k

The dual problem defined in (24)-(28) is separable. The 
Viterbi algorithm is used to solve each subproblem 
corresponding to each fault state sequence ix . This 
algorithm can be viewed as a dynamic set covering 
problem, which is NP-hard.  Thus, the dynamic set 
covering problem is solved by combining the Viterbi 
algorithm and Lagrangian relaxation.  This generalizes 
Beasley’s Lagrangian relaxation algorithm for the static set 
covering problem [11], [15] to dynamic settings.  
 

Results 
 

We implemented and applied the solution of problem 1, the 
most general version of the DMFD problem formulation, 
to a few real world models. Table 4 illustrates the model 
parameters of an automotive system,  a document matching 
system (Docmatch), a power distribution system 
(Powerdist), a UH-60 helicopter transmission system 
(Helitrans) and an engine simulator (EngineSim). Details 
of these models are provided in [11]. Here, m, n, and c 
denote the number of components (failure sources), 
number of tests and the average number of intermittent 
faults that can occur over a span of 100 epochs. The fault 
appearance probabilities ( ) were computed based on 
the average number of intermittent faults (c). These real-
world systems are not ideal because they have fewer tests 
as compared to failure sources; hence, some failure sources 
are not covered by any tests. The fault disappearance 
probabilities ( ) were varied between 0.0025-0.0049 to 
allow c intermittent faults, on average. The probabilities of 
detection and false alarm were varied as shown in Table 4. 
The maximum number of subgradient iterations was set at 
80. The algorithms were implemented in MATLAB. We 
used a standard PC having Pentium 4 Processor with 3.0 
GHz clock speed and 512 MB RAM.  

iPa

iPv

Table 5 shows the results obtained using the subgradient 
(S) and the deterministic simulated annealing (DSA) [7] 
methods. Here, , , , ,J Q D CI FI and denote the primal 
function value, the dual function value, the approximate 
duality gap, the correct isolation rate, the false alarm rate 
and the computation time per epoch. The primal and dual 
function values are computed using (3)-(5) and (15)-(19), 
respectively. The approximate duality gap (D) is computed 
as a ratio of the difference between Q and J divided by the 
absolute value of the primal feasible value J. Here, CI is 
computed as the average percentage of true fault states, 
which are isolated by the algorithm over a span of K 
epochs, and FI is computed as the average percentage of 
fault states, which are falsely isolated by the algorithm 
over a span of K epochs. The subgradient method (S) 
achieves higher correct isolation rates as compared to 

(DSA) for all the systems except Helitrans. However, the 
DSA method achieves better primal function value and is 
also effective in reducing the computation time (t). Also, 
note that we can obtain a hybrid duality gap by taking the 
maximum primal solution from the subgradient (S) and the 
deterministic simulated annealing (DSA) methods and the 
dual function value from the subgradient (S) method. The 
hybrid DSA-subgradient (HS) duality gaps are also shown 
in Table 6. The CPU time ( t ) is measured in seconds. 
Based on our experience, these numbers are highly 
practical and they can be further reduced by a factor of 10 
when implemented in the C language.  

t

We also showed an application of the DMFD Problem 3 
formulation in our recent paper [16] where we performed 
dynamic fusion of classifiers over time for automotive 
engine fault diagnosis. The temporal correlations 
considered by dynamic fusion improve classification 
accuracy over a variety of static fusion techniques (based 
on batch data). 

Table 4: Real world models 
 m n 

ijPd ijPf  c, iPa   

Automotive 22 60 (0.85-0.95),   
0-0.02 

3, 9.13e-04 

Docmatch 257 180 (0.6-1),0 9, 3.12e-04 

Powerdist 96 98 (0.6-1),0 3,3.13e-04 

Helitrans 34 51 (0.6-1),0 2, 2.95e-04 

EngineSim 53 30 (0.6-1),0 2,5.68e-04 

   
Table 5: Results on real world models 

  J  Q  D  
(%) 

CI  FI  t  

S -658 -481 27 99.5 0.05 0.43 

DSA -775 -- -- 75 1.30 0.01 

Automotive 

HS -658 -481 27  

S -541 -311 42.5 88.2 0.36 4.53 

DSA -405 -- -- 69 0.70 0.24 

Docmatch 

HS -405 -311 23.2  

S -232 -125 46.1 91.6 0.75 1.56 

DSA -157 -- -- 84 0.30 0.05 

Powerdist 

HS -157 -125 20.3  

S -15 -14 6.7 94.8 0.31 0.47 

DSA -15 -- -- 100 0.0 0.02 

Helitrans 

HS -15 -14 6.7  

S -85 -33 61.1 95.1 2.28 0.64 

DSA -51 -- -- 86 0.3 0.02 

EngineSim 

HS -51 -33 35.3  

 



 

)

)

Complexity: All the DMFD formulations are NP-hard. The 
simplest one, i.e. the deterministic formulation (Problem 4) 
is also NP-hard. If we use brute force dynamic 
programming (DP), the complexity is O(K22m) where K is 
total number of epochs and m is number of components 
(failure sources). The DP is infeasible for systems with 
more than about 15 states. The algorithm presented here 
reduces the overall complexity to O(K(m+Of)) where Of  is 
the set of failed tests, a substantial improvement. In 
particular, the complexities of binary Viterbi algorithm 
over all fault states and the subgradient method are  
and , respectively, per iteration.  

( )O Km
( fO KO

 
Conclusions 

 
This paper discussed four formulations of the DMFD 
problem. Analogous forms of these formulations have been 
studied widely in fault diagnosis community in a static 
context, and applied in various fields. Here, we provided a 
unified formulation of all the MFD formulations in a 
dynamic context. The first formulation refers to a 
generalized version of the DMFD problem when the 
detection and false alarms probabilities are associated with 
each test and fault. In the second formulation, the false 
alarm probability is associated with fault-free case only. 
The solution to the second formulation was shown to be 
quite similar to that of problem formulation 1, except for 
the need to update an additional Lagrange multiplier. The 
third formulation considers the case where the 
uncertainties are associated with only test outcomes. This 
models dynamic fusion of classifier outputs.  In the fourth 
formulation, we considered the deterministic case, which 
led to a novel dynamic set covering problem. 
 
We simulated problem 1 using real world models. Results 
demonstrate that our algorithm achieves high isolation rate 
as compared the deterministic simulated annealing method. 
The latter provides better primal function value as 
compared to the subgradient method. In our future work, 
we plan to implement an on-line version of our algorithm 
using a sliding window method. The sliding window 
implementation will reduce the number of Lagrange 
multipliers updates, because estimates for these would 
have been computed for (  epochs in the preceding 
window of size W. Initialization based on these estimates 
will improve convergence. In addition, we will consider 
multi-state component models with multiple test outcomes.  
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