
TSpace Research Repository    tspace.library.utoronto.ca 

  
 

 
 
 
Dynamic Multiple-Period Reconfiguration of 
Real-Time Scheduling Based on Timed DES 

Supervisory Control 
 

 Xi Wang, ZhiWu Li, W. M. Wonham 
 

Version Post-print/accepted manuscript 
 
 

Citation  
(published version) 

Xi Wang, Zhiwu Li, W. M. Wonham. Dynamic multiple-period 
reconfiguration of real-time scheduling based on timed DES 
supervisory control.  IEEE Trans. on Industrial Informatics 12(1) 
February 2016, pp.101-111. 
 
 

Publisher’s Statement © 2016 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works. 

 

 
 
 
 

How to cite TSpace items 
 

Always cite the published version, so the author(s) will receive recognition through services that track 
citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace 

because you cannot access the published version, then cite the TSpace version in addition to the published 
version using the permanent URI (handle) found on the record page. 

This article was made openly accessible by U of T Faculty.  
Please tell us how this access benefits you. Your story matters. 

https://tspace.library.utoronto.ca/feedback


1

Dynamic Multiple-Period Reconfiguration of

Real-Time Scheduling Based on Timed DES

Supervisory Control

Abstract—Based on the supervisory control theory (SCT)1

of timed discrete-event systems (TDES), this study presents a2

dynamic reconfiguration technique for real-time scheduling of3

real-time systems running on uni-processors. A new formalism is4

developed to assign periodic tasks with multiple-periods. By im-5

plementing SCT, a real-time system (RTS) is dynamically recon-6

figured when its initial safe execution sequence set is empty. Dur-7

ing the reconfiguration process, based on the multiple-periods, the8

supervisor proposes different safe execution sequences. Two real-9

world examples illustrate that the presented approach provides10

an increased number of safe execution sequences as compared11

to the earliest-deadline-first (EDF) scheduling algorithm.12

Index Terms—Real-time system, timed discrete-event system,13

supervisory control, dynamic reconfiguration, non-preemptive14

scheduling.15

I. INTRODUCTION16

In [1], Liu and Layand define a periodic task model with17

a deadline equal to its period, which we refer to as the Liu-18

Layand (LL) model. Thereafter, Nassor and Bres propose a19

new task model in [2], with a deadline less than or equal20

to its period, which we refer to as the Nassor-Bres (NB)21

model. Currently, the most widely-used scheduling algorithms22

for hard periodic real-time systems (RTS) running on a uni-23

processor are fixed priority (FP) scheduling and earliest-24

deadline-first (EDF) scheduling algorithms [1]. Moreover, an25

RTS can be scheduled in a preemptive or non-preemptive26

mode [3], [4]. In real-time scheduling theory, these widely27

applied algorithms provide at most one schedulable sequence28

for an RTS to meet the hard deadlines. For non-preemptive29

scheduling of an RTS that executes the NB model tasks,30

Chen and Wonham [5] propose a timed discrete-event system31

(TDES)-based task model, which we refer to as the Chen-32

Wonham (CW) model, and a real-time scheduling technique.33

Based on supervisory control theory (SCT), all safe execution34

sequences are generated by the TDES supervisor, from which35

the user chooses a preferred sequence to schedule the RTS.36

The RTS is claimed to be non-schedulable if the supervisor37

is empty. Based on the LL model and SCT, a priority-38

based and preemptive real-time scheduling policy and a task39

model, which we refer to as the Janarthanan-Gohari-Saffar40

(JGS) model, are proposed by Janarthanan et al. in [6]. The41

work in [5] and [6] is a significant improvement over real-42

time scheduling. However, the authors did not reconfigure the43

system in case of non-schedulability.44

In [7]–[10], an elastic period task model is proposed to45

handle the overload of an RTS by decreasing the task processor46

utilization. Moreover, the supremal controller found by SCT47

provides the RTS with all the safe execution sequences [5].48

Building on the two latter studies, we present a new modeling 49

technique to endow the real-time tasks represented by the CW 50

and JGS models with multiple-periods. To handle the overload 51

of an RTS, SCT is utilized to find all the possible solutions 52

based on different periods of each task. For each solution, all 53

the safe execution sequences are provided. 54

Dynamic reconfiguration in the present study consists of 55

two steps: 1) the initial model of each task is assigned with 56

the shortest period (the highest processor utilization), and by 57

utilizing SCT, all the RTS’ safe execution sequences (if any) 58

are found; 2) for the purpose of reconfiguring the RTS in case 59

of non-schedulability, this study reconfigures the RTS’ com- 60

posite task model by assigning to the tasks multiple-periods. 61

The multiple-period provides multiple processor utilization for 62

each task. Thereafter, a processor utilization interval for the 63

RTS is obtained. SCT is utilized again to find all the safe 64

execution sequences (possible reconfiguration scenarios) in the 65

predefined processor utilization interval. If the supervisor is 66

still empty, we claim that the RTS is non-schedulable. Two 67

real-world examples are implemented in this study. The results 68

illustrate that, in the dynamic reconfiguration approach, the 69

presented method finds a set of safe execution sequences. 70

The rest of this paper is structured as follows. The state 71

of the art is reviewed in Section II. Section III presents the 72

terminology used throughout the paper. The multiple-period 73

TDES model for RTS is defined in Section IV. Section V re- 74

ports methodologies of supervisory control and reconfiguration 75

of RTS. A real-world example is implemented in Section VI 76

to verify the supervisory control and reconfiguration. Further 77

relevant issues are discussed in Section VII. Conclusions are 78

provided in Section VIII. 79

II. STATE OF THE ART 80

In a periodic RTS, a permanent overload condition occurs 81

if the processor utilization is greater than one [11]. In this 82

case, the RTS needs to be reconfigured. In recent years several 83

academic and industrial studies [12]–[14] have addressed the 84

dynamic reconfiguration of RTS. These approaches can be 85

divided into two categories: manual, applied by users [15], 86

and automatic, applied by intelligent control agents [16]. 87

The most widely used overload management approaches are: 88

elastic scheduling [7]–[10] and job skipping [17]. In real-time 89

scheduling, effective solutions for reconfiguration based on 90

sensitivity approach of worst-case execution times (WCET), 91

deadlines, and periods of tasks are reviewed in [18]. These 92

solutions are utilized to reconfigure the RTS scheduled by 93

FP real-time scheduling. There is no reconfiguration result 94



2

based on the sensitivity approach to reconfigure the tasks’95

periods for dynamic-priority real-time scheduling [18]. Based96

on SCT, this study presents a new dynamic reconfiguration97

technique to reconfigure the RTS when they are claimed98

to be non-schedulable under the approaches in [5] or [6].99

Unlike traditional real-time scheduling and reconfiguration100

via the calculation of processor utilization, processor demand101

[19], and on-line monitoring to provide one safe execution102

sequence, an off-line technique is presented: in a predefined103

processor utilization interval, based on SCT, all the safe104

execution sequences (possible reconfiguration scenarios) are105

found.106

III. CONCEPTS AND TERMINOLOGY107

A. Preliminaries on TDES108

In the language-based Ramadge-Wonham (RW) framework109

[20], [21], a finite discrete-event system (DES) is represented110

by a state machine G = (Q, Σ, δ, q0, Qm), where Q is the111

state set, Σ is the event set, δ: Q × Σ → Q is the (partial)112

state transition function, q0 is the initial state, and Qm is113

the marker state set satisfying Qm ⊆ Q. Let Σ+ (resp., ǫ)114

denote the set of all finite sequences over Σ (resp., empty115

string). We have Σ∗ = Σ+ ∪ {ǫ}. A plant and a specification116

are represented by G and S, respectively. In [22], by adjoin-117

ing to the RW framework time bounds on the transitions,118

G starts from an (untimed) activity transition graph (ATG)119

Gact = (A, Σact, δact, a0, Am) with Σ := Σact∪̇{tick}. The120

elements of the activity set A are “activities”, denoted by a.121

Σact is partitioned into two subsets, Σact = Σspe∪̇Σrem,122

where Σspe (resp. Σrem) is the prospective (resp. remote)123

event set with finite (resp. infinite) upper time bounds [21].124

By defining the timer interval for σ, represented by Tσ, to be125

[0, uσ] or [0, lσ] for σ ∈ Σspe and σ ∈ Σrem, respectively,126

the initial state is q0 := (a0, {tσ0|σ ∈ Σact}), where tσ0127

equals uσ or lσ for a prospective or remote state, respectively.128

The marker state set is Qm ⊆ Am ×
∏

{Tσ|σ ∈ Σact}.129

Thus a TDES is represented by G = (Q, Σ, δ, q0, Qm). An130

event σ ∈ Σact is enabled at q if δact(a, σ) is defined,131

written δact(a, σ)!; it is eligible if its transition δ(q, σ) is also132

defined, i.e., δ(q, σ)!. The closed behavior of G is the language133

L(G) := {s ∈ Σ∗|δ(q0, s)!}. In addition, the marked behavior134

of G is Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}. G is non-135

blocking if Lm(G) satisfies Lm(G) = L(G), where Lm(G)136

is the (prefix) closure of L(G). In a TDES plant G, the eligible137

event set EligG(s) ⊆ Σ at a state q corresponding to a string138

s ∈ L(G) is defined by EligG(s) := {σ ∈ Σ|sσ ∈ L(G)}.139

For an arbitrary language K ⊆ L(G), let s ∈ K, EligK(s) :=140

{σ ∈ Σ|sσ ∈ K}. The set of all controllable sublanguages of141

K is denoted by C(K); this family is nonempty (the empty142

set belongs) and is closed under arbitrary set unions. Hence, a143

unique supremal (i.e., largest) element exists, and is denoted by144

supC(K). Considering a specification language E ⊆ Σ∗, there145

exists an optimal monolithic supervisor S. Its closed behavior146

is L(S) = Lm(S), where Lm(S) is the marked behavior147

represented by Lm(S) =supC(E ∩ Lm(G)) ⊆ Lm(G).148

B. Synchronous product 149

Suppose that we have a set of generators Gi with i ∈ n = 150

{1, 2, . . . , n}. In accordance with [21], the behavior of Gi is 151

represented by language Li. Synchronous product [21] is a 152

standard way to combine several DES into a single and more 153

complex one. Suppose that we have two languages L1 ⊆ Σ∗
1 154

and L2 ⊆ Σ∗
2 with Σ = Σ1 ∪ Σ2. The natural projection 155

Pi : Σ∗ → Σ∗
i is defined by 156

• Pi(ǫ) = ǫ, 157

• Pi(σ) =

{

ǫ, if σ /∈ Σi

σ, if σ ∈ Σi
, 158

• Pi(sσ) = Pi(s)Pi(σ), s ∈ Σ∗, σ ∈ Σ. 159

The inverse image function of Pi is 160

P−1

i : Pwr(Σ∗
i ) → Pwr(Σ∗). 161

For H ⊆ Σ∗
i , 162

P−1

i (H) := {s ∈ Σ∗|Pi(s) ∈ H}. 163

The synchronous product of L1 and L2, denoted by L1||L2, 164

is defined as 165

L1||L2 := P−1

1
L1 ∩ P−1

2
L2. 166

C. System Model 167

Suppose that a periodic RTS S processes n tasks, i.e., S = 168

{τ1, τ2, . . . , τn}, i ∈ n. Assume also that this set contains 169

at least one task with a multiple-period, namely one having 170

a lower and upper (non-negative integral time) bound. The 171

execution model of such a system is a set of tasks processed 172

in a uni-processor, in which a task τi is described by τi = 173

(Ri, Ci, Di, Ti) with 174

• release time Ri, 175

• WCET Ci, 176

• hard deadline Di, and 177

• multiple-period Ti. 178

An RTS is a synchronous system [19] in case all the processed 179

tasks are released at the same time, namely Ri = 0. In this 180

research the RTS is synchronous. A deadline is hard if its 181

violation is unacceptable. A multiple-period is a period set 182

containing several possible periods: the lower bound (i.e., 183

shortest one) is represented by Timin
, and the upper bound 184

(i.e., longest one) is represented by Timax
. Thus, we have 185

Ti = [Timin
, Timax

]. 186

During the real-time scheduling process, for task τi, only 187

one period T satisfying Timin
≤ T ≤ Timax

is selected in 188

each scheduling period. The processor utilization Ui of task 189

τi is calculated by 190

Ui = Ci/T.

191

The total processor utilization of S is US =
n
∑

i=1

Ui. An RTS S 192

is not schedulable in case US > 1 [11]. 193

Task τi consists of an infinite sequence of jobs Ji,j = 194

(ri,j , Ci, di,j , pi,j) repeated periodically. The absolute dead- 195

line di,j denotes the global clock time at which the execution 196

of Ji,j must be completed. Similarly, we define the absolute 197



3

release time (resp. period) ri,j (resp. pi,j) to mean the global198

clock time at which τi must be released (resp. start the199

next period). The subscript “i, j” of Ji,j represents the j-th200

execution of task τi. For each j, Ji,j requests the processor at201

global clock time ri,j . Moreover, the execution of Ji,j takes Ci202

ticks, which must be completed no later than di,j . The absolute203

deadline di,j occurs no later than the absolute period pi,j . The204

EDF scheduling algorithm [1] assigns the priority of each job205

based on the absolute deadlines: the earlier the deadline, the206

higher is the job’s priority. The EDF scheduling algorithm207

can be utilized to schedule RTS. At each time unit, the job208

with the highest priority enters the processor. If the execution209

of a job is allowed to be preempted by other jobs before its210

execution finishes, the scheduling is preemptive; otherwise, it211

is non-preemptive.212

IV. TDES MODEL FOR REAL-TIME SYSTEMS213

A. CW Model214

The CW model [5] represents a real-time periodic task τi =215

(Ri, Ci, Di, Ti), i ∈ n, with Di ≤ Ti, by a TDES Gi =216

(Qi, Σi, δi, q0i, Qmi). As depicted in Fig. 1, the corresponding217

ATG part is Gact = (Ai, Σacti, δacti, a0i, Ami) with218

• Ai = {Yi, Ii, Wi},219

• Σacti = {γi, αi, βi},220

• δacti : Aacti × Σacti → Aacti with221

– δacti(Yi, γi) = Ii,222

– δacti(Ii, αi) = Wi, and223

– δacti(Wi, βi) = Yi.224

• a0i = Yi, and225

• Ami = {Yi}.226

i

i
Y

i
I

i
W

i

i

Fig. 1: ATG of a real-time task.

States Yi, Ii, and Wi represent that task τi is at states delay,227

idle, and work, respectively. The events in the alphabet Σi are228

• γi: the event that τi is released,229

• αi: the execution of τi is started, and230

• βi: the execution of τi is finished.231

Event αi is controllable and events γi and βi are uncontrol-232

lable. Moreover, all the events in Σacti are forcible. Suppose233

that, after enabling, events γi, αi, and βi should wait for234

tγi
, tαi

, and tβi
ticks, respectively, until they are eligible to235

occur. Thus, tαi
is the time at which τi starts its execution.236

Furthermore, in the CW model, tβi
= Ci. A CW model has237

the following two features: 1) γi signals that after ri,1, τi238

will release at every Ti ticks periodically; and 2) βi must239

occur before τi is released again. The time interval between240

the occurrences of events βi and γi is the remaining time of 241

the current period, which decreases along with the increase of 242

tαi
. Hence, in two adjacent periods, the values of tγi

could 243

be different. Formally, 244

• γi has time bounds



















[0, 0],

if τi releases at r1,1

[Ti − tαi
− tβi

, Ti − tαi
− tβi

],

if (∀j > 1) τi releases at ri,j

, 245

• αi has time bounds [0, Di − tβi
], and 246

• βi has time bounds [tβi
, tβi

]. 247

B. JGS Model 248

Another TDES real-time task model, the JGS model pro- 249

posed in [6], can be utilized to preemptively schedule periodic 250

tasks τi satisfying Di = Ti. The scheduling is priority-based. 251

The general TDES models for the WCET and the period of 252

each task are represented by the two TDES generators shown 253

in Figs. 2 and 3, respectively, in which Σ = Σ1∪Σ2∪· · ·∪Σn, 254

and Σt = Σ ∪ {t}. The event set Σi for τi is composed of 255

• ai: the arrival of task τi, 256

• ci: the execution of task τi, and 257

• ei: the execution of the last time unit of task τi. 258

Event ai is uncontrollable while events ci and ei are control- 259

lable. Moreover, all the events in the alphabet Σi are forcible. 260

ti
a

\t

i

i
e

i
c

t

\t

i
\t

i

Fig. 2: JGS WCET model.

i
a

\{ }
i

a

t

\{ }
i

a \{ }
i

a

t

\{ }
i

a

t

Fig. 3: JGS period model.

C. Comparison between CW and JGS Models 261

Several differences between CW and JGS models are shown 262

in Table I, in which Y and N represent “yes” and “no”, 263

respectively. 264

TABLE I: CW model v.s. JGS model

Model D ≤ T priority preemption

CW Y N N

JGS N Y Y

Both CW and JGS models have their advantages and dis- 265

advantages. Thus they can be utilized to model different RTS. 266

The CW model can be utilized to model an RTS executing 267



4

a set of periodic tasks with deadlines less than or equal to268

their corresponding periods. However, priority-based schedul-269

ing and preemptive scheduling cannot be accommodated by270

the CW model. On the contrary, the JGS model can only271

be utilized to model an RTS executing a set of tasks with272

deadlines equal to their periods. Moreover, in the JGS model,273

priority-based scheduling and preemptive scheduling of real-274

time tasks are addressed. Users can choose different models275

to solve different real-time scheduling problems.276

D. TDES Model for Multiple-Period Tasks277

The elastic task model in [7]–[10] assigns a lower and an278

upper period bound for each task to dynamically reconfigure279

an RTS. At each time, the reconfiguration of each task’s280

period is assigned a value between the two bounds Timin
and281

Timax
. Consequently, the processor utilization Ui of an elastic282

periodic task has a lower bound Uimin
and an upper bound283

Uimax
. Formally, we have284

Ui = [Uimin
, Uimax

]285

with Uimin
= Ci/Timax

and Uimax
= Ci/Timin

. The system286

processor utilization is287

US = [Umin, Umax]288

with Umin =
n
∑

i=1

Uimin
and Umax =

n
∑

i=1

Uimax
. In the289

interval [Umin, Umax], there may exist multiple safe execution290

sequences (reconfiguration scenarios) that correspond to dif-291

ferent processor utilizations. Moreover, SCT [21] is utilized to292

find the supremal controllable sublanguages, i.e., it is possible293

to provide multiple reconfiguration scenarios for each task.294

Building on the elastic task model and SCT, we present a new295

model that provides all the possible periods for each task; the296

supervisor provides all the safe execution sequences (possible297

reconfiguration scenarios) simultaneously. Users choose any298

scenario to reconfigure the RTS dynamically.299

A regular periodic task with a fixed period is considered300

as a multiple-period task τi with Timin
= Timax

. With a301

regular task, the reconfiguration of its period would affect its302

utilization, which is not allowed. On the other hand, SCT is303

utilized to provide all the possible scheduling paths based on304

different periods (utilizations).305

1) Multiple-period CW (MCW) model:306

In this study, the MCW model is depicted in Fig. 4, in which307

y0 is the initial state, and {ymin, ymin+1, . . . , ymax−1, y0}308

is the marker state set. Each marker state represents that309

τi has finished the current execution of Ji,j and is ready310

for the release of Ji,j+1. State y0 represents that job Ji,j311

finishes its operation at Timax
or has never been invoked. States312

ymin, ymin+1, and ymax−1 represent that job Ji,j finishes its313

operation at times Timin
, Timin+1

, and Timax−1
, respectively.314

On the occurrence of αi, τi starts the processing of the315

current job. After event tick occurs Ci times, the execution of316

τi is completed. The next occurrence of event γi drives τi into317

the next execution period. Formally,318

i

i

tt

tt

tt

tt

t

t

t

t

i

ii

ii

ii

0y

i
C

i
C

i
C

i
C

t

tt

t
max 1y

miny

min 1y

i

i
i

Fig. 4: General TTG model for MCW tasks.

• γi has time bounds



















[0, 0],

if τi releases at ri,1

[Timin
− tαi

− tβi
, Timax

− tαi
− tβi

],

if (∀j > 1) τi releases at ri,j

,319

• αi has time bounds [0, min {Di, Timin
} − tβi

], and 320

• βi has time bounds [tβi
, tβi

]. 321

Remarks: 322

1. Initially, a task with Ti = Timin
plays the role of the 323

task proposed in [5]. In this case, task τi always stays at the 324

highest processor utilization. If the RTS is non-schedulable, 325

the multiple-period model with Ti = [Timin
, Timax

] is utilized 326

to provide all the possibilities to compress the processor 327

utilization. 328

2. For example, a non-reconfigurable periodic task τ1 is 329

defined as τ1 = (0, 1, 4, [5, 5]). The processor utilization of 330

task τ1 is fixed to be U1 = 1/5. The TTG model G1 for task 331

τ1 is depicted in Fig. 5. For the events in Σact1, 332

• γ1 has time bounds



















[0, 0],

if τ1 releases at r1,1

[4 − tα1
, 4 − tα1

],

if (∀j > 1) τ1 releases at r1,j

, 333

• α1 has time bounds [0, 4 − tβ1
], and 334

• β1 has time bounds [1, 1]. 335

11 t

t

t

t

t

t

t

t

1

11

11

11

t

t

t t

Fig. 5: MCW TDES G1.



5

3. The remaining time between βi and γi equals 0 if 1)336

Di = Ti and 2) αi occurs at time Di − tβ . As a result,337

the occurrence of βi may lead the TDES model to state338

y0 directly. For example, suppose that we have two other339

tasks τ2 = (0, 2, 6, [4, 6]) and τ3 = (0, 2, 5, [3, 5]). The340

corresponding TTG models G2 and G3 are illustrated in Figs.341

6 and 7, respectively, in which events β2 and β3 lead the342

TDES model to the initial states directly. All the possible343

processor utilizations of τ2 are 2/4, 2/5, and 2/6; and the344

possible processor utilizations of τ3 are 2/3, 2/4, and 2/5.345

2

2

tt

tt

tt

tt

t

t

t

t

22

22

22

t

tt

t

t

t
2

22

2

t

2

Fig. 6: Multiple-period TDES G2.

tt

tt

tt

tt

3

3

33

33

t

tt

3

3

3

t
3

t

t

t
3

Fig. 7: Multiple-period TDES G3.

4. The time bounds [Timin
− tαi

− tβi
, Timax

− tαi
− tβi

]346

for event γi for ri,j with j ≥ 1 are dynamic, which decreases347

along with the increase of tαi
.348

2) Multiple-period JGS (MJGS) model:349

In order to assign a multiple-period to a JGS model, we350

need to define marker states. Consequently, the initial states351

are revised, i.e., they are also assigned to be marker states.352

The new models for WCET and multiple-period are depicted353

in Figs. 8 and 9, respectively. In Fig. 9, we have that y0354

is the initial state; and {Timin
, yimin+1, . . . , yimin−1, y0} is355

the marker state set. Each marker state represents that τi has356

finished the current execution of Ji,j and is ready for the357

release of Ji,j+1. State y0 represents that job Ji,j finishes358

its operation at Timax
or has never been invoked. States359

ymin, ymin+1, and ymax−1 represent that job Ji,j finishes its360

operation at times Timin
, Timin+1

, and Timax−1
, respectively.361

The transition rule362

(q ∈ {Timin
, yimin+1, . . . , yimin−1, y0}) ⇒ δ(q, ai) = 0363

represents the new arrival of task τi. 364

ti
a

\t

i

i
e

i
c

t

\t

i
\t

i

Fig. 8: Revised WCET of JGS model.

i
a

\{ }
i

a \{ }
i

a

t

\{ }
i

a

t

t t

\{ }
i

a \{ }
i

a\{ }
i

a

t
i

a
i

a
max

1
i

T
mini

T
0y 0

1

min
1

i
T

Fig. 9: Multiple-period of a JGS model.

Example. 365

Suppose that we have two tasks τa = (0, 1, [2, 3], [2, 3]) and 366

τb = (0, 2, [3, 3], [3, 3]). The WCET of τa and τb are illustrated 367

in Figs. 10 and 11, respectively. The multiple-periods of τa and 368

τb are shown in Figs. 12 and 13, respectively. The processor 369

utilization of τa could be 1/2 or 1/3. The processor utilization 370

of τb is 2/3. 371

a
a

\t

a

a
c

t

\t

a

Fig. 10: WCET of τa.

tb
a

\t

b

b
e

b
c

t

\t

b
\t

b

Fig. 11: WCET of τb.

E. Task Creation and Editing in TTCT 372

The TDES synthesis procedure TTCT 1 is a software pack- 373

age to create an RTS as the composite model [5] of multiple- 374

period TDES models and to execute further operations. All the 375

operations and the generated files are recorded in an annotated 376

file MAKEIT.TXT. The procedures utilized in this study are 377

summarized in Appendix 1. The edit procedure is utilized to 378

convert a multiple-period periodic task to a task with a fixed- 379

period or vice-versa. In this study, a task with a superscript 380

“l” (resp. “u”) represents that it possesses the lower (resp. 381

upper) period bound; the corresponding task name in TTCT 382

is prefixed by an L (resp. U). 383

1http://www.control.utoronto.ca/DES



6

a
a

\{ }
a

a

t

\{ }
a

a \{ }
a

a

t

\{ }
a

a

t

a
a

Fig. 12: Multiple-period of τa.

b
a

\{ }
b

a

t

\{ }
b

a \{ }
b

a

t

\{ }
b

a

t

Fig. 13: Multiple-period of τb.

1) Task creation for MCW model:384

The TTCT operations for the creation and editing of tasks385

τ1, τ2, and τ3, represented by G1, G2, and G3, respectively,386

are reported in Appendix 2. In addition, the parameters of387

these created tasks are presented in Table II, in which the types388

“M” and “F” in Table II denote that the corresponding tasks389

possess multiple-periods or fixed-periods (as in a CW model),390

respectively. In the TDES models, events γi, αi, βi, and tick391

are represented by i0, i1, i2, and 0, respectively. Evidently, we392

have L(Gl
2) ⊆ L(G2), L(Gu

2 ) ⊆ L(G2), L(Gl
3) ⊆ L(G3),393

L(Gu
3 ) ⊆ L(G3); and Lm(Gl

2) ⊆ Lm(G2), Lm(Gu
2 ) ⊆394

Lm(G2), Lm(Gl
3) ⊆ Lm(G3), Lm(Gu

3 ) ⊆ Lm(G3).395

TABLE II: Parameters of MCW Tasks

task TDES type TTCT R C D T
τ1 G1 M TASK1 0 1 4 5

τ2 G2 M TASK2 0 2 6 [4, 6]

τ l
2 G

l
2 F LTASK2 0 2 4 4

τu
2 G

u
2 F UTASK2 0 2 6 6

τ l
3 G

l
3 F LTASK3 0 2 3 3

τ3 G3 M TASK3 0 2 5 [3, 5]

τu
3 G

u
3 F UTASK3 0 2 5 5

2) Task creation for MJGS model:396

The TTCT operations for the creation and editing of tasks τa397

and τb, represented by Ga and Gb respectively, are reported in398

Appendix 2. WCET of tasks τa, τ l
a, and τb are named TASKA,399

LTASKA, and TASKB, respectively. Their other parameters400

are recorded in Table III. In the TDES models, events ai, ei,401

ci, and tick are represented by i0, i1, i3, and 0, respectively.402

F. TDES RTS Model403

The composite model of an RTS is generated by the404

synchronous product of all the tasks [5], [21].405

1) MCW RTS generation:406

Suppose that tasks τ1 and τ2 are running in RTS S
0. We407

generate S
0 by the following TTCT procedures (all the sync408

operations in the original MAKEIT file were reported with409

the message “Blocked events = None”, eliminated here for410

readability):411

TABLE III: Parameters of MJGS Tasks

task TDES type period R C D T
τa Ga M PA 0 1 [2, 3] [2, 3]

τ l
a G

l
a F LPA 0 1 2 2

τb Gb F PB 0 2 3 3

SYS0 = sync (TASK1, TASK2) (425, 644) 412

where “(425, 644)” denotes that S
0, represented by SYS0, has 413

425 states and 644 transitions. Suppose that another RTS S
1, 414

represented by SYS1, contains τ1, τ2, and τ3. It is generated 415

based on S
0 as follows. 416

SYS1 = sync (SYS0, TASK3) (8500, 16367) 417

The composite task model of traditional periodic RTS is 418

generated by the technique proposed in [5]. In this study, by 419

choosing the periodic tasks with the lower (resp. upper) bound 420

of periods, we generate S
0
l (LSYS0), S

1
l (LSYS1), and S

1
u 421

(USYS1) as follows. They are the counterparts of S
0 and S

1
422

with fixed-periods. 423

LSYS0 = sync (TASK1, LTASK2) (255, 364) 424

LSYS1 = sync (LSYS0, LTASK3) (2550, 4475) 425

USYS1 = sync (TASK1, UTASK2) (425, 610) 426

USYS1 = sync (USYS1, UTASK3) (1750, 3064) 427

Finally, the five generated MCW RTS are listed in Table IV; 428

they will be utilized in the supervisory control and evaluation 429

of the closed behavior of the controlled RTS. 430

TABLE IV: Parameters of MCW Systems

system type TTCT tasks

S
0 M SYS0 τ1, τ2

S
1 M SYS1 τ1, τ2, τ3

S
0
l F LSYS0 τ1, τ l

2

S
1
l F LSYS1 τ1, τ l

2, τ l
3

S
1
u F USYS1 τ1, τu

2 , τu
3

2) MJGS RTS generation: 431

The MJGS model for an RTS S
J
l executing τ l

a and τb is 432

represented by a generator LJ that is generated as follows. 433

LP = sync (LPA, PB) (12, 61) 434

LJ = sync (SYS, LP) (89, 155) 435

The MJGS model S
J for an RTS executing τa and τb, 436

represented by J, is generated in a similar way, i.e., 437

P = sync (PA, PB) (16, 85) 438

J = sync (SYS, P) (124, 228) 439

V. SUPERVISORY CONTROL OF DYNAMIC 440

RECONFIGURABLE MULTIPLE-PERIOD RTS 441

The event controllability and the supervisory control in this 442

study follow the principles proposed in [5], [6], and [21]. 443

A. General Specification for MCW Model 444

In this present paper, instead of utilizing the method pro- 445

posed in [5] to dynamically revise the specification for the 446

tasks running in the uni-processor, a general specification S 447

with 448



7

L(S) = L(S1)||L(S2)|| · · · ||L(Sn)449

is defined with event set Σ =
⋃

1≤i≤n Σi, the union of the450

event sets of all the potential tasks which may be called by451

the processor. Let L(S) = E ⊆ Σ∗. Moreover, Lm(G) ⊆ Σ∗
452

is always satisfied. Hence, by Theorem 1 (Theorem 3.5.2 in453

[21]), K can be found by the procedure supcon (see Appendix454

1).455

Theorem 1: [21] Let E ⊆ Σ∗ and let K = supC(E ∩456

Lm(G)). If K 6= ∅ there exists a marking nonblocking457

supervisory control (MNSC) for G such that Lm(V/G) = K .458

In order to utilize SCT to schedule the RTS non-preemptively,459

the specifications are defined to ensure that after the occur-460

rence of αi, no other event αj with j 6= i can occur to461

preempt it. Hence, the TDES model of specification Si for462

task τi is illustrated in Fig. 14, in which αj and βj with463

j 6= i represent events α and β for any other task, respectively.464

The symbol ∗ represents the other events in Σ. As listed465

in Appendix 3, the specifications for G1, G2, and G3 are466

created by TTCT. Thereafter, by utilizing sync, the general467

specification S presented in Fig. 15 is generated.468

i

i

, ,*
j j *

Fig. 14: Specification for a real-time task.

2

2

1

1

1 2 3, , , t

33

1 2 3, , , t

1 2 3, , , t

1 2 3, , , t

Fig. 15: General specification.

B. Specification for MJGS Model469

The initial preemptive specification for a JGS model is470

shown in Fig. 3 in [6]. In the present paper, it is revised to471

possess an initial and marker state, which is the specification472

of the MJGS model. As listed in Appendix 3, the preemptive473

specification Sb for Gb , represented by PRB, is created by474

TTCT. Sb is depicted in Fig. 16 with ∗ = {t, aa, ba}.475

b
e

b
c

, , ,*
a a a

a e c ,*
b

e

Fig. 16: MJGS model specification.

C. Dynamic Reconfiguration of RTS 476

For both CW and JGS models, the reconfiguration process 477

is illustrated in Fig. 17, which in this study is extended into 478

a two-step approach. In the next section we will illustrate 479

the supervisory control and reconfiguration of two real-world 480

examples. 481

Task 1 Task 2 Task n

Task

Selection
Sync

Composite 

task model

Spec 1 Spec 2 Spec n

Sync

Composite

execution spec
Supcon

All safe 

execution 

sequences

Sequence

selection

timer
Task

execution

An execution 

sequence

On-line

Off-line

Empty?

Y

N

Non-

schedulable

Multiple-

period?

Y

N

Reconfigure

tasks

Fig. 17: Procedures for real-time scheduling.

Suppose that in every scheduling plan only a subset of tasks 482

executed by an RTS enters the uni-processor for execution. 483

Initially the tasks are running in the periodic version with 484

lower bound Timin
. Thus, the initial processor utilization of 485

initial system S0 is Umax =
n
∑

i=1

Ci/Timin
. In case that S0 is 486

non-schedulable, i.e., no safe execution sequence can be found 487

by supervisory control, S0 should be reconfigured dynamically 488

at run-time. All the tasks are replaced by the corresponding 489

multiple-period TDES model with Ti = [Timin
, Timax

], which 490

is followed by supervisory control again to find all the safe 491

execution sequences (possible reconfiguration scenarios). For 492

any composite task model and the general specification, we 493

find (using Theorem 1) all the safe execution sequences 494

by supcon. For any task assigned with multiple-periods, its 495

exact processor utilization lies between Uimin
and Uimax

. 496

Consequently, the processor utilization of the reconfigured 497

RTS S lies between Umin and Umax, i.e., 498

Umin ≤ US ≤ Umax.

499

All possible safe execution sequences are found, resulting 500

in a decrease of processor utilization. Users should take 501

the responsibility to provide the tolerable lowest processor 502

utilization Umin. Consequently, any safe execution sequence 503

in the supervisor can be selected as a guide to schedule the 504

RTS by dynamically reconfiguring the period of each task. 505

If the supervisor is still empty, we claim that the system is 506

non-schedulable. 507

VI. EXAMPLES 508

The reconfigurations in this paper are based on the revised 509

versions of the two examples studied in [5] and [6], respec- 510

tively. 511



8

A. Dynamic Reconfiguration of MCW Model512

In this study, as illustrated in Fig. 18, the example of513

a motor network studied in [5] is revised and considered514

as a reconfigurable RTS. Suppose that three electric motors515

are controlled by a uni-processor. As depicted in Fig. 18,516

their deadlines and the periods are represented by D and T,517

respectively. At each time only a subset of these motors is518

called by the processor. Their parameters coincide with those519

of the tasks shown in Table II as520

• Motor 1: τ1,521

• Motor 2: τ2,522

• Motor 3: τ3.523

Suppose that the motor network has two work plans, coincid-524

ing with the defined RTS S
0 and S

1:525

Plan 1. use only Motors 1 and 2; and526

Plan 2. use all three motors.527

Motor 1

D:4 ms

T:5 ms

Motor 2

D: 6 ms

T: [4,6] ms

Motor 3

D: 5 ms

T: [3,5] ms

Motor 

Selection

Computation:

Motor 1: 1 ms

Motor 2: 2 ms

Motor 3: 2 ms

Fig. 18: A motor network example.

1) Supervisory Control of S
0
l :528

Take S
0
l (LSYS0) as an example. All the safe execution529

sequences are calculated by the procedure supcon, i.e.,530

LSUPER0 = supcon (LSYS0, SPEC) (153, 190).531

Since LSUPER0 is not empty, S
0
l is schedulable at processor532

utilization Umax = 1/5 + 2/4 = 0.7. The safe execution533

sequence set in LSUPER0 is represented by a TDES with 153534

states and 190 transitions. By projecting out all events but αi,535

i.e.,536

PJLSUPER0 = project (LSUPER0, Image [11, 21]) (12,537

15)538

2

1

1

2

2

1

1

2

2 21

1

2

2

1

Fig. 19: Scheduling map of S
0
l .

we obtain the scheduling map illustrated in Fig. 19, which539

contains 12 states and 15 transitions. PJLSUPER0 provides540

eight safe execution sequences to schedule the RTS with541

processor utilization being 0.7:542

1. α1α2α2α1α2α1α2α1α2543

2. α1α2α2α1α2α1α2α2α1544

3. α1α2α1α2α2α1α2α1α2 545

4. α1α2α1α2α2α1α2α2α1 546

5. α2α1α2α1α2α1α2α1α2 547

6. α2α1α2α1α2α1α2α2α1 548

7. α2α1α1α2α2α1α2α1α2 549

8. α2α1α1α2α2α1α2α2α1 550

For comparison, the EDF scheduling result of S
0
l by Ched- 551

dar [23] is displayed in Fig. 20, which coincides with Sequence 552

(1.) above within PJLSUPER0. Sequence (8.), depicted in 553

Fig. 21, can never be generated by EDF. By comparing 554

the two sequences in Figs. 20 and 21, in case τ l
2 (with 555

the earliest deadline) cannot arrive on time at t = 4, then 556

according to the multiple sequences users can choose another 557

available sequence shown in Fig. 19 to schedule task τ1 first. 558

Thus, recalculating the scheduling sequences is unnecessary. 559

However, there is no EDF sequence to schedule task τ2 first. If 560

τ2 cannot arrive on time, the EDF scheduling cannot schedule 561

S
0
l successfully. The supervisory control technique provides a 562

greater number of safe execution sequences as compared to 563

EDF scheduling. Intuitively, because L(Gl
2) ⊂ L(G2) and 564

Lm(Gl
2) ⊂ Lm(G2), the safe execution sequences in S

0
l 565

should be a proper subset of the safe execution sequences 566

of S
0. This is proved as follows. 567

0 5 1510 20

Fig. 20: Scheduling map of S
0
l in Cheddar.

0 5 1510 20

Fig. 21: Scheduling of Sequence (8.).

By calling procedure supcon, all the safe execution se- 568

quences of the multiple-period version RTS S
0 are obtained. 569

By using the procedure complement, we obtain the set of 570

the behaviors prohibited by SUPER0, which is contained 571

in CSUPER0. By computing the meet of CSUPER0 and 572

LSUPER0, if the trim [21] version of meet is empty, this 573

represents that the reachable and coreachable sequences within 574

LSUPER0 are not in CSUPER0. Hence, LSUPER0 is a proper 575

subset of SUPER0. The corresponding TTCT operations are 576

SUPER0 = supcon (SYS0, SPEC) (263, 362) 577

CSUPER0 = complement (SUPER0, []) (264, 1848) 578

TEST = meet (CSUPER0, LSUPER0) (156, 195) 579

TEST = trim (TEST) (0, 0) 580

The scheduling map for S
0 is more complex than that for 581

S
0
l , which has 50 states and 86 transitions, i.e., 582

PJSUPER0 = project (SUPER0, Image [11, 21]) (50, 86) 583

Evidently, even though the supervisor for S
0
l excludes some 584

safe execution sequences of S
0, the scheduling map still 585

provides more choices than the EDF scheduling algorithm. 586



9

2) Dynamic Reconfiguration of S
1
l :587

The set of safe execution sequences of S
1
l (LSYS1) found588

by the procedure supcon is empty, i.e.,589

LSUPER1 = supcon (LSYS1, SPEC) (0, 0)590

According to the CW model, S
1
l is non-schedulable at591

processor utilization Umax = 1/5 + 2/4 + 2/3 > 1. Thus, we592

need to reconfigure the system to be the multiple-period model593

S
1 (SYS1) and utilize SCT again to find the safe execution594

sequences by595

SUPER1 = supcon (SYS1, SPEC) (2180, 3681)596

This represents that supcon finds all the possible safe597

execution sequences between the processor utilization Umin =598

1/5 + 2/6 + 2/5 < 1 and Umax = 1/5 + 2/4 + 2/3 > 1.599

The system is finally schedulable since SUPER1 is600

nonempty. In order to find the scheduling map after the601

reconfiguration, we need to call project. However, TTCT fails602

to output the result of projecting onto events αi. The reason603

is that the dynamic reconfiguration of the periods (event γi)604

violates the observer property discussed in [21]. However, we605

choose the following method to view a part of the scheduling606

map of the reconfigured RTS S
1:607

Step 1:608

We choose S
1
u as a subset of the composite task model of609

S
1, based on which we find the safe execution sequence set,610

containing 417 states and 574 transitions. The scheduling map611

is calculated by projecting the safe execution sequences onto612

events α1, α2, and α3; it contains 37 states and 54 transitions,613

as seen in Fig. 22. The corresponding TTCT operations are614

given as follows.615

USUPER1 = supcon (USYS1, SPEC) (417, 574)616

PJUSUPER1 = project (USUPER1, Image [11, 21, 31])617

(37, 54)618

2

1

3

1

2

3

1

3

2

1

3

2

3

1

3

2

1

3

3

1
1

2

1

1

3

2

2

1

2

2

1

3

3

1

2

1

1

3

3

2

1

3

1

3

2

3

1

2

1

3

1

2

1

3

Fig. 22: Scheduling map of S
1
u.

Step 2:619

We can verify that S
1
u is a proper subset of S

1 via the620

following TTCT procedures:621

CSUPER1 = complement (SUPER1, []) (2181, 21810)622

TEST = meet (CSUPER1, USUPER1) (417, 574)623

TEST = trim (TEST) (0, 0)624

Finally, we claim that, after the reconfiguration, the schedul-625

ing map of S
1 is at least as complex as that presented in626

Fig. 22. More precisely, SUPER1 (resp., USUPER1) contains627

2180 (resp., 417) states and 3681 (resp., 574) transitions.628

Intuitively, the scheduling map of SUPER1 should be more629

complex than that depicted in Fig. 22, in which the periods630

are dynamically reconfigured. The EDF scheduling of S
1
u631

by Cheddar is illustrated in Fig. 23. It can find only one 632

schedulable sequence. Moreover, no sequence for the multiple- 633

period RTS can be found by EDF scheduling in Cheddar. 634

0 5 1510 20 25 30

Fig. 23: Scheduling map of S
1
u in Cheddar.

3) Comparison with the CW model: 635

In LSUPER0 (CW model), every scheduling sequence 636

is based on the fixed period of each task. The processor 637

utilization of each task is fixed permanently. For example, 638

we randomly choose a sequence γ1α1γ2tβ2tα2ttβ2γ2 . . .. By 639

projecting out γ1, α1, and β1, we obtain γ2tβ2tα2ttβ2γ2 . . .. 640

We have T2 = 4 and U2 = 2/4. 641

In SUPER0 (MCW model), we randomly choose two se- 642

quences as follows: 643

1. γ1α1γ2tβ1α2ttβ2ttγ2 . . .. 644

2. γ1α1γ2tβ1ttα2tγ1tβ2γ2α2ttβ2α1tβ1tγ2 . . .. 645

By projecting out γ1, α1, and β1 in Sequence (1.), we obtain 646

γ2tα2ttβ2ttγ2 . . .. Obviously, we have T2 = 5. The processor 647

utilization of τ2 is 2/5. 648

By projecting out γ1, α1, and β1 in Sequence (2.), we obtain 649

γ2tttα2ttβ2γ2α2ttβ2ttγ2 . . .. Evidently, T2 = 5 and T2 = 650

4 are in two adjacent periods. In the second period of the 651

execution of τ2, its processor utilization is changed from 2/5 652

to 2/4 to speed up the scheduling process. This means that, 653

according to the processor utilization interval predefined by 654

the users, the processor utilization of the RTS is dynamically 655

changed at run-time. 656

By comparing Sequences (1.) and (2.), we see that after 657

the occurrence of substring γ1α1γ2tβ1, the controller provides 658

at least two subsequences in Sequences (1.) and (2.) to 659

schedule τ2. However, neither the CW scheduling nor the EDF 660

scheduling can provide such scheduling plans. 661

B. Dynamic Reconfiguration of MJGS model 662

1) Dynamic Reconfiguration of S
J
l : 663

Consider a water vessel system [6] represented by two tasks 664

as listed in Table III. The first task τa is assigned with a 665

multiple-period [2, 3]. The RTS cannot be scheduled according 666

to the initial plan with processor utilization Umax = 1/2 + 667

2/3 ≥ 1, i.e., 668

LJ = trim (LJ) (0, 0) 669

The full scheduling map of S
J
l is empty, which means that 670

the system represented by the JGS model is non-schedulable. 671

In order to reconfigure S
J
l , τ l

a is revised to be τa with a 672

multiple-period. Then we obtain the full schedule map shown 673

in Fig. 24 by 674

J = trim (J) (15, 29) 675

J = project (J, Null [11]) (13, 16) 676

During the reconfiguration, Ta = 3 is selected automatically. 677

The processor utilization is Umin = 1/3 + 2/3 = 1 and thus 678

the RTS is schedulable. According to [6], by assigning higher 679



10

priorities for task τa and τb, we obtain the safe execution680

sequences shown in Figs. 25 and 26, respectively.681

b
a

a
a

a
a

b
a

b
e

a
c

t b
e t

t b
c t

b
c

a
c

t

a
c

Fig. 24: The full scheduling map.

b
a

a
a

a
a

b
a

a
c

t b
e t

b
c

t

Fig. 25: Task τa with a higher priority.

b
a

a
a

a
a

b
a

b
e

t b
c t

a
c

t

Fig. 26: Task τb with a higher priority.

If we only use the non-preemptive specification, without682

considering the priority of each task, to calculate the controller,683

i.e.,684

SUPER = supcon (J, PRB) (13, 15)685

we obtain the scheduling map as shown in Fig. 27.686

b
a

a
a

a
a

b
a

b
e

a
c

t b
e t

t b
c t

b
c

a
c

t

Fig. 27: Non-preemptive scheduling.

2) Comparison with the JGS model:687

Suppose that the initial period of τa is Ta = 3. The688

system is schedulable based on the technique proposed in689

[6]. However, the real time scheduling in [6] is priority-based.690

Thereafter, the non-preemptive scheduling can be based only691

on the scheduling map shown in Fig. 25 or 26. In that case the692

scheduling shown in Fig. 27 can never be found. Obviously,693

the real-time scheduling in this paper is more general.694

VII. DISCUSSION695

A. Computational Complexity696

The real-time scheduling and reconfiguration are based on697

the computation of the supremal controllable sublanguage with698

respect to a finite TDES. According to [5] and [24], the 699

computation of the supremal controllable sublanguage with 700

respect to a finite TDES can be completed in polynomial time. 701

The computational complexity of the supremal sublanguage 702

of a specification is O(m2n2) where m and n are the size 703

of the final state set of the plant G and the specification S, 704

respectively. 705

In this work, the increase of a period is obtained by 706

explicitly adding the tick event. If an RTS executes a large set 707

of periodic tasks that are assigned with large periods, then the 708

number of states and transitions will be increased significantly. 709

Similar to [5], this remains a challenge in the “scaling up” of 710

the proposed method for the reconfiguration based on SCT. 711

Two approaches may be explored to deal with this difficulty. 712

One approach, namely modular synthesis [25], may be applied 713

to reduce computational overload by synthesizing a set of 714

modular supervisors which can achieve the same result as 715

a centralized supervisor does. Another approach is to use 716

supervisory control of the timed version of state-tree-structures 717

[26] to manage the state explosion problem in the calculation 718

of the supervisors. 719

B. Comparison with Other Reconfiguration Methods 720

Job skipping can be utilized by an RTS to execute “occa- 721

sionally skippable” tasks, such as video reception, telecom- 722

munications, packet communication, and aircraft control [17]. 723

However, industrial production lines should avoid job skipping 724

since it will increase the manufacturing cost. As another 725

approach, the elastic scheduling model [7]–[10] can be utilized 726

to guarantee that no deadline is missed during the manufac- 727

turing process in industrial applications [27]. However, both 728

reconfiguration approaches can only provide a single sequence 729

on-line. Moreover, even though all the deadlines are satisfied 730

by the elastic scheduling model, the processor utilization of 731

some tasks is decreased. 732

For industrial production lines or manufacturing processes, 733

the technique presented in this study reconfigures an RTS that 734

executes a set of tasks with the same task scale studied in [5]– 735

[10]. We suggest that users predefine an acceptable processor 736

utilization interval for each task. If no safe execution sequence 737

can be found at the highest processor utilization, SCT is 738

utilized to provide all the possible safe execution sequences 739

by off-line supervisory control. 740

Both job skipping and the elastic task model need to cal- 741

culate the processor demand. However, the method provided 742

in this study does not need to calculate the processor demand. 743

The comparison is shown in Table V. 744

TABLE V: Comparison with other reconfiguration methods

method on-line single sequence processor demand

job skipping Y Y Y

elastic task Y Y Y

this work N N N



11

VIII. CONCLUSION745

This study presents a formal constructive method for real-746

time periodic tasks with multiple-periods via a TDES model.747

The lower and upper bounds of the period of such a model748

are predefined by users for the purpose of dynamic recon-749

figuration. The formal SCT of TDES can be considered as a750

rigorous analysis and synthesis tool to dynamically reconfigure751

the non-preemptive scheduling of hard RTS. Suppose that752

in every scheduling plan only a subset of tasks of an RTS753

is called by the processor. Instead of dynamically updating754

the specification for the tasks running in the uni-processor, a755

general specification is presented, which guarantees that all756

the potential tasks called by the processor can be scheduled757

non-preemptively. In case an RTS is claimed by [5] or [6] to758

be non-schedulable, the presented two-step dynamic reconfig-759

uration approach can be utilized to find all the safe execution760

sequences (possible reconfiguration scenarios) of each task in761

the RTS. These sequences provide more choices than the EDF762

scheduling algorithm. The processor and the real-time tasks763

are general models for real-world hard RTS. Similar to [5]764

and [6], the multiple-period model can be utilized to describe765

the behavior of a manual assembly process or a robotic pick-766

and-place operation that is executed by a processor that could767

be a water vessel system, computer numerical control (CNC)768

machine, a robot, or an assembly-line worker. This leads to the769

possibility that the off-line reconfiguration method can be im-770

plemented in practical contexts based on reconfigurable real-771

time scheduling. In future work, we will focus on the dynamic772

reconfiguration of RTS processing asynchronous tasks and773

sporadic tasks. The real-time scheduling can be preemptive774

or non-preemptive.775

REFERENCES776

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-777

ming in a hard real time environment,” J. Assoc. Comput. Mach., vol.778

20, no. 1, pp. 46–61, Jan. 1973.779

[2] E. Nassor, and G. Bres, “Hard real-time sporadic task scheduling for780

fixed priority schedulers”, in: Proc. intern. workshop on responsive syst.,781

pp. 44-47, 1991.782

[3] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling783

for real-time systems. A survey,” IEEE Trans. Ind. Inform., vol. 9, no.784

1, pp.3-15, 2013.785

[4] L. Lo Bello, E. Bini, G. Patti, “Priority-driven swapping-based schedul-786

ing of aperiodic real-time messages over etherCAT networks,” IEEE787

Trans. Ind. Inform., vol. PP, no. 99, pp.1-11.788

[5] P. C. Y. Chen and W. M. Wonham, “Real-time supervisory control of789

a processor for non-preemptive execution of periodic tasks,” Real-Time790

Syst., vol. 23, pp. 183-208, 2002.791

[6] V. Janarthanan, P. Gohari, and A. Saffar, “Formalizing real-time schedul-792

ing using priority-based supervisory control of discrete-event systems”,793

IEEE Trans. Autom. Cont., vol. 51, no. 6, pp. 1053-1058, 2006.794

[7] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive795

rate control,” in: Proc. 19th Real-Time Syst. Symp., 1998, pp. 286-295.796

[8] G. Buttazzo and L. Abeni, “Adaptive workload management through797

elastic scheduling”, Real-Time Syst., vol. 23, no. 1-2, pp. 7-24, 2002.798

[9] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic scheduling799

for flexible workload management”, IEEE Trans. Comput., vol. 51, no.800

3, pp. 289-302, 2002.801

[10] M. Marinoni and G. Buttazzo, “Elastic DVS management in processors802

with discrete voltage/frequency modes,” IEEE Trans. Ind. Inform., vol.803

3, no. 1, pp. 51-62, 2007.804

[11] L. Sha, T. Abdelzaher, K. E. Årzén, A. Cervin, T. Baker, A. Burns,805

G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time806

scheduling theory: A historical perspective,” Real-time systems, vol. 28,807

no. 2, pp. 101–155, 2004.808

[12] J. Cecilio and P. Furtado, “Architecture for uniform (re)configuration and 809

processing over embedded sensor and actuator networks,” IEEE Trans. 810

Ind. Inf., vol. 10, no. 1, pp. 53-60, 2014. 811

[13] M. Garcia-Valls, I. R. López, and L. F. Villar, “iLAND: An enhanced 812

middleware for real-time reconfiguration of service oriented distributed 813

real-time systems,” IEEE Trans. Ind. Inf., vol. 9, no. 1, pp. 228-236, 814

2013. 815

[14] L. Li, S. Li, and S. Zhao, “QoS-aware scheduling of services-oriented 816

internet of things,” IEEE Trans. Ind. Inf., vol. 10, no. 2, pp. 1497-1505, 817

2014. 818

[15] M. N. Rooker, C. Sünder, T. Strasser, A. Zoitl, O. Hummer, and G. 819

Ebenhofer, “Zero downtime reconfiguration of distributed automation 820

systems: The εCEDAC approach,” in: Proc. Int. Conf. Indust. Appl. 821

Holonic Multi-Agent Syst., Regensburg, Sept. 2007, pp. 326-337. 822

[16] P. Vrba and V. Marik, “Capabilities of dynamic reconfiguration of 823

multiagent-based industrial control systems”, IEEE Trans. Syst. Man 824

Cybern., Part A: Syst. Humans, vol. 40, no. 2, pp. 213-223, 2010. 825

[17] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for 826

overloaded systems that allow skips”, Real-Time Systems Symposium, 827

in: Proc. 19th Real-Time Syst. Symp., pp. 110-117, 1995. 828

[18] L. George, and P. Courbin, “Reconfiguration of uniprocessor sporadic 829

real-time systems: the sensitivity approach,” book chapter in IGI-Global 830

Knowledge on Reconfigurable Embedded Control Systems: Applications 831

for Flexibility and Agility, Hershey, PA, USA: IGI Global, 2011, pp. 832

167-189. 833

[19] S. Baruah, R. Howell, and L. Rosier, “Algorithms and complexity 834

concerning the preemptive scheduling of periodic real-time tasks on one 835

processor,” Real-Time Syst., vol. 2, pp. 301-324, 1990. 836

[20] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of 837

discrete event processes,” SIAM J. Contr. Optim., vol. 25, no. 1, pp. 838

206-230, 1987. 839

[21] W. M. Wonham, Supervisory control of discrete-event systems, Depart- 840

ment of Electrical and Computer Engineering, University of Toronto, 841

2014. Available at http://www.control.utoronto.ca/DES. 842

[22] B. Brandin and W. M. Wonham, “Supervisory control of timed discrete 843

event systems,” IEEE Trans. Autom. Cont., vol. 39, no. 2, pp.329-342, 844

1994. 845

[23] F. Singhoff, J. Legrand, L. Nana, and L. Marce, “Cheddar: A flexible 846

real time scheduling framework,” in Proc. Int. ACM SIGAda Conf., pp. 847

1-8, 2004. 848

[24] P. J. Ramadge and W. M. Wonham, “The control of discrete event 849

systems,” Proceedings of the IEEE, vol. 77, no.1, pp. 81-98, 1989. 850

[25] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of 851

discrete event systems,”. Math. of Cont. Signal Syst., vol. 1, no. 1, pp. 852

13-30, 1988. 853

[26] C. Ma and W. M. Wonham, Nonblocking Supervisory Control of State 854

Tree Structures, Lecture Notes in Control and Information Sciences 855

(LNCIS) 317, Springer, 2005. 856

[27] A. Girbea, C. Suciu, S. Nechifor, and F. Sisak, “Design and implementa- 857

tion of a service-oriented architecture for the optimization of industrial 858

applications,” IEEE Trans. Ind. Inform., vol. 10, no. 1, pp. 185-196, 859

2014. 860

Appendix 1. 861

TTG synthesis procedures in TTCT [21], in which TDES 862

are represented by TDS: 863

TDS = create (TDS) is a new discrete-event system (TDS). 864

Option 1 allows fast user input via a sequence of prompts, 865

resulting in direct creation of a .TDS file. Option 2 allows the 866

user to create a text (.ATS) file with any ASCII text editor; this 867

file can be converted to a .TDS file using the TCT procedure 868

FD. 869

TDS2 = allevents (TDS1) is a marked one-state TDS self- 870

looped with all the events of TDS1. 871

TDS2 = complement (TDS1, [AUXILIARY-EVENTS]) is 872

a generator of the marked language complementary to the 873

marked language of TDS1, with respect to the extended 874

alphabet comprising the event labels of TDS1 plus those in 875

the auxiliary-event list. The closed behavior of TDS2 is all 876

strings over the extended alphabet. 877



12

TDS2 = edit (TDS1) is obtained from TDS1 by user-selected878

modifications.879

TDS2 = minstate (TDS1) is a minimal state TDS that880

generates the same closed and marked languages as TDS1,881

and the same string mapping induced by vocalization (if882

any). TDS2 is reachable, but not coreachable unless TDS1883

is coreachable.884

TDS2 = project (TDS1, [NULL/IMAGE EVENTS]) is a885

generator of the projected closed and marked languages of886

TDS1, under the natural projection specified by the listed Null887

or Image events. In decentralized control, TDS2 could be an888

observer’s local model of TDS1.889

TDS2 = trim (TDS1) is the trim (reachable and coreachable)890

substructure of TDS1.891

TDS3 = meet (TDS1, TDS2) is the meet (reachable cartesian892

product) of TDS1 and TDS2. TDS3 need not be coreachable.893

TDS3 = supcon (TDS1, TDS2) is a trim generator for894

the supremal controllable sublanguage of the marked legal895

language generated by TDS2 with respect to the plant TDS1.896

TDS3 provides a proper supervisor for TDS1.897

TDS3 = sync (TDS1, TDS2) is the (reachable) synchronous898

product of TDS1 and TDS2.899

Appendix 2.900

Corresponding TTCT MAKEIT file for all the created901

tasks:902

TASK1 = create (TASK1, [mark 0], [tran [0, 10, 1], [1, 0, 5],903

[1, 11, 2], [2, 0, 3], [3, 12, 4], [4, 0, 8], [5, 0, 9], [5, 11, 6],904

[6, 0, 7], [7, 12, 8], [8, 0, 12], [9, 0, 13], [9, 11, 10], [10, 0,905

11], [11, 12, 12], [12, 0, 16], [13, 11, 14], [14, 0, 15], [15,906

12, 16], [16, 0, 0], [forcible 10, 11, 12]) (17, 20)907

TASK2 = create (TASK2, [mark 0, 15, 20], [tran [0, 20, 1],908

[1, 0, 6], [1, 21, 2], [2, 0, 3], [3, 0, 4], [4, 22, 5], [5, 0, 10],909

[6, 0, 11], [6, 21, 7], [7, 0, 8], [8, 0, 9], [9, 22, 10], [10, 0,910

15], [11, 0, 16], [11, 21, 12], [12, 0, 13], [13, 0, 14], [14, 22,911

15], [15, 0, 20], [15, 20, 1], [16, 0, 21], [16, 21, 17], [17, 0,912

18], [18, 0, 19], [19, 22, 20], [20, 0, 0], [20, 20, 1], [21, 21,913

22], [22, 0, 23], [23, 0, 24], [24, 22, 0]], [forcible 20, 21, 22])914

(25, 32)915

LTASK2 = edit (TASK2, [trans -[11, 0, 16], -[15, 0, 20]]) (25,916

29)917

LTASK2 = trim (LTASK2) (16, 18)918

LTASK2 = minstate (LTASK2) (15, 17)919

UTASK2 = edit (TASK2, [mark -[15], -[20]], [trans -[15, 20,920

1], -[20, 20, 1]]) (25, 29)921

LTASK3 = create (LTASK3, [mark 0], [tran [0, 30, 1], [1, 0,922

6], [1, 31, 2], [2, 0, 3], [3, 0, 4], [4, 32, 5], [5, 0, 0], [6, 31,923

7], [7, 0, 8], [8, 0, 9], [9, 32, 0]], [forcible 30, 31, 32]) (10,924

11)925

TASK3 = edit (LTASK3, [mark +[10], +[15]], [trans +[5, 0,926

10], +[6, 0, 11], +[9, 32, 10], +[10, 0, 15], +[10, 30, 1], +[11,927

0, 16], +[11, 31, 12], +[12, 0, 13], +[13, 0, 14], +[14, 32, 15],928

+[15, 0, 0], +[15, 30, 1], +[16, 31, 17], +[17, 0, 18], +[18, 0,929

19], +[19, 32, 0], -[5, 0, 0], -[9, 32, 0]]) (20, 25)930

UTASK3 = edit (TASK3, [mark -[10], -[15]], [trans -[10, 30,931

1], -[15, 30, 1]]) (20, 23)932

TASKA = create (TASKA, [mark 0], [tran [0, 10, 1], [1, 13,933

2], [2, 0, 0]], [forcible 1 3]) (3, 3)934

TASKA = selfloop (TASKA, [0, 20, 21, 23], [new forcible 21, 935

23]) (3, 15) 936

TASKA = edit (TASKA, [trans -[2, 0, 2], -[2, 20, 2], -[2, 21, 937

2], -[2, 23, 2]]) (3, 11) 938

TASKB = create (TASKB, [mark 0], [tran [0, 20, 1], [1, 21, 939

2], [2, 0, 3], [3, 23, 4], [4, 0, 0]], [forcible 21, 23]) (5, 5) 940

TASKB = selfloop (TASKB, [0, 10, 11, 13], [new forcible 11, 941

13]) (5, 25) 942

TASKB = edit (TASKB, [trans -[2, 0, 2], -[2, 10, 2], -[2, 11, 943

2], -[2, 13, 2], -[4, 0, 4], -[4, 10, 4], -[4, 11, 4], -[4, 13, 4]]) 944

(5, 17) 945

SYS = sync (TASKA, TASKB) (13, 34) 946

ALLSYS = allevents (SYS) (1, 7) 947

PA = create (PA, [mark 0, 3], [tran [0, 10, 1], [1, 0, 2], [2, 0, 948

3], [3, 0, 0], [3, 10, 1]]) (4, 5) 949

PA = sync (PA, ALLSYS) (4, 25) 950

LPA = create (LPA, [mark 0], [tran [0, 10, 1], [1, 0, 2], [2, 951

0, 0]]) (3, 3) 952

LPA = sync (LPA, ALLSYS) (3, 18) 953

PB = create (PB, [mark 0], [tran [0, 20, 1], [1, 0, 2], [2, 0, 954

3], [3, 0, 0]]) (4, 4) 955

PB = sync (PB, ALLSYS) (4, 24) 956

Appendix 3. 957

The generated files for the specifications are recorded, where 958

the SPEC with 4 states and 22 transitions is the general one. 959

ALLSYS1 = allevents (LSYS1) (1, 10) 960

SPEC1 = create (SPEC1, [mark 0], [tran [0, 11, 1], [0, 21, 961

0], [0, 22, 0], [0, 31, 0], [0, 32, 0], [1, 12, 0]], [forcible 11, 962

12, 21, 22, 31, 32]) (2, 6) 963

SPEC1 = sync (SPEC1, ALLSYS1) (2, 14) 964

SPEC2 = create (SPEC2, [mark 0], [tran [0, 11, 0], [0, 12, 965

0], [0, 21, 1], [0, 31, 0], [0, 32, 0], [1, 22, 0]], [forcible 11, 966

12, 21, 22, 31, 32]) (2, 6) 967

SPEC3 = create (SPEC3, [mark 0], [tran [0, 11, 0], [0, 12, 968

0], [0, 21, 0], [0, 22, 0], [0, 31, 1], [1, 32, 0]], [forcible 11, 969

12, 21, 22, 31, 32]) (2, 6) 970

SPEC = sync (SPEC1, SPEC2) (3, 18) 971

SPEC = sync (SPEC, SPEC3) (4, 22) 972

PRB = create (PRB, [mark 0], [tran [0, 0, 0], [0, 10, 0], [0, 973

11, 0], [0, 13, 0], [0, 20, 0], [0, 21, 1], [0, 23, 0], [1, 0, 1], 974

[1, 10, 1], [1, 20, 1], [1, 21, 1], [1, 23, 0]], [forcible 11, 13, 975

21, 23]) (2, 12) 976


	cover sheet
	Dynamic Multiple-Period Reconfiguration_Tspace
	cover sheet
	Wonham[J76]


