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Abstract

The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a

web of structural and functional connections. Clinically, seizure foci are considered optimal

targets for surgery. However, poor surgical outcome suggests a complex relationship

between foci and the surrounding network that drives seizure dynamics. We developed a

novel technique to objectively track seizure states from dynamic functional networks con-

structed from intracranial recordings. Each dynamical state captures unique patterns of net-

work connections that indicate synchronized and desynchronized hubs of neural populations.

Our approach suggests that seizures are generated when synchronous relationships near

foci work in tandemwith rapidly changing desynchronous relationships from the surrounding

epileptic network. As seizures progress, topographical and geometrical changes in network

connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that

may aid seizure termination. Collectively, our observations implicate distributed cortical struc-

tures in seizure generation, propagation and termination, and may have practical significance

in determining which circuits to modulate with implantable devices.

Author Summary

Localization-related epilepsy is a debilitating condition where seizures begin in dysfunc-

tional brain regions, and is often resistant to medication. The challenge for treating

patients is mapping connections between cortical structures that vary with time and drive

seizure dynamics. While it is well known that whole-brain functional architecture recon-

figures during tasks, we hypothesize that epileptic networks reconfigure at the meso-scale

leading to seizure generation, propagation, and termination. We develop new methods to

track dynamic network reconfiguration amongst connections of different strength as
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seizures evolve. Our results indicate that seizure generation is primarily driven by rapidly

reorganizing weak connections that drive stronger connections to further strengthen and

topographically tighten as seizures progress and terminate. These findings may have prac-

tical clinical implications for targeting specific connections with implantable, therapeutic

devices to control seizures.

Introduction

Localization-related epilepsy causes seizures that arise from one or more abnormal islands of

cortical tissue in the neocortex or mesial temporal structures [1]. In more severe cases, seizures

with focal onset secondarily generalize, as pathologic activity spreads across the brain [2].

Localization-related epilepsy represents�80% of epilepsy cases and is often resistant to medi-

cation [3]. For drug-resistant patients, the only treatment options are implantable devices, or

more traditionally resective surgery to remove enough cortical tissue in the epileptic network

to decrease seizure frequency, while preserving brain tissue responsible for eloquent function.

In surgical cases where discrete lesions associated with seizure onset (‘foci’) are not evident on

an MRI, only�40% remain seizure-free post-surgery [3]. The modest outcome associated with

these procedures has lead investigators to further explore spatial distributions of epileptic activ-

ity using multiscale neural signals in ECoG and sub-millimeter μECoG to more accurately

localize where seizures start and how their pathologic activity spreads [4–9]. These approaches

have spurred a paradigm shift from localizing just the foci towards informing interventions by

mapping structural and functional connectivity of the whole epileptic network.

The notion of an epileptic network stems from the idea that pathologic functional connec-

tions and/or disconnections disrupt neural function, producing rhythmic motor activity,

altered cognition, or abnormal sensation. Functional connections are time-dependent [10]

communication pathways between neural populations that are measured by statistical relation-

ships between electrode sensor (node) time series [11], and that evolve according to brain state

to produce behavior. The seizure state was originally considered to be hypersynchronous, or

composed predominantly of strong functional connections. In contrast, a significant body of

recent work presents compelling evidence that complex changes among strong (synchronized)

and weak (desynchronized) network nodes accompany seizure dynamics [12–17]. The state-

space of these dynamics are well described at the sensor level using measures of node centrality

[18, 19]. However, epileptic network architecture at the basic sub-unit of individual connec-

tions is poorly understood, but tremendously powerful for discriminating fine-grain network

changes that drive seizure dynamics.

Understanding the interplay between individual functional connections in the epileptic net-

work is critical to answer questions goading clinical epileptologists and translational research-

ers: Where do seizures start? Can the epileptic network be modulated therapeutically? What

can these methods reveal about the underlying neurophysiologic mechanisms? Progress in

addressing these questions requires methods to track time-dependent functional connections

within the epileptic network and understand their relative strengths and weaknesses, which in

network terms are collectively referred to as the network’s geometric structure. Such methods

would not only shed light on geographical dysfunction of epileptic foci, but also the disruption

of normal brain tissue that is recruited during seizure events.

We hypothesize that the epileptic network achieves dysfunction and drives seizure activity

by reconfiguring network connections during key network states that are clinically described as

seizure generation, propagation, and termination. Our network reconfiguration hypothesis is
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informed by recent work demonstrating that human brain networks dynamically reorganize

prior to changes in behavior [20, 21]. During pathologic events, reconfiguration in epileptic

networks may involve a redistribution of metabolic resources between strong and weak con-

nections, supporting distinct network functions [22, 23]. Our results support this hypothesis,

demonstrating that the epileptic network can be characterized by hubs of persistent strong con-

nections surrounded by rapidly reconfiguring weak connections that drive seizure processes.

Results

To analyze the epileptic network, we retrieved ECoG recorded during simple partial, complex

partial, and secondarily generalized seizures from 21 neocortical epilepsy patients undergoing

routine pre-surgical evaluation of their epilepsy (see Table 1 for patient-specific information)

through the International Epilepsy Electrophysiology Portal (IEEG Portal, http://www.ieeg.org).

We estimated weighted functional connectivity using a normalized cross-correlation metric (see

Materials and Methods) applied to non-overlapping, 1s time windows of ECoG (Fig 1a). This

procedure results in a symmetric, N × N connectivity matrix (specifying
NðN � 1Þ

2
unique con-

nections in the upper or lower triangle of the symmetric connectivity matrix), whereN is the

Table 1. Patient information. Patient data sets accessed through IEEG Portal (http://www.ieeg.org). Age at first reported onset and at phase II monitoring.
Localization of seizure onset and etiology is clinically-determined through medical history, imaging, and long-term invasive monitoring. Seizure types are SP
(simple-partial), CP (complex-partial), CP+GTC (complex-partial with secondary generalization), or GA (generalized atonic). Counted seizures were recorded
in the epilepsy monitoring unit. Clinical imaging analysis concludes L, Lesion; NL, non-lesion. Surgical outcome was based on either Engel score or ILAE
score (scale: I-IV/V, seizure freedom to no improvement; NR, no resection; NF, no follow-up). M, male; F, female.

Patient (IEEG
Portal)

Sex Age (Years) (Onset/
Surgery)

Seizure Onset Etiology Seizure
Type

Seizures
(N)

Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP+GTC 01 L ENGEL-I

HUP65_phaseII M 02/36 Right temporal Auditory reflex CP+GTC 03 N/A ENGEL-I

HUP68_phaseII F 15/26 Right temporal Meningitis CP, CP
+GTC

05 NL ENGEL-I

HUP70_phaseII M 10/32 Left perirolandic Cryptogenic SP 08 L NR

HUP72_phaseII F 11/27 Bilateral left Mesial temporal
sclerosis

CP+GTC 01 L NR

HUP73_phaseII M 11/39 Anterior right frontal Meningitis CP+GTC 05 NL ENGEL-I

HUP78_phaseII M 00/54 Anterior left temporal Traumatic injury CP 05 L ENGEL-III

HUP79_phaseII F 11/39 Occipital Meningitis CP 01 L NR

HUP86_phaseII F 18/25 Left temporal Cryptogenic CP+GTC 02 NL ENGEL-II

HUP87_phaseII M 21/24 Frontal Meningitis CP 02 L ENGEL-I

Study 004-2 F 14/27 Right temporal
occipital

Unknown CP+GTC 01 NL ILAE-IV

Study 006 M 22/25 Left frontal Unknown CP 02 NL NR

Study 010 F 00/13 Left frontal Unknown CP 02 L NF

Study 016 F 05/36 Right temporal
orbitofrontal

Unknown CP+GTC 03 NL ILAE-IV

Study 019 F 31/33 Left temporal Unknown CP+GTC 15 NL ILAE-V

Study 020 M 05/10 Right frontal Unknown CP+GTC 04 NL ILAE-IV

Study 023 M 01/16 Left occipital Unknown CP 04 L ILAE-I

Study 026 M 09/09 Left frontal Unknown CP 10 NL ILAE-I

Study 031 M 05/05 Right frontal Unknown CP+GTC 05 NL NF

Study 033 M 00/03 Left frontal Unknown GA 07 L ILAE-V

Study 037 F 45/?? Indeterminate Unknown CP 02 NL NR

doi:10.1371/journal.pcbi.1004608.t001
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number of network nodes, for each of T time windows analyzed. The pattern of unique network

connections from a single time window is a configuration vector, which can be concatenated

over all time windows to form a configuration matrix of size
NðN � 1Þ

2
� T . To better under-

stand how global and local epileptic network geometry drive seizure dynamics, we study the con-

figuration matrix during epileptic events divided into seizure and pre-seizure epochs (Fig 1b).

Epileptic Network Reconfiguration Reveals Distinct Seizure States

Do functional connectivity patterns significantly change as a seizure progresses? To answer

this question, we developed a new method to uncover network states, defined by unique pat-

terns of sensor-sensor functional connectivity between T time windows (Fig 2). We define a

network state to be the set of all configuration vectors that exhibit a similar pattern of func-

tional connectivity, more formally known in the network science literature as “network geome-

try”. To quantify geometric similarity, we calculated the Pearson correlation coefficient

between configuration vectors extracted from all possible pairs of T time windows. This proce-

dure produced a symmetric T × T configuration-similarity matrix (Fig 2c).

Fig 1. Analysis pipeline for dynamic epileptic networks. (a) (Top) We create functional networks based
on electrophysiology by windowing ECoG signals collected from patients with drug-resistant neocortical
epilepsy implanted with intracranial electrodes into 1s time windows. Each sensor is represented as a
network node, and weighted functional connectivity between sensors, interpreted as degree of synchrony, is
represented as a network connection. (Lower Right) Functional connectivity is estimated by a magnitude
normalized cross-correlation between sensor time series for each time window. (Lower Left) We study
temporal dynamics of each unique connection in a network configuration matrix. (b) For each epileptic event,
we estimate dynamic functional connectivity during the seizure and the pre-seizure epoch. A seizure epoch
consists of time windows between seizure onset—as characterized by the earliest electrographic change
(EEC) [24]—and seizure termination. The associated pre-seizure epoch consists of an equal number of time
windows as the seizure epoch and occurs immediately prior to the EEC.

doi:10.1371/journal.pcbi.1004608.g001
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We next ask whether clusters of time windows exhibit similar configuration patterns indica-

tive of independent network states (Fig 2d). To test for distinct states in each epileptic event,

we used an unsupervised clustering approach for networked data—community detection—that

maximizes a modularity quality function Q obtained from the configuration-similarity matrix

(see Materials). In this approach, a structural resolution parameter γ can be tuned to maximize

the reliability of state estimates; we separately tuned this parameter for each seizure and pre-

seizure epoch in each patient (see S1 Text). This procedure assigns each time window to a com-

munity (or state), and each state is composed of time windows that exhibit similar network

geometry. Note that these time windows need not be temporally contiguous. We found that

the epileptic network transitions through a variety of network states during pre-seizure and sei-

zure epochs (Fig 3a–3b). A comprehensive summary of epoch and state durations for each

patient can be found in Table A in S1 Text.

The existence of epileptic state transitions support the notion of a dynamically reconfiguring

network. To quantify reconfigurability of the epileptic network, we measured the network flexi-

bility, or rate the of state change in each epoch (Fig 3c). We found that pre-seizure epochs dis-

play significantly higher flexibility (μ = 0.665±0.205) than seizure epochs (μ = 0.274±0.165)

(paired-samples t-test; t87 = −14.12, p = 2.2 × 10−16), indicating that the epileptic network tran-

sitions between states more slowly through seizure epochs than through pre-seizure epochs.

Furthermore, pre-seizure epochs consisted of many short-duration states, while seizure epochs

consisted primarily of 3 long states that occupy�87% of seizure duration (Fig 3d). The three

Fig 2. Schematic for identifying network configuration states. (a) We estimate dynamic functional
connectivity; colors represent arbitrary connection strengths ranging from strong to weak (red, gray, blue). (b)
We track all unique functional connections over time using a configuration matrix, in which each vector
represents the set of connection weights for a 1s time window. (c) We compute the similarity between the
network geometries of each pair of time windows using a Pearson correlation coefficient. In the resultant
configuration-similarity matrix, colors represent the magnitude of similarity and visually identified clusters are
distinguished by colored, dashed lines (orange and green). (d) We optimize a modularity quality function to
cluster the configuration vectors (and thus time windows) into communities. Each cluster or community
contains time windows with similar network geometry; colors represent assignments of time windows to
different network configuration communities (orange and green).

doi:10.1371/journal.pcbi.1004608.g002
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largest pre-seizure states occupied approximately 75% of the epoch. Together, these results

support the possibility that rapid changes in network geometry in pre-seizure epochs lead to

seizures, and once there, the network undergoes slower geometric changes through 3 main

dynamic states. To fairly assess differences in seizure and pre-seizure states, we retained the 3

longest network states from seizure (S0, S1, S2) and pre-seizure epochs (PS0, PS1, PS2) for the

following analyses.

Epileptic Network Redistributes Connectivity during Seizures

In the previous section, we observed that seizures progress through distinct states characterized

by different functional connectivity patterns. To understand how these patterns differ, we used

a two-pronged approach, examining (i) the strength of functional connections and (ii) the pat-

tern of functional connections in different network states (Fig 4a). For simplicity, we report the

strength of functional connections as a fraction of the total strength, and we refer to this quan-

tity as the connection density. Similarly, to characterize the pattern of functional connections,

we examine the relative prevalence of synchronized (strong) versus desynchronized (weak)

connections, and we refer to this quantity as the connection type index.

Fig 3. Distinct dynamical states of epileptic networks. (a) Example clustering of time windows to network states during a single pre-seizure epoch
demonstrating rapid network reconfiguration. State assignments are overlaid on ECoG signals. Red traces correspond to seizure onset nodes. (b) Example
clustering of time windows to network states during associated seizure epoch (from EEC to Termination) demonstrating slower network reconfiguration. (c)
Network flexibility—or average rate of network state transitions—during pre-seizure and seizure epochs. The epileptic network displayed significantly more
geometric reconfigurations during pre-seizure epochs than in seizure epochs (N = 88, p = 2.2 × 10−16). (d) Size-ordered distribution of total fractional duration
of the 6 longest network states from each epoch (PS (S) indicates states of pre-seizure (seizure) epochs). All epochs are normalized to have duration of 1.
We retain the first 3 network states of each epoch (PS0, PS1, PS2, S0, S1, S2) for the remaining analysis.

doi:10.1371/journal.pcbi.1004608.g003
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The functional connection density measures the average connection strength in the net-

work, where greater connection density indicates increased global network synchrony. We

computed connection density by averaging the distribution of all connection strengths over all

time windows in the given network state. We performed a one-way ANOVA to compare the

effect of pre-seizure and seizure network states on connection density. We observed a signifi-

cant effect of network state on connection density (F5,474 = 21.34, p< 2 × 10−16). Post-hoc

analysis using Tukey’s honest significant difference test (HSD) to control for a family-wise

rejection error rate of 5% (FWER = 5%) revealed a significant increase of connection density in

each seizure state compared to any pre-seizure state. During the seizure, connection density

increased between S0 (μ = 0.304±0.051) and S1 (μ = 0.333±0.58) (padj = 0.014), and S0 and S2 (μ

= 0.338±0.052) (padj = 0.002), but did not significantly change between S1 and S2 (padj = 0.995).

Differences in connection density between the pre-seizure states (PS0, PS1, PS2) were not signif-

icant. These results suggest synchronization increases as the network transitions from pre-sei-

zure to seizure states.

While we observed an increase in global synchrony as seizures begin and progress, it is

unclear whether this increase accompanies a change in functional connectivity pattern, and

particularly in a switch from relative desynchronization (weak connectivity) to synchronization

(strong connectivity). To type individual connections as strong or weak, we (1) compiled a dis-

tribution of all functional connections over all time windows across each event (encompassing

the pre-seizure and seizure epoch), and (2) determined thresholds for connection type based

Fig 4. Changes in global connectivity of epileptic networks. (a) Functional connection density during pre-
seizure (PS) and seizure (S) network states. We average connection strengths over all time windows within
each network state (N = 80). We found significant increase in connection density from all PS to any S network
state, and significantly greater connection density during S2 and S1 compared to S0. (b) Connection type
index indicating strong or weak connection dominance during PS and S network states (N = 80). We found
significant change from weak type dominance during PS to quasi weak-strong type dominance during S0 and
strong type dominance during S1 and S2.

doi:10.1371/journal.pcbi.1004608.g004
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on rank percentile, where strong (weak) connections were stronger (weaker) than 95% of all

connections. Based on connection type assignments in each epoch, we found the total number

of strong (Cs) and weak (Cw) connections over all time windows in each network state and

computed the connection type index as
Cs � Cw

Cs þ Cw
. A strong type dominant network has a con-

nection type index between 0 and +1, where +1 implies all connections are strong, while a

weak type dominant network has a connection type index between 0 and −1, where −1 implies

all connections are weak.

To determine the effect of network state on connection type index (Fig 4b), we conducted a

one-way ANOVA test. We observed a significant effect of network state on connection type

index (F5,474 = 70.41, p< 2 × 10−16). Post-hoc analysis using Tukey’s HSD (FWER = 5%) indi-

cated a significant change from weak type dominance during any pre-seizure state towards

strong type dominance during seizure states. During the seizure, connection type index

increased between S0 (μ = 0.023±0.498) and S1 (μ = 0.437±0.417) (padj< 2 × 10−16), and S0 and

S2 (μ = 0.512±0.447) (padj< 2 × 10−16), but did not significantly change between S1 and S2. Dif-

ferences of connection type index between the pre-seizure states (PS0, PS1, PS2) (μ� −0.401)

were not significant.

Chronologically, the network is persistently desynchronized during the pre-seizure epoch, is

driven to a quasi-synchronized seizure generation state S0, and remains persistently synchro-

nized as the seizure progresses through S1 and S2. A predominance of weak connections during

a persistently desynchronized pre-seizure epoch coincides with earlier findings of improved

network flexibility to reorganize during the same epoch. Unremarkable change in weak con-

nection type dominance during the pre-seizure epoch suggests that the network simply redis-

tributes weak connections amongst different nodes during this period. A critical transition to

seizure generation during state S0 is accompanied by synchronization towards more evenly dis-

tributed strong and weak connection types. As network flexibility decreases during the seizure,

connections become more strong type dominant. To better understand how the network

evolves through the desynchronized and synchronized states, we next study the impact of local,

geographical changes in network geometry.

Dynamic Regional Structure of the Epileptic Network

In the preceding analyses, we demonstrated that the epileptic network displays weak type dom-

inant connectivity during pre-seizure epochs and undergoes synchronizes to strong type domi-

nance as the seizure initiates and progresses through 3 primary states. However, our

approaches did not address whether these reconfigurations are spatially localized or distrib-

uted, and how they relate to seizure foci. To address these questions, we leveraged routine clini-

cal procedures: A team of neurologists successfully identified the sensors on the seizure onset

zone (SOZ) based on visual inspection of the intracranial recordings in 15 patients across a

total of 50 seizures. We used this information to map connections in each seizure state to phys-

ical electrode locations in stereotaxic space (Fig 5a).

To quantify spatial localization of connectivity relative to seizure foci and examine the role

of network region in pre-seizure and seizure dynamics, we delineated the following three geo-

graphic types: (i) connections between nodes within the SOZ (SOZ-SOZ), (ii) connections

between nodes outside the SOZ (OUT-OUT), and (iii) connections between one node within

the SOZ and one node outside the SOZ (SOZ-OUT) (Fig 5b). We performed a two-way

ANOVA test to compare the effects of geography and network state on connection strength.

We observed a significant main effect of geography on connection strength (F2,882 = 158.501,

p< 2 × 10−16) and a significant main effect of network state on connection strength (F5,882 =

26.394, p< 2 × 10−16). We also observed significant interactions between geography and
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network state (F10,882 = 2.871, p = 0.002). Post-hoc analysis on the interactions using Tukey’s

HSD (FWER = 5%) identified persistently stronger connection strength amongst SOZ-SOZ

connections (μ� 0.393±0.140) relative to OUT-OUT (μ� 0.282±0.059) and SOZ-OUT (μ�

0.284±0.059) connections in every network state (padj< 1 × 10−3). Connections in the

Fig 5. Regional characteristics of network geography. (a) Example of network geography with preserved
2-D spatial relationships between nodes for categories of strongest and weakest connections in upper and
lower 5% of connection strength distribution; Connection colors indicate weak (blue) and strong (red); the
clinically-determined seizure onset sensors are shown in red. (b) Connection strength within 3 geographic
connection types during PS and S network states (N = 50). During PS and S, we observed significantly
stronger connections amongst SOZ-SOZ regions than OUT-OUT and SOZ-OUT regions. During S, we
observed significant increase in SOZ-SOZ connections as seizures initiate and progress. (c) ROC AUC
compared to 95% bootstrapped confidence intervals using connection strength to predict SOZ-SOZ
connections during PS and S network states (N = 50). The synchronized S2 state yielded the best
performance, while the desynchronized PS0 state yielded the worst performance.

doi:10.1371/journal.pcbi.1004608.g005
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SOZ-SOZ group were modestly strengthened during S0 relative to PS0 and PS2 (padj< 0.05),

were greatly strengthened during S1 and S2 relative to any pre-seizure state (padj< 1 × 10−3),

and during the seizure only strengthened between S0 to S2 (padj< 0.05). However, connection

strengths in the SOZ-SOZ group did not significantly vary between pre-seizure states. Simi-

larly, SOZ-OUT and OUT-OUT group did not significantly vary between any network states.

These results suggest that SOZ-SOZ connections are persistently the strongest of all network

connection types during pre-seizure and seizure epochs. Upon seizure generation SOZ-SOZ

connections strengthen incrementally, and then substantially as seizures progress. Nuancing

our description of global network connectivity during pre-seizure and seizure epochs, which

demonstrates a progression from desynchronization to synchronization over time, our results

demonstrate that (i) desynchronization during pre-seizure states is primarily localized to

SOZ-OUT and OUT-OUT connections, and (ii) resynchronization is primarily localized to

SOZ-SOZ connections. Intuitively, desynchronous SOZ-OUT and OUT-OUT connections

that frequently re-wire drives heightened network flexibility during pre-seizure epochs and

synchronous SOZ-SOZ connections disrupts network flexibility during the seizure.

To investigate the sensitivity and specificity of connection strength as a measure for identi-

fying SOZ-SOZ connections, we employed receiver operating characteristic (ROC) analysis

during pre-seizure and seizure epochs (Fig 5c). The ROC analysis evaluates the sensitivity and

specificity of connections belonging to the SOZ-SOZ type as connection strength threshold is

incrementally raised. We evaluate performance in detecting SOZ-SOZ connections by comput-

ing the area under the ROC curve (AUC) ranging from 0 to +1, where values of +1 imply low

sensitivity and false positives with high specificity and true positives. To assess significance of

the AUC, we bootstrapped confidence intervals (α = 0.05) by re-assigning sensors to the SOZ

uniformly at random without replacement 10000 times for each network state in both epochs.

During seizure epochs, we found that S2 was most effective at predicting SOZ-SOZ connections

based on AUC (μ = 0.849±0.169) with significant AUC values in 32 of 50 seizures. Conversely

S0 was least effective at predicting SOZ-SOZ connections (μ = 0.773±0.238) with significant

AUC values across 26 of 50 seizures. During pre-seizure epochs, SOZ-SOZ connections were

similarly predictable across PS0 (μ = 0.709±0.268) (significant in 25 of 50), PS1 (μ = 0.722

±0.257) (significant in 25 of 50), and PS2 (μ = 0.754±0.238) (significant in 27 of 50). These

results suggest that connection strength may be used to predict SOZ-SOZ connections during

pre-seizure epochs with precision, but has better performance during more synchronized states

such as S2 compared to less synchronized states such as S0.

Impact of Surrounding Connectivity on Epileptic Network Dynamics

Thus far we have seen how connectivity associated with the SOZ synchronizes the epileptic

network during seizures. However, it is unclear whether involvement from the broader epilep-

tic network aids or disrupts pre-seizure and seizure dynamics.

We first hypothesized that changes in network geometry are not limited to redistribution of

connection strengths, but may also involve topographical changes in connection lengths

accompanying changes in functional network anatomy. In a sample of pre-seizure and seizure

states, we observed clustering of strong connections while weak connections distributed more

broadly (Fig 5a). To test our hypothesis, we restricted our analysis to connections within elec-

trode grids with uniformly spaced nodes in 8 × 8, 8 × 6, 6 × 6, or 4 × 6 configurations (in 75 sei-

zures over 19 patients) and computed average Spearman’s rank correlation coefficient between

connection length and connection strength over all time windows of each network state (Fig

6a). A more positive (negative) correlation coefficient indicated stronger connections were lon-

ger (shorter). A one-way ANOVA test was conducted to compare the effect of pre-seizure and
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seizure network states on correlation between connection length and connection strength. We

observed a significant effect of network state on correlation (F5,444 = 9.348, p = 1.76 × 10−8).

Post-hoc analysis using Tukey’s honest significant difference test (HSD) to control for a fam-

ily-wise rejection error rate of 5% (FWER = 5%) revealed significant increase in negative corre-

lation between connection length and strength in S0 (μ = −0.225±0.92) compared to PS2 (μ =

−0.182±0.091) (padj< 0.05) but not PS0 (μ = −0.188±0.100) or PS1 (μ = −0.189±0.092). Con-

nection length is significantly more negatively correlated with connection strength in S1 (μ =

−0.258±0.081) and S2 (μ = −0.242±0.086) compared to any pre-seizure state (padj< 0.01).

There was no significant change in correlation between pre-seizure states or seizure states.

In summary, we found that stronger connection strengths are present in connections with

shorter lengths, regardless of network state. During seizures, reorganization in the epileptic

network leads to further lengthening of weaker connections and shortening of stronger con-

nections. Coinciding with the earlier finding that seizure generation involves quasi-synchroni-

zation of the network, we find a modest shortening of strong connections relative to the pre-

seizure period. As seizures progress, synchronous connections tighten to more local regions,

while desynchronous connections stretch further into the broader epileptic network.

Discussion

Epileptic Network Reconfiguration

Intuitively, complex reconfiguration of functional brain networks can accompany changes in

cognitive state or changes in behavior. Prior fMRI studies have explored such reconfiguration

in whole-brain networks constructed from data acquired during motor skill learning [20] and

as task states change [25], and in networks impacted by stroke [26, 27]. In contrast, here we

explore the reconfiguration of a local area and use higher resolution ECoG data to map the

fine-scale temporal dynamics of reconfiguration processes.

In this study, we developed and exercised a novel method for distinguishing brain states

based on differences in time-dependent functional network geometry. Our approach expands

upon previous notions of state-space in dynamic epileptic networks [18, 19], by tracking changes

between node pairs (connections) rather than in node importance (centrality). An important

advantage associated with this technique is that network reorganization can be studied without a

Fig 6. Topographical characteristics of network connectivity. (a) Average Spearman’s rank correlation
coefficient between connection length and strength in PS and S epochs (N = 75). Physical connection lengths
computed from regularly spaced nodes in electrode grid; connection lengths measured in millimeters.
Stronger connections are consistently shorter than weaker connections. During S, there is significant
topographical reorganization making weak connections longer and strong connections tighter.

doi:10.1371/journal.pcbi.1004608.g006
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priori knowledge of specific topological structure, such as small-worldness [16]. Rather, time-

dependent changes in connectivity are based simply on similarities in signal statistics.

We applied our technique to a set of human ECoG recordings, and extracted network

dynamics during seizure and pre-seizure epochs. We found that seizures exhibit at least three

network states (S0, S1, S2) and that the epileptic network progresses through these states more

slowly in comparison to the period preceding seizure generation. Our results are in line with

prior work that has shown more frequent state changes during the interictal period in compari-

son to seizures [19]. Next, we provide a mechanistic explanation of how state changes operate

with strong and weak regimes of connectivity to drive seizures through neurologically-defined

onset, propagation and termination states ubiquitous in clinical descriptions.

Balance of Strong andWeak Connections

Our analytical approach utilizes the distribution of functional connection strengths to charac-

terize connections as “strong” (synchronous) or “weak” (desynchronous), rather than simply

stating that two sensors are functionally “connected” or “not connected”. Mathematically, this

focus corresponds to a study of network geometry as opposed to network topology. A primary

advantage of the weighted network approach is the ability to separate connections into classes

that differ in strength. Evidence suggests that strong and weak connections play different roles

in supporting cognitive function [23, 28]. Traditional thought is that strong connections repre-

sent primary communication pathways between brain areas. However, recent work demon-

strates that weak connections support increased network efficiency and may play a large role in

distinguishing pathologic [29] and healthy [23, 30] network states. From a dynamical perspec-

tive, strong connections may persistently engage throughout neurophysiological processes,

whereas weak connections may engage transiently to enable brain state transitions.

Prior work has speculated that the epileptic network is connected at the beginning of the sei-

zure, disconnected in the middle, and finally reconnected at the end [12, 14, 16]. However, our

results suggest that a more accurate way to address this hypothesis is to consider the strength

of functional connections and disambiguate slower temporal dynamics occurring at each node,

independently, which may elevate spurious connectivity between disconnected regions.

Using a weighted connectivity approach, we find that connections in the epileptic network

have more weak than strong connections during PS0, PS1, and PS2, states preceding the electro-

graphic seizure onset, a near balance of strong and weak connections during S0, which corre-

sponds to seizure generation, and more strong than weak connections during S1 and S2 states

representing seizure progression and termination. It is possible that clinician subjectivity in mark-

ing the time of seizure onset may explain our result of disconnectivity before seizure generation,

which contrasts with prior reports of a disconnected network at either seizure onset or mid-sei-

zure [12, 14, 16]. Our method places greater emphasis on connectivity derived from faster activity

by reducing contribution from slower dynamics (see Materials and Methods) and corroborates

clinical belief that seizure generation during S0 involves a gradual transition from desynchronous

to synchronous connectivity, which peaks during the termination phase of the seizure (S2).

Mechanistically, the weak connectivity that we observe preceding seizure generation bene-

fits from high network flexibility to drive seizure generation through a rapid reorganization of

weaker connections in the epileptic network. As seizures initiate and progress, the epileptic net-

work redistributes weak connectivity to strong connectivity while network flexibility is concur-

rently diminished. In relation to prior work that demonstrates a propensity for the epileptic

network to follow a recurring pattern of state transitions during seizures [19], our results sug-

gest that weak connectivity preceding the seizure drives the network to a more predictable

series of increasingly synchronized states during seizures. Next, we explore beyond global
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network structure and discuss how regional connectivity dynamics provide further insight on

network drivers of seizure evolution.

Regional Connectivity Regulates Seizure Evolution Dynamics

While temporal network structure provides rich information regarding seizure states, it does

not directly provide information regarding the spatial processes involved in seizure dynamics.

We therefore complemented the temporal network approach by incorporating information

about sensor role either within or outside the seizure onset zone and sensor location in Euclid-

ean space. Our results demonstrate that these additional spatial features provide new insights

into potential neurophysiological mechanisms involved in seizure generation, and may inform

the development of clinical tools for objectively isolating the seizure onset zone directly from

seizure or pre-seizure data.

Prior work has demonstrated high synchronization within the seizure onset zone during

interictal epochs [31, 32]. However, the temporal dynamics and geometrical roles of these two

sets of areas has remained elusive. Our results elucidate the role played by seizure onset regions

during seizures and the accompanying recruitment of the surrounding epileptic network dur-

ing termination. Clear isolation of the seizure onset zone exists in pre-seizure periods, suggest-

ing the potential to identify foci, niduses of seizure generation, within the network from inter-

ictal data. Critically, connectivity within the onset zone strengthens during early seizure peri-

ods (S1) and intensifies as seizures progress (S2) and terminate (S3), suggesting that the onset

zone drives the transition from global desynchronization to synchronization during seizure

generation and persists in this functional role through the entire seizure. Such a mechanism

also points to a role of the onset zone in seizure termination, potentially in tandem with topo-

graphical mechanisms, which we discuss in the next section.

Network Tightening during Seizures

Our observation that stronger connections are typically short and weaker connections are typi-

cally long, is consistent with results from two lines of research: (i) functional studies in healthy

individuals that utilize other imaging modalities such as fMRI [23] and (ii) structural connectiv-

ity studies in non-human primates that utilize tract tracing techniques [22]. In epilepsy, prior

work has shown hubs of connectivity proximal to the seizure onset zone [18, 33, 34], however

their role in seizure dynamics was previously unknown. We show that seizure generation leads

to further shortening of stronger connections and lengthening of weaker connections, suggest-

ing that stronger connections are physically tightening, perhaps into more functionally cohesive

portions of cortex during seizures. We speculate that the tightening of stronger connections to

localized sub-networks might act as a control mechanism to quench disruptive network activity

that may have built-up over many hours prior to the seizure through increasing frequency of

epileptiform discharges [24] or facilitate previously described compensatory mechanisms [18].

Conversely, weaker connections are longer during seizure periods than pre-seizure periods and

could be a vehicle for spreading desynchronous activity broadly.

Clinical Impact and Future Work

We have seen that the dynamical processes that propel epileptogenic networks into seizures

can be complex and are poorly understood. Yet, clinicians rely on visual inspection to describe

spatial and temporal properties of seizures. The lack of standardized clinical measures to mark

epileptic events calls for the development of automated methods. The network analysis tools

we have built, while generally applicable to any dynamic network, can parse seizure states,

localize driver ‘foci’ of seizures, and characterize how seizures progress and terminate. This
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interpretation can be translated into useful clinical tools to identify dysfunctional anatomical

regions that drive the epileptic network and may be particularly amenable to local interven-

tions, such as surgery or device placement. Of interest, seizure driving ‘foci’ were equally pres-

ent in the half of our study patients who did not have focal lesions on brain imaging, compared

to those patients with lesions demonstrated on MRI. We plan a more detailed study in the

future to correlate mapping of these seizure-driving regions with brain resection and outcome.

Currently, our tools employ community detection techniques to identify gross changes in

the meso-scale architecture of network structure across time. The observed meso-scale recon-

figuration processes may be accompanied by region-specific trends in reconfiguration between

the epileptic network and surrounding healthy networks. A remaining gap is understanding

how functional dynamics map to structural features of the epileptic network using fiber-track-

ing techniques to describe how seizures start and then spread through white-matter. Addition-

ally, this work could be used to address cellular mechanisms by considering micro-scale

reconfigurations. Recent studies suggest that epileptic networks in the neocortex may be com-

posed of distributed micro-domains on the scale of a few cortical columns generating high fre-

quency oscillations and micro-seizures that coalesce in a network during seizure generation

and termination [6]. While of great interest, these studies are currently limited by the lack of

appropriate implantable high-resolution sensors capable of covering clinically relevant areas

sufficiently to yield comprehensive high-resolution maps. Further development of dynamic

community detection methods to identify and track reconfiguration within network sub-

regions at both the meso and micro-scales may help delineate healthy and pathologic networks

and uncover mechanisms of network recruitment.

An important clinical consideration related to this work is the impact of sampling error inher-

ent in any intracranial implantation procedure on our results. Any technique used to map epilep-

tic networks, subdural electrode strips and grids, more distributed “Stereo EEG” implantations,

and combinations of these two approaches, usually yield incomplete representations of epileptic

networks. It is not possible to fully record from the entirety of cortex in affected patients. In some

cases this might mean that neither seizure onset zones nor all regions of seizure spread are fully

delineated. Despite this incomplete representation, the presence of three clear states defining sei-

zures in each of the patients presented above, and their objective and independently determined

relationship to the seizure onset zone suggest that our findings are important and real. With fur-

ther validation on a larger number of patients with both lesional and non-lesional epilepsies, we

hope to demonstrate the utility of our method to define functional components of epileptic net-

works. Our method shows promise for informing epilepsy surgery and for placing devices into

regions that drive seizure generation and termination. Future work will focus on using these

methods to compare competing approaches for localizing epileptic networks, such as subdural

and stereo EEG. It is intuitively plausible that each will have advantages in recording components

of epileptic networks in different types of localization-related epilepsy.

Materials and Methods

Ethics Statement

All patients included in this study gave written informed consent in accord with the University

of Pennsylvania Institutional Review Board and Mayo Clinic Institutional Review Board for

inclusion in this study.

Patient Data Sets

Twenty-one patients undergoing surgical treatment for medically refractory epilepsy believed

to be of neocortical origin underwent implantation of subdural electrodes to localize the seizure
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onset zone after noninvasive monitoring was indeterminate. De-identified patient data was

retrieved from the online International Epilepsy Electrophysiology Portal (IEEG Portal) [35].

ECoG signals were recorded and digitized at either 512 Hz (Hospital of the University of Penn-

sylvania, Philadelphia, PA) or 500 Hz (Mayo Clinic, Rochester, MN) sampling rate. Surface

electrode (Ad Tech Medical Instruments, Racine, WI) configurations, determined by a multi-

disciplinary team of neurologists and neurosurgeons, consisted of linear and two-dimensional

arrays (2.3 mm diameter with 10 mm inter-contact spacing) and sampled the neocortex for

epileptic foci (depth electrodes were first verified as being outside the seizure onset zone and

subsequently discarded from this analysis). Signals were recorded using a referential montage

with the reference electrode, chosen by the clinical team, distant to the site of seizure onset and

spanned the duration of a patient’s stay in the epilepsy monitoring unit.

Description of Seizure Events

We analyzed a total of 88 seizure events, including simple partial, complex partial, and second-

arily generalized, stemming from neocortical foci in this study. Seizure onset time and localiza-

tion were defined by the point of earliest electrographic change (EEC) and annotated and

marked by a team of practicing epileptologists [24]. ECoG signal directly preceding each sei-

zure and equal in duration to that seizure was also extracted for balanced comparison and

labeled as pre-seizure.

Extracting Dynamic Functional Networks

Signals from each epoch were divided into 1-second, non-overlapping, wide-sense stationary

time windows in accord with other studies [16] and subsequently pre-processed. To test the

biasing effect of high-amplitude spiking on signal connectivity measurements, we also investi-

gated windows 0.5-seconds in duration to sample more of the non-biasing temporal space and

found similar results. In each time window, signals were re-referenced to the common average

reference [16, 36] to account for variation in reference location across patients and to avoid

broad field effects that may bias connectivity measurements erroneously in the positive direc-

tion. Each window was filtered at 60 Hz to remove line-noise, and low-pass and high-pass fil-

tered at 120 Hz and 1 Hz, respectively, to account for noise and drift. To correct for correlated

signal dynamics for each individual node, we pre-whiten signals in each window and reduce

autocorrelation effects for time lags greater than zero. This accomplishes two goals: (i) flatten-

ing of the signal power spectrum to enhance higher-frequency content that contains local neu-

ral population dynamics, and (ii) decreases the influence of independent node dynamics when

computing correlation-based connectivity measurements [36–39].

Dynamic functional networks were formed by applying a normalized cross-correlation sim-

ilarity function ρ between the time series of two sensors in the same time window using the for-

mula

ρxyðkÞ ¼ E½ðxkðtÞ � mxk
Þðykðt þ tÞ � myk

Þ�
�

�

�

�

�

�
ð1Þ

where x and y are signals from one of N sensors or network nodes, k is one of T non-overlap-

ping, one-second time windows, and xk = yk = 0. TheNxNxT similarity matrix is also known

as a network adjacency matrix A (Fig 1a). In our weighted network analysis approach, we

retain and analyze all possible connection weights between nodes.
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Computing Network States

Network states, or temporal changes in network geometry, was tracked separately in each

epoch by clustering the configuration-similarity matrix through a community detection tech-

nique known as modularity optimization. We construct the configuration-similarity matrix by

first unraveling A to a network evolution matrix Â describing the weights of
NðN� 1Þ

2
con-

nections across T time windows. Using a Pearson correlation coefficient to measure similarity,

we transform Â to a fully-connected TxT configuration state adjacency matrix S. The configu-

ration adjacency matrix is partitioned into communities by maximizing the modularity index

Q[40] using a Louvain-like locally greedy algorithm [41]. We employed a Newman-Girvan

null model [42, 43] and adaptively determined an optimal structural resolution parameter γ

per seizure (see S1 Text and [44] for a more detailed discussion of resolution parameters in

modularity maximization). We used a consensus partition method with 1000 optimizations

per run until we obtained consistent community partitioning [44, 45]. The three longest com-

munities (clusters, or network states) from each seizure were selected for further analysis and

re-labeled in order of median temporal occurrence for population-level comparison.

Distinguishing Connection Types

Connections were classified as strong or weak based on thresholds determined by the distribu-

tion of connection strengths for each epoch separately for each seizure. The strong (weak) con-

nections must be>95% (<5%) of all connection strengths. To measure the dominance of

strong or weak connections, we defined the connection type index as

B ¼
Cs �Cw

Cs þCw

ð2Þ

where Cs and Cw are the average number of strong and weak connections over possible connec-

tions and number of time windows.

Measuring Network Topography

Connection topography metrics were computed for only within-grid electrodes, ignoring all

other non-grid electrodes such that inter-electrode spacing in all analyses was kept constant.

We related connection strength to the two-dimensional physical distance between nodes (elec-

trode sensors) of that connection in millimeters.

Supporting Information

S1 Text. Contains detailed discussion, methods, and model optimization and robustness.

(PDF)
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