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Abstract

We consider a network of devices, such as generators, fixed loads, de-

ferrable loads, and storage devices, each with its own dynamic con-

straints and objective, connected by AC and DC lines. The problem is

to minimize the total network objective subject to the device and line

constraints over a time horizon. This is a large optimization problem

with variables for consumption or generation for each device, power

flow for each line, and voltage phase angles at AC buses in each period.

We develop a decentralized method for solving this problem called

proximal message passing. The method is iterative: At each step, every

device exchanges simple messages with its neighbors in the network and

then solves its own optimization problem, minimizing its own objective

augmented by a term determined by the messages it has received. We

show that this message passing method converges to a solution when

the device objective and constraints are convex. The method is com-

pletely decentralized and needs no global coordination other than it-

eration synchronization; the problems to be solved by each device can

typically be solved extremely efficiently and in parallel.

The proximal message passing method is fast enough that even a se-

rial implementation can solve substantial problems in reasonable time

frames. We report results for several numerical experiments, demon-

strating the method’s speed and scaling, including the solution of a

problem instance with over 30 million variables in 5 minutes for a serial

implementation; with decentralized computing, the solve time would be

less than one second.

M. Kraning, E. Chu, J. Lavaei, and S. Boyd. Dynamic Network Energy

Management via Proximal Message Passing. Foundations and Trends R© in
Optimization, vol. 1, no. 2, pp. 73–126, 2014.

DOI: 10.1561/2400000002.
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1

Introduction

1.1 Overview

A traditional power grid is operated by solving a number of opti-

mization problems. At the transmission level, these problems include

unit commitment, economic dispatch, optimal power flow (OPF), and

security-constrained OPF (SC-OPF). At the distribution level, these

problems include loss minimization and reactive power compensation.

With the exception of the SC-OPF, these optimization problems are

static with a modest number of variables (often less than 10000) and

are solved on time scales of 5 minutes or more.

However, the operation of next generation electric grids (i.e., smart

grids) will rely critically on solving large-scale, dynamic optimization

problems involving hundreds of thousands of devices jointly optimizing

tens to hundreds of millions of variables, on the order of seconds rather

than minutes [16, 41]. More precisely, the distribution level of a smart

grid will include various types of active dynamic devices, such as dis-

tributed generators based on solar and wind, batteries, deferrable loads,

curtailable loads, and electric vehicles, whose control and scheduling

amount to a very complex power management problem [59, 9].

In this paper, we consider a general problem, which we call the dy-

2
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1.1. Overview 3

namic optimal power flow problem (D-OPF), in which dynamic devices

are connected by both AC and DC lines, and the goal is to jointly min-

imize a network objective subject to local constraints on the devices

and lines. The network objective is the sum of the device objective

functions. These objective functions extend over a given time horizon

and encode operating costs such as fuel consumption and constraints

such as limits on power generation or consumption. In addition, the

objective functions encode dynamic objectives and constraints such as

limits on ramp rates for generators or charging and capacity limits for

storage devices. The variables for each device consist of its consumption

or generation in each time period and can also include local (private)

variables which represent internal states of the device over time, such

as a storage device’s state of charge.

When all device objective functions and line constraints are convex,

D-OPF is a convex optimization problem, which in principle can be

solved efficiently [7]. If not all device objective functions are convex, we

can solve a relaxed form of the D-OPF which can be used to find good,

local solutions to the D-OPF. The optimal value of the relaxed D-OPF

also gives a lower bound for the optimal value of the D-OPF which can

be used to evaluate the suboptimality of a local solution, or, when the

local solution has the same value, as a certificate of global optimality.

For any network, the corresponding D-OPF contains at least as

many variables as the number of devices and lines multiplied by the

length of the time horizon. For large networks with hundreds of thou-

sands of devices and a time horizon with tens or hundreds of time peri-

ods, the extremely large number of variables present in the correspond-

ing D-OPF makes solving it in a centralized fashion computationally

impractical, even when all device objective functions are convex.

We propose a decentralized optimization method which efficiently

solves the D-OPF by distributing computation across every device in

the network. This method, which we call proximal message passing,

is iterative: At each iteration, every device passes simple messages to

its neighbors and then solves an optimization problem that minimizes

the sum of its own objective function and a simple regularization term

that only depends on the messages it received from its neighbors in the

Full text available at: http://dx.doi.org/10.1561/2400000002



4 Introduction

previous iteration. As a result, the only non-local coordination needed

between devices for proximal message passing is synchronizing itera-

tions. When all device objective functions are convex, we show that

proximal message passing converges to a solution of the D-OPF.

Our algorithm can be implemented in several ways. A traditional

implementation is to collect all the device constraints and objectives

on a single computer or cluster and solve the problem. Our implemen-

tation takes this approach and runs on a single 32-core computer with

hyperthreading (64 independent threads). A more interesting imple-

mentation is a peer-to-peer architecture, in which each device contains

its own processor, which carries out the required local dynamic opti-

mization and exchanges messages with its neighbors on the network.

In this setting, the devices do not need to divulge their objectives or

constraints; they only need to support a simple protocol for interacting

with their neighbors. Our algorithm ensures that the network power

flows and AC bus phase angles will converge to their optimal values,

even though each device has very little information about the rest of

the network, and only exchanges limited messages with its immediate

neighbors.

Due to recent advances in convex optimization [61, 46, 47], in many

cases the optimization problems that each device solves in each it-

eration of proximal message passing can be executed at millisecond

or even microsecond time-scales on inexpensive, embedded processors.

Since this execution can happen in parallel across all devices, the entire

network can execute proximal message passing at kilohertz rates. We

present a series of numerical examples to illustrate this fact by using

proximal message passing to solve instances of the D-OPF with over

30 million variables serially in 5 minutes. Using decentralized comput-

ing, the solve time would be essentially independent of the size of the

network and require just a fraction of a second.

We note that although a primary application for proximal message

passing is power management, it can easily be adapted to more general

resource allocation and graph-structured optimization problems [51, 2].

Full text available at: http://dx.doi.org/10.1561/2400000002



1.2. Related work 5

1.2 Related work

The use of optimization in power systems dates back to the 1920s and

has traditionally concerned the optimal dispatch problem [22], which

aims to find the lowest-cost method for generating and delivering power

to consumers, subject to physical generator constraints. With the ad-

vent of computer and communication networks, many different ways

to numerically solve this problem have been proposed [62], and more

sophisticated variants of optimal dispatch have been introduced, such

as OPF, economic dispatch, and dynamic dispatch [12], which extend

optimal dispatch to include various reliability and dynamic constraints.

For reviews of optimal and economic dispatch as well as general power

systems, see [4] and the book and review papers cited above.

When modeling AC power flow, the D-OPF is a dynamic version of

the OPF [8], extending the latter to include many more types of devices

such as storage units. Recent smart grid research has focused on the

ability of storage devices to cut costs and catalyze the consumption of

variable and intermittent renewables in the future energy market [23,

44, 13, 48]. With D-OPF, these storage concerns are directly addressed

and modeled in the problem formulation with the introduction of a time

horizon and coupling constraints between variables across periods.

Distributed optimization methods are naturally applied to power

networks given the graph-structured nature of the transmission and

distribution networks. There is an extensive literature on distributed

optimization methods, dating back to the early 1960s. The prototypi-

cal example is dual decomposition [14, 17], which is based on solving

the dual problem by a gradient method. In each iteration, all devices

optimize their local (primal) variables based on current prices (dual

variables). Then the dual variables are updated to account for imbal-

ances in supply and demand, with the goal being to determine prices

for which supply equals demand.

Examples of distributed algorithms in the power systems litera-

ture include two phase procedures that resemble a single iteration of

dual decomposition. In the first phase, dynamic prices are set over a

given time horizon (usually hourly over the following 24 hours) by some

mechanism (e.g., centrally by an ISO [28, 29], or through information

Full text available at: http://dx.doi.org/10.1561/2400000002



6 Introduction

aggregation in a market [57]). In the second phase, these prices allow

individual devices to jointly optimize their power flows with minimal

(if any) additional coordination over the time horizon. More recently,

building on the work of [39], a distributed algorithm was proposed [38]

to solve the dual OPF using a standard dual decomposition on subsys-

tems that are maximal cliques of the power network.

Dual decomposition methods are not robust, requiring many tech-

nical conditions, such as strict convexity and finiteness of all local cost

functions, for both theoretical and practical convergence to optimality.

One way to loosen the technical conditions is to use an augmented La-

grangian [25, 49, 5], resulting in the method of multipliers. This subtle

change allows the method of multipliers to converge under mild tech-

nical conditions, even when the local (convex) cost functions are not

strictly convex or necessarily finite. However, this method has the dis-

advantage of no longer being separable across subsystems. To achieve

both separability and robustness for distributed optimization, we can

instead use the alternating direction method of multipliers (ADMM)

[21, 20, 15, 6]. ADMM is very closely related to many other algorithms,

and is identical to Douglas-Rachford operator splitting; see, e.g., the

discussion in [6, §3.5].

Augmented Lagrangian methods (including ADMM) have previ-

ously been applied to the study of power systems with static, single

period objective functions on a small number of distributed subsystems,

each representing regional power generation and consumption [35]. For

an overview of related decomposition methods applied to power flow

problems, we direct the reader to [36, 1] and the references therein.

Our decentralized proximal message passing method is similar in

spirit to flow control on a communication network, where each source

modulates its sending rate based only on information about the num-

ber of un-acknowledged packets; if the network state remains constant,

the flows converge to levels that satisfy the constraints and maximize

a total utility function [33, 42]. In Internet flow control, this is called

end-point control, since flows are controlled (mostly) by devices on the

edges of the network. The proximal message passing method is closer

to local control, since decision making is based only on interaction

Full text available at: http://dx.doi.org/10.1561/2400000002



1.3. Outline 7

with neighbors on the network. Another difference is that our method

uses virtual, proposed energy flows in its messages and not actual en-

ergy flows. (Once converged, of course, they can become actual energy

flows.)

1.3 Outline

The rest of this paper is organized as follows. In chapter 2 we give the

formal definition of our network model. In chapter 3 we give examples

of how to model specific devices such as generators, deferrable loads

and energy storage systems in our formal framework. In Chapter 4, we

describe the role that convexity plays in the D-OPF and introduce the

idea of convex relaxations as a tool to find solutions to the D-OPF in

the presence of non-convex device objective functions. In Chapter 5 we

derive the proximal message passing equations. In Chapter 6 we present

a series of numerical examples, and in Chapter 7 we discuss how our

framework can be extended to include use cases we do not explicitly

cover in this paper.

Full text available at: http://dx.doi.org/10.1561/2400000002
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