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Abstract 

 
A weapon system consisting of a swarm of air vehicles 

whose mission is to search for, classify, attack, and perform 

battle damage assessment, is considered.  It is assumed that 

the target field information is communicated to all the 

elements of the swarm as it becomes available.  A network 

flow optimization problem is posed whose readily obtained 

solution yields the optimum resource allocation among the 

air vehicles in the swarm.  Hence, the periodic reapplication 

of the centralized optimization algorithm yields the benefit 

of cooperative feedback control. 

 

I.  Introduction 

 

Autonomous wide area search weapon systems are 

small powered munitions, each with a turbojet engine 

and sufficient fuel to fly for short periods.  They are 

deployed in swarms from a larger aircraft flying 

relatively high.  Each is equipped with a solid-state 

sensor for searching and target identification, and a 

small warhead.  There is interest in developing ways 

in which multiple munitions can work cooperatively 

to more efficiently and effectively carry out search, 

target classification, attack, and battle damage 

assessment. 

 

In this paper we describe a time-phased network 

optimization model designed to produce task 

assignments for the powered munitions each time it is 

run.  The model is intended to run simultaneously and 

independently at discrete points in time on all of the 

munitions, and explicitly assign each to choose to 

strike, assist in classifying a target, or continue 

searching. 

 

II.  Scenario 

 

We begin with a set of N vehicles, deployed 

simultaneously, each with a life-span of 30 minutes2.  

We index them i = 1, 2, …., N.  Targets that might be 

found by searching fall into known classes according 

to the value or “score” associated with destroying 

them.  We index them with j as they are found, so that 

j = 1, 2, ….. and Vj is the value of target j.  We 

assume that at the outset there is no precise 

information available about the number of targets and 

their locations.  This information can only be obtained 

by the vehicles by carrying out searches and 

classifying what they find using Automatic Target 

Recognition (ATR) methodologies.  Thus, at the time 

of deployment, all N of the vehicles begin searching, 

using a pre-established scheme for geographically 

dividing the work among themselves.  We expect that 

at some point in time, a sensor on one of the vehicles 

detects a potential target.  We assume that the target 

information, including location, type, and 

classification probability is immediately shared with 

all other vehicles within communication range, and 

that they, in turn, propagate the information to others.  

Ideally, all the weapons systems will quickly have the 

new target information in a local database.  However, 

  



there may be cases in which not all vehicles can be 

reached, in which case some will be functioning with 

incomplete information.  Target detection may be 

inconclusive, because a single pass over a target at a 

specific aspect angle may produce a classification 

probability that falls short of a required threshold 

value.  In this case, a second pass at a different aspect 

angle can boost the classification probability, possibly 

to meet the threshold level.  The second pass could be 

done by the initial spotting weapon system or by 

another, referred to as cooperative classification.  If p1 

and p2 are the classification probabilities on the first 

and second look respectively, then  p1 + p2 - p1 * p2 (> 

p1,p2) is the classification probability on the two looks, 

assuming independence of the observations.   If a 

vehicle strikes a target, it is not certain that the target 

is destroyed.  We let qj be the probability that target j 

is destroyed if attacked by a vehicle.   

 

III.  A Network Optimization Model 

 

Network optimization models are typically described 

in terms of supplies and demands for a commodity, 

nodes which model transfer points, and arcs that 

interconnect the nodes and along which flow can take 

place1.  There are typically many feasible choices for 

flow along arcs, and costs or values associated with 

the flows.  Arc can have capacities that limit the flow 

along them.  An optimal solution is the globally least 

cost (or maximum value) set of flows for which 

supplies find their way through the network to meet 

the demands.  To model weapon system allocation, we 

treat the individual vehicles as discrete supplies of 

single units, tasks being carried out as flows on arcs 

through the network, and ultimate disposition of the 

vehicles as demands.  Thus, the flows are 0 or 1.  We 

assume that each vehicle operates independently, and 

makes decisions when new information is received.  

These decisions are determined by the solution of the 

network optimization model.  The receipt of new 

target information is an event that triggers the 

formulation and solving of a fresh optimization 

problem that reflects current conditions, thus 

achieving feedback action.  At any point in time, the 

database onboard each vehicle contains a target set, 

consisting of indexes, types and locations for targets 

that have been classified above the probability 

threshold.  There is also a speculative set, consisting 

of indexes, types and locations for potential targets 

that have been detected, but are classified below the 

probability threshold and thus require an additional 

look before striking.  Figure 1 below illustrates the 

network model at a particular point in time.   

 

The model is demand driven, with the large 

rectangular node on the right exerting a demand pull 

of N units (labeled with a supply of –N), so that each 

of the LOCAAS nodes on the left (with supply of +1 

unit each) must flow through the network to meet the 

demand.  In the middle layer, the top M nodes 

represent all of the targets that have been identified 

with the required minimum classification probability 

at this point in time and thus are ready to be attacked.  

An arc exists from a specific vehicle node to a target 

node if and only if it is a feasible vehicle /target pair.  

At a minimum, the feasibility requirement would 

mean that there is enough fuel remaining to strike the 

target if tasked to do so.  Other feasibility conditions 

could also enter in, if, for example, there were 

differences in the onboard weapons that precluded 

certain vehicle /target combinations, or if the available 

attack angles were unsuitable.  The bottom R nodes of 

the middle layer represent all of the potential targets 

that have been identified, but do not meet the 

minimum classification probability.  We call them 

speculatives.  The minimum feasibility requirement 

for an arc to connect a vehicle /speculative pair is 

sufficient fuel for the vehicle unit to assume a position 

in which it can deploy its sensor to assist in elevating 

the classification probability beyond threshold.  The 

lower tier models alternatives for battle damage 

assessment for targets that have been struck.  Finally, 

each node in the vehicle set on the left has a direct arc 

to the far right node labeled sink, modeling the option 

of continuing to search. The capacities on the arcs 

from the target and speculative sets are fixed at 1  

Because of the integrality property, the flow values 

are constrained to be either 0 or 1.  This enforces a 

condition that at most one vehicle can attack any 

given target, avoiding the need to model the nonlinear 

scoring situation that would occur if multiple weapons 

could attack a single target.  Each unit of flow along 

an arc has a  “cost” which is an expected future value.  

The optimal solution maximizes total value.  The 

values are listed in Table 1.   

 

The network optimization model can be expressed in 

closed form as follows: 
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This particular model is a capacitated transshipment 

problem (CTP), a special case of a linear 

programming problem.  Constraint set 2 enforces a 

condition that flow-in must equal flow-out for all 

nodes.  Constraint set 3 mandates that flows on arcs 

must not exceed specified upper bounds.  Restricting 

these capacities to a value of one on the arcs leading 

to the sink, along with the integrality property, 

induces binary values for the decision variables x(i,j).  

 

IV. Coordinated Time-Phased Operation 

 

At any point in time, each vehicle is in exactly one of 

the four possible modes, striking, classifying, 

searching or BDA.  Striking means that the vehicle is 

in the process of attacking the target.  Classifying 

means that the vehicle is searching for a known 

speculative, and upon finding it, will alter the 

classification probability (possibly, but not necessarily 

above threshold).  BDA is carrying out battle damage 

assessment.  Searching means the vehicle is carrying 

out a pre-established search process, looking for 

detections.  Any of the vehicles that are at work at the 

point in time (i.e., have not been expended in striking 

a target) can cause an event that triggers a decision 

point.  The possible events are given as follows: 

1. A vehicle in search mode makes a detection, and 

classifies a target above threshold probability.   

2. A vehicle in search mode makes a detection, and 

classifies a speculative below threshold  

probability. 

3.  A vehicle in classify mode makes a detection, and 

classifies a target above threshold probability. 

4. A vehicle in classify mode makes a detection, and 

classifies a speculative below threshold 

probability. 

5. A vehicle in strike mode transforms a target into a 

BDA objective. 

6. A vehicle in BDA mode transforms a BDA 

objective into a target. 

7. A vehicle in BDA mode removes a BDA 

objective from the problem. 

 

1. The vehicle responsible for the event stores the 

information in its own database, and 

communicates it to the others.  The information is 

an ID, timestamp; the event type (1., 2., or 3. 

above); the target or speculative location; its type; 

and the vehicle location.  In turn, those vehicles 

receiving the information relay it to others in 

which they are in contact, and add their own ID, 

timestamp, and location to the message. 

2. Upon receiving the event information, each 

vehicle stores the new information in their local 

database, evaluates the value functions, 

parameterizes and autonomously solves the 

network optimization problem. 

3. The solution is stored in the local database.  Since 

all vehicles are solving the same problem, all now 

know the modes of all the others.   

4. If a vehicle is in attack or classify mode, it 

completes the task underway, then switches to the 

mode specified by the model solution.  If it is in 

search mode, it immediately switches to the newly 

assigned mode. 

 

Elapsed time between events is a function of threat 

density, number of vehicles in the swarm and their 

locational distribution, and ability to detect targets and 

speculatives (dependent on such things as terrain, 

weather, ATR procedure employed).  To get a feel for 

the dynamics of the approach, Figure 2 depicts a 

timeline example with 6 events, their times and their 

effects. 

 

Key strengths of the approach are as follows: 

 

1. Solutions are globally optimal, yet computed 

locally and independently.  Communication of 

solutions is implicit, accomplished by all vehicles 

running the same model in parallel. 

2. Requires very little preplanning, and is driven by 

using new information and dynamically 

reassigning roles to each vehicle. 

3. Bandwidth requirements are very low.  Model 

results are communicated implicitly through 

identical models on the distributed aircraft. 

4. If communications fail between any vehicle, 

model synchronization may be not be global.  Yet 

  



feasible and potentially high quality solutions can 

still be computed locally, albeit with information 

that is not completely current. 

5. There is a low computational burden on each 

vehicle, tractable even with modest computers. 

6. The model explicitly considers deferred strike 

decisions as an available option. 

7. The model explicitly considers deferred 

cooperative classification. 

 

Potential weaknesses of the approach are as follows: 

 

1. There is a large burden on being able to accurately 

specify cost functions. 

2. Synchronization may be incomplete in situations 

when not all vehicles are in communication range 

or acknowledgements are not received.  In these 

cases, solutions are not truly global, and, in some 

cases, could result in redundant actions such as 

two vehicles attacking the same target. 

3. Model solutions may be delayed in circumstances 

where threats are being rapidly detected, since the 

weapons complete strike and classify tasks before 

solving a new model. 

4. The approach assumes that battle damage 

assessment is perfect and instantaneous.  Adding 

explicit battle assessment is straightforward, but 

requires development of the corresponding cost 

function component. 

 

V.  Model Solver 

 

The model is a special case of the well-known 

capacitated transshipment problem (CTP).  From the 

perspective of linear programming, solution of the 

model has several advantageous computational 

characteristics.  The most important is that the 

coefficient matrix of any basis matrix is totally 

unimodular.  From a computational view, this implies 

that there exists an optimal solution that is all integer.  

Furthermore, the basis can graphically be represented 

as a spanning tree, allowing basis change calculations 

to be carried out very rapidly on this specialized data 

structure in integer arithmetic.  Solutions to such 

problems require little memory, and for the 

anticipated small problems generated in vehicle 

situations, would solve to optimality in negligible time 

–no more than a second or two, even on a modest 

processor.   
 

VI.  Conclusions 
 

In this paper, an approach is developed to 

quantitatively address the tactical deployment of a 

swarm of air vehicles such that the benefit of 

cooperative operations is achieved.  The relevant 

mathematical paradigm entails the real time solution 

of a network flow problem.  This results in an integer 

programming problem of special structure, which is 

easily solved. 
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C(i,j)  =  Expected value of vehicle i attacking target j 

 

 

 = (Probability of destroying target j) * (Value of target j)  

 = qj * Vj i = 1, 2, …., N 

j = 1, 2, …., M   

C(i,k) = Expected value of vehicle i assisting in classifying    

speculative k 

 

 = (Probability of elevating classification probability above 

threshold) *      (Probability that speculative will be attacked 

in the future if threshold is met) * (Value of speculative k) 

 

 = ei * (ai | pi >= .95) * Vk i = 1, 2, …., N 

k = 1, 2, …., R   

C(i,g) = Expected value of vehicle i carrying out BDA on target g i = 1, 2, …., N 

g = 1, 2, …., G 

 = (Probability that target g is judged not dead) * (Probability 

that target g will again be struck) * (Value of target g) 

 

C(i,s) = Expected value of vehicle i continuing to search  

 = (Probability that the vehicle will ultimately attack a target j) * 

(Probability of destroying target j) * (Value of target j) + 

(Probability that the vehicle will ultimately assist in elevating 

the classification probability of one or more speculatives 

above threshold) (Probability that speculatives elevated will 

be attacked) * (Value of speculatives attacked) 

i = 1, 2, …., N 

 

C(j,s) = 0 j = 1, 2, …., M 

C(k,s) = 0 k = 1, 2, …., K 

C(g,s)  = 0 g = 1, 2, …., G 
 

Table 1.  Expected future value,“cost”, of each unit flow 

  



time

t=12 t=14 t=17 t=22 t=27t=0 t=5

 

Figure 2.  Illustration a timeline of decision points and associated actions for a swarm of powered munitions.  The 

solvers run simultaneously on all vehicles at each decision point. 
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Figure 1.  Network optimization model structure at a specific point in time.  At this decision point, each of the 

N available vehicles has options to attack a known target (M choices), assist in cooperatively classifying a target 

(R choices), Battle Damage Assesement (G choices), or continue searching. 

 

 

Speculative 2
detected by

Vehicle 1.

Classification
probability =

.67.  Solver

assigns Vehicle
3 to classify

mode to detect

Speculative 1.

Speculative1
detected by

Vehicle 1.

Classification
probability =

.83.  Solver

assigns search

mode to all.

Target 1
detected by

Vehicle 2.

Classification
probability =

.98.  Solver

assigns Target
1 to Vehicle 2,

which strikes

and destroys

Target 1.

Speculative 1

detected by

Vehicle 3.
Classification

probability =

.96.  Solver
assigns Target

2 to Vehicle 1,

which strikes
and destroys

Target 2

Speculative 3
detected by

Vehicle 1.

Classification
probability =

.78.  Solver

assigns
speculative 3 to

Vehicle 1.

Speculative 3
detected by

Vehicle 1.

Classification
probability =

.91.  Solver

assigns search

mode to all.

  




