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In response to environmental challenges, biological systems respond with dynamic adaptive

changes in order to maintain the functionality of the system. Such adaptations may lead to

cumulative stress over time, possibly leading to global failure of the system. When studying such

systems responses, it is therefore important to understand them in system-wide and dynamic

context. Here we hypothesize that dynamic changes in the topology of functional modules of

integrated biological networks reflect their activity under specific environmental challenges. We

introduce topological enrichment analysis of functional subnetworks (TEAFS), a method for the

analysis of integrated molecular profile and interactome data, which we validated by

comprehensive metabolomic analysis of dynamic yeast response under oxidative stress. TEAFS

identified activation of multiple stress response related mechanisms, such as lipid metabolism and

phospholipid biosynthesis. We identified, among others, a fatty acid elongase IFA38 as a hub

protein which was absent at all time points under oxidative stress conditions. The deletion mutant

of the IFA38 encoding gene is known for the accumulation of ceramides. By applying a

comprehensive metabolomic analysis, we confirmed the increased concentrations over time of

ceramides and palmitic acid, a precursor of de novo ceramide biosynthesis. Our results imply that

the connectivity of the system is being dynamically modulated in response to oxidative stress,

progressively leading to the accumulation of (lipo)toxic lipids such as ceramides. Studies of local

network topology dynamics can be used to investigate as well as predict the activity of biological

processes and the system’s responses to environmental challenges and interventions.

Background

Many cellular processes rely upon the concerted action of

multiple molecular components. Although such collective

phenomena have been difficult to study using traditional

methods of molecular biology, analytical methods have been

developed over the recent years that afford detection of multi-

ple types of physical and genetic interactions between the

components in a high-content and throughput manner.1

Systems biology provides a conceptual framework to study

the complexity of such biological organizations and processes.2

Using the systems approach, the interactions between the

molecular components can be viewed as a complex network

whose structure can vary spatially and temporally.3

Proteins play a key role in cellular processes and are

involved in multiple types of interaction networks. Specific

protein–protein interactions play a central role in events such

as signal transduction4 and transcription.5 An important role

of protein–protein interactions has also been recognized

in metabolic networks, e.g., in substrate channeling.6,7 The

protein interactome can therefore span multiple and over-

lapping means of communication, which can occur over a

broad range of dynamic and spatial scales.

The global structure of biological networks, e.g., protein–

protein interaction8,9 and metabolic networks,10 has been

extensively studied.3 Topological analyses of static protein–

protein interaction networks in Saccharomyces cerevisiae

suggest that such networks are scale-free.11 Therefore, most

proteins interact with few partners, while a small but signifi-

cant fraction of proteins, the ‘‘hubs’’, interact with many

partners. Hubs in interaction networks are likely to play

important roles in regulating biological response. In a study

of the allergic immune response of asthma, it was shown that

the hubs and superhubs of mouse protein–protein interaction

networks exhibit low levels of change in gene expression.12

This shows the limitation of studying gene expression data in

isolation, and shows that concomitant analysis of gene

expression data and topological interaction networks provides

valuable insights into biological processes.

Not much of the knowledge acquired from the interactome

topology studies has been utilized in the analysis and inter-

pretation of high-content molecular profile data. In part, this
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may be due to the lack of availability of reliable interaction

data.1 Several tools do exist that enable network visualization

as well as integration of mRNA expression profiling and

interaction network data, including Cytoscape,13 visANT,14

genMAPP,15 PATIKA,16 and megNet.17 Pathway analysis

methods have been developed such as gene set enrichment

analysis (GSEA),18 aiming to identify functional modules

or selected gene sets showing statistically significant and

concordant differences across several microarray experiments

associated with different biological states. A related method

has recently been developed, gene network enrichment analy-

sis (GNEA), which identifies the differences corresponding to

subnetworks derived from protein–protein interaction data.19

Although GSEA and related methods take into account

subtle changes in gene expression that may be missed by

traditional tests for differential expression, they rely solely

Fig. 1 Outline of the TEAFS method.
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on the gene expression levels and ignore the interactions.

Specifically, the functional importance of a specific protein

within a functional module, and thus its influence on the

‘‘output’’ of the module, is likely to depend on the extent of

protein’s interactions with other module members. The

absence of a protein hub within a functional module may lead

to a dysfunctional module, although many of the module

proteins may be overexpressed as a compensatory response.

The systems responses to environmental challenges are

tightly dynamically regulated, with the aim to maintain the

functionality of the system. Change in the expression of a

specific gene may lead to a change in the connectivity of the

interaction networks by switching some interactions on or off

and thus affecting the pathways as well as the products of

different functional modules. Such network-level changes are

reflected in the changes of topological measures such as

average clustering coefficient and average degree.3 Intuitively,

functional modules most relevant for a system’s response to

environmental changes and interventions may undergo many

topological variations. We therefore hypothesize that dynamic

changes in topology of integrated biological networks at the

functional module level are a sensitive measure of the module

activity.

As a way to pursue our hypothesis, we developed a heuristic

method for the analysis of integrated molecular profile and

interactome data, topological enrichment analysis of

functional subnetworks (TEAFS). This method combines time

course molecular profile data, such as genome-wide gene

expression data, with integrated networks (i.e., protein–

protein interaction, metabolic, and regulatory networks).

Functional modules in the network are identified using the

Gene Ontology20 and condition specific networks corresponding

to all time points are constructed. Changes in module activity

are estimated from the changes in topological properties of the

module networks (Fig. 1).

Here, we demonstrate the application of TEAFS for the

study of dynamic responses to oxidative stress in S. cerevisiae.21

Among all stress conditions, oxidative stress is generally

relevant to study because all aerobically growing cells are

exposed to reactive oxygen species (ROS) such as the super-

oxide radical, the hydroxyl radical and hydrogen peroxide,

which are all produced during metabolism.22,23 Moreover, it is

well known that oxidative stress is involved in several human

pathologies and physiological processes, including cancer,

diabetes, cardiovascular disease, ageing and age related

diseases. ROS are generated endogenously through leakage

of electrons from the mitochondrial respiratory chain to

oxygen resulting in superoxide formation.24 Exposure to

ROS can, over time, cause significant damage to macro-

molecules such as DNA, proteins, carbohydrates and lipids.25

Cells have evolved different defense mechanisms such as

antioxidant enzymes and molecular scavengers to counteract

oxidative damage.26

As demonstrated in this paper, the application of the

TEAFS method to the study of oxidative stress response in

yeast proved effective in finding the activity of multiple stress

related mechanisms, which the GSEA method could not

identify. We validated our findings by performing comprehen-

sive metabolomic analyses of yeast dynamic response under

oxidative stress. We conducted the metabolomics experiments

by emulating the cell cultivation and hydrogen peroxide

treatment protocols identical to the gene expression experi-

ments done by Gasch and colleagues.21 We profiled lipids

using ultra performance liquid chromatography coupled with

mass spectrometry (UPLC/MS), primary metabolites using

high performance liquid chromatography and mass spectro-

metry (HPLC/MS) and fatty acids with gas chromatography

(GC). To the best of our knowledge, this is the first compre-

hensive metabolomic analysis of dynamic oxidative stress

response in S. cerevisiae. Our experimental analyses confirmed

the findings of our model and the measured lipid levels

correlated with the clustering coefficients of corresponding

functional modules.

Results

Network reconstruction

As described in the subsections ‘‘Integration of interaction

data’’ and ‘‘Integration of gene expression data’’ in the

‘‘Experimental’’ section, we constructed reference and condi-

tion networks corresponding to time points of the oxidative

stress gene expression data.21 The integrated networks contain

genes, proteins, metabolites, transcription factors and tran-

scription factor binding sites as the nodes, and protein–protein

interactions, metabolic reactions, transcriptional regulatory

relationships (i.e. transcription factor-binding site inter-

actions, binding site-gene associations), gene encodes protein

relationships as the edges. Sizes of these networks are provided

in (Table 1).

Hubs

Hubs in a network are the nodes with degrees much larger

than the average degree of all nodes in the network. We

selected top 15 high degree nodes as hubs. We identified the

protein node JSN1/PUF1 (Uniprot: P47135), which belongs to

the Puf family of mRNA binding proteins,27 as a hub in most

of the networks, except at time points 40 and 100 min. The

microsomal fatty acid elongase 3-ketoreductase (IFA38;

UniProt ID: P38286), encoded by YBR159w gene, was a

hub protein that was absent at all time points (Table 2).

Most hub proteins are related to environmental stress

responses and DNA repair mechanisms (Table 2). Selected

examples of some other hubs are P29295 (HRR25)—casein

kinase I, P39743 (RVS167)—reduced viability upon starvation

protein and P06787 (CMD1)—Calmodulin (see ESIw). Most

of the reference network hub proteins were absent in 40 and

100 min networks. Interestingly, at these two time points, most

of the identified hubs were subunits of DNA directed RNA

polymerases I, II and III, which are involved in transcription

and ribosome biogenesis.

Connectivity of biological process modules is regulated by

oxidative stress

We identified a total of 659 biological process modules in the

reference and condition networks. Clustering coefficients were

calculated for each module in each condition and a t-test

was performed to select modules with average clustering

278 | Mol. BioSyst., 2009, 5, 276–287 This journal is �c The Royal Society of Chemistry 2009

VI/3



coefficients significantly greater than zero. A total of 346

modules whose average clustering coefficient over time was

significantly greater than zero were selected for further study

of topological changes. The clustering coefficients of the

protective mechanisms against oxidative stress, in particular

base excision repair, defense mechanisms like DNA repair,

mismatch repair, regulation of meiosis, peroxisome matrix

protein import have shown varying profiles. Nucleic acid

metabolism and regulation of DNA replication modules also

showed varying profiles. Modules that are related to double

strand break repair mechanisms via non-homologous end

joining, DNA repair and DNA synthesis during repair varied

with respect to the reference network (Fig. 2). A fluctuating

clustering coefficient was also observed for modules related

to other stress responses, such as osmotic stress and salt

stress, endoplasmic reticulum (ER) associated protein

catabolism, response to cadmium ion, and osmosensory

signaling pathway.

The overall connectivity of lipid metabolism and phospho-

lipid biosynthesis modules decreased in time. Phospholipid

biosynthesis module showed a drop in connectivity at 40 min

(Fig. 2). The absence of most of the hubs in the integrated

interaction network at these time points (Table 2) has perhaps

led to this drop in connectivity.

Visualization of the module networks is an alternative way

to understand the dynamic changes of the modules. For a

selected module from each category in Fig. 2, we present the

network view in Supplementary Fig. S2.w

Topological enrichment of functional subnetworks

We identified differentially active modules using a false dis-

covery rate (FDR) q-value cut-off of 0.05. FDR controls the

expected proportion of type I errors. A total number of 174,

162, and 125 differentially active modules were identified based

on enrichment scores EDA(LIC) (i.e., extent of differential

activity for local in-connectivity), EDA(LOC) (i.e., extent of

differential activity for local out-connectivity), and EDA(LC)

(i.e., extent of differential activity for local clustering), respec-

tively. These account for approximately 220 distinct modules

among the 346 modules which were analyzed. Most of the

differentially active modules are involved in the environmental

stress responses, oxidative stress response in particular

(Supplementary Table S2w). The most active modules

identified by TEAFS include regulation of cell cycle and check

points, response to DNA damage stimulus (i.e., repair

mechanisms), cell wall organization, pentose phosphate shunt,

biosynthesis of stress protectors (i.e., glycogen and trehalose),

signal transduction pathways, post-translational modifica-

tions, regulation of transcription and vacuolar acidification

(Table 3).

Comparison of TEAFS with GSEA

In order to compare our integrative analysis method with

existing pathway analysis methods, we chose the commonly

utilized tool called gene set enrichment analysis (GSEA).18

GSEA revealed that none of the gene sets scored a positive

enrichment score (up-regulated) and one gene set, GO:

0030437 (sporulation; sensu Fungi), scored a negative enrich-

ment score (down-regulated) at the recommended FDR

q-value o 0.25 threshold.

With the nominal p-value cut-off (o0.05), GSEA detected

12 up-regulated and 30 down-regulated gene sets. Down-

regulated gene sets include (1) lipid metabolism (2) nucleus

export mechanisms, namely mRNA, rRNA, snRNA, tRNA,

and protein–nucleus export (3) nucleus import mechanisms,

namely NLS-bearing substrate, snRNP protein, ribosomal

protein, and protein–nucleus import (4) ribosome biogenesis

(5) nuclear pore organization and biogenesis (6) DNA-

dependent regulation transcription and (7) removal of non-

homologous ends, among others. Up-regulated gene sets

include (1) vesicle fusion and (2) SRP-dependent co-

translational protein-membrane targeting. All these processes

were identified to be significantly active modules in TEAFS

analysis as well. Results of GSEA are included in the

Supplementary Table S2.w

Dynamic metabolite profiles of oxidative stress response in yeast

In order to validate our findings from TEAFS analysis, we

performed metabolomic analysis of samples obtained from a

time course study of S. cerevisiae under oxidative stress. By

applying a global lipidomic analysis, we identified and quan-

tified a total of 263 lipid molecular species representing multi-

ple lipid classes. The main intermediary metabolites of central

carbon metabolism (i.e., glycolysis, TCA cycle and pentose

Table 1 The number of nodes and edges of the reference and condition networks

Time/min Proteins
Protein–protein
interactions

TF–TF
interactions

TF–BS binding
relations

Gene-encodes-
protein relations

Biochemical
reactions

10 2412 3612 7 329 5080 881
20 2555 3611 11 269 5445 880
30 3799 7873 15 436 7823 1306
40 2784 4451 9 249 5797 997
50 3115 5913 14 325 6566 1195
60 3372 7265 15 397 7147 1338
80 3943 9504 22 488 8267 1552

100 3165 7265 15 397 7147 1338
120 3366 6656 20 353 6749 1380
160 4138 10555 29 430 8601 1618
Reference 5695 17323 52 666 11663 1936

Abbreviations: TF, Transcription Factor; BS, Binding Site.
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phosphate pathway) and fatty acids were also measured.

Consistent increases in the levels of trehalose-6-phosphate

(p = 0.00056) and decreases in that of pyruvate

(p = 0.000052) and mannose-6-phosphate (p = 0.048)

were observed during oxidative stress with respect to the

S. cerevisiae under normal conditions. The major change

observed in fatty acid profiles was the consistent increase

in the levels of palmitic acid (C16:0) during oxidative stress

(p = 0.00027) with respect to S. crevisiae under normal

conditions. Moreover, the relative palmitate concentration

increased over time (Pearson correlation r = 0.75,

p = 0.008) (Fig. 3B).

Table 2 Hubs in the reference network. The time points where these hubs become absent (removed from the network) are provided. The proteins
are ordered according to the number of interacting partners in the reference network. Descriptions are from Saccharomyces Genome Database57

Uniprot
ID Name Description

Absent at time
points/minutes

P47135 Protein JSN1; Protein PUF1 Member of the Puf family of RNA-binding proteins, interacts with
mRNAs encoding membrane-associated proteins; overexpression
suppresses a tub2-150 mutation and causes increased sensitivity to
benomyl in wild-type cells

40, 100

Q02821 Importin alpha subunit;
Karyopherin alpha subunit;
Serine-rich RNA polymerase
I suppressor protein

Karyopherin alpha homolog, forms a dimer with karyopherin beta
Kap95p to mediate import of nuclear proteins, binds the nuclear
localization signal of the substrate during import; may also play a role in
regulation of protein degradation

20

P00546 Cell division control protein
28

Catalytic subunit of the main cell cycle cyclin-dependent kinase (CDK);
alternately associates with G1 cyclins (CLNs) and G2/M cyclins (CLBs)
which direct the CDK to specific substrates

20, 40, 50, 60

Q12349 ATP synthase H chain,
mitochondrial precursor

Subunit h of the F0 sector of mitochondrial F1F0 ATP synthase, which
is a large, evolutionarily conserved enzyme complex required for ATP
synthesis

20, 30

P07703 DNA-directed RNA
polymerases I and III 40 kDa
polypeptide

RNA polymerase subunit, common to RNA polymerase I and III 120

P38987 Protein TEM1 GTP-binding protein of the ras superfamily involved in termination of
M-phase; controls actomyosin and septin dynamics during cytokinesis

10, 20, 30, 40,
50, 60, 120

P32366 Vacuolar ATP synthase
subunit d; V-ATPase d
subunit; Vacuolar proton
pump d subunit; V-ATPase
39 kDa subunit; V-ATPase
subunit M39

Subunit d of the five-subunit V0 integral membrane domain of vacuolar
H+-ATPase (V-ATPase), an electrogenic proton pump found in the
endomembrane system; stabilizes VO subunits; required for V1 domain
assembly on the vacuolar membrane

40

Q02630 Nucleoporin NUP116/
NSP116; Nuclear pore
protein NUP116/NSP116

Subunit of the nuclear pore complex (NPC) that is localized to both sides
of the pore; contains a repetitive GLFGmotif that interacts with mRNA
export factor Mex67p and with karyopherin Kap95p; homologous to
Nup100p

10, 20, 30, 40,
50, 60, 80

P32569 RNA polymerase II mediator
complex subunit 17;
Suppressor of RNA
polymerase B 4

Subunit of the RNA polymerase II mediator complex; associates with
core polymerase subunits to form the RNA polymerase II holoenzyme;
essential for transcriptional regulation

40

P38264 Inorganic phosphate
transporter PHO88

Probable membrane protein, involved in phosphate transport; pho88
pho86 double null mutant exhibits enhanced synthesis of repressible acid
phosphatase at high inorganic phosphate concentrations

20, 30

P29055 Transcription initiation
factor IIB; General
transcription factor TFIIB;
Transcription factor E

Transcription factor TFIIB, a general transcription factor required for
transcription initiation and start site selection by RNA polymerase II

10, 20, 30, 40

P38822 Protein BZZ1 SH3 domain protein implicated in the regulation of actin
polymerization, able to recruit actin polymerization machinery through
its SH3 domains, colocalizes with cortical actin patches and Las17p,
interacts with type I myosins

10, 20, 40, 50,
60, 100

P38286 Putative oxidoreductase
YBR159W

Microsomal beta-keto-reductase; contains oleate response element
(ORE) sequence in the promoter region; mutants exhibit reduced
VLCFA synthesis, accumulate high levels of dihydrosphingosine,
phytosphingosine and medium-chain ceramides

10, 20, 30, 40,
50, 60, 80, 100,
120, 160

P27999 DNA-directed RNA
polymerase II subunit 9;
DNA-directed RNA
polymerase II 14.2 kDa
polypeptide

RNA polymerase II subunit B12.6; contacts DNA; mutations affect
transcription start site; involved in telomere maintenance

10, 20, 30, 50,
60, 80, 100, 120

P02309 Histone H4 One of two identical histone H4 proteins (see also HHF2); core histone
required for chromatin assembly and chromosome function; contributes
to telomeric silencing; N-terminal domain involved in maintaining
genomic integrity

P40054 D-3-phosphoglycerate
dehydrogenase 1; 3-PGDH 1

3-phosphoglycerate dehydrogenase, catalyzes the first step in serine and
glycine biosynthesis; isozyme of Ser33p

10, 20, 40, 120
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We compared the lipid metabolism related changes from

topological and metabolomic analyses. An increase in average

ceramide concentrations was observed over the time period

(r = 0.8, p = 0.003) (Fig. 3A). The correlation between the

average phospholipid concentrations and phospholipid bio-

synthesis module was positive (r = 0.604) and marginally

significant (p = 0.064) (Fig. 4).

Data from metabolomics experiments are provided as ESI.w

Discussion

Dynamic topology changes of functional subnetworks

in oxidative stress response

The aim of this study was to explore the hypothesis that the

dynamic changes in the topology of integrated biological

networks at the functional module level are a reasonable

measure for the module activity. Motivated by this hypothesis,

Fig. 2 Changes in the connectivity of selected biological process modules: (A) Nucleotide repair mechanisms, (B) DNA metabolism, (C) double

strand break repair mechanisms, and (D) lipid metabolism of the reference and condition networks over time period.
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we developed a method for the analysis of integrated inter-

actome and molecular profile data, topological enrichment

analysis of functional subnetworks (TEAFS). Our combined

findings from the TEAFS analysis of gene expression data

from yeast oxidative stress response time series experiments21

and from comprehensive metabolomic analysis tend to

support our hypothesis, as well as suggest that the application

of topological measures, such as the clustering coefficient, is a

useful way of estimating module activity. A highly active

module found by TEAFS should be understood as a most

changing module rather than as an up-regulated module

during oxidative stress.

A number of active modules identified by TEAFS analysis

have been previously associated with environmental stress

responses in general, and in particular to the oxidative stress.

The topmost active module is ‘‘G1/S transition of mitotic cell

cycle’’, although the TEAFS method also identified several

other modules related to the cell cycle. It is well known that

oxidative stress causes damage to the cell by delaying the

transition from G1 to S phase and subsequently arresting the

cell cycle.28 This delay in the progression of the cell cycle might

allow time for the repair processes to take place.

Pentose phosphate shunt

Since oxidative stress causes a shift in the redox state

[NAD(P)H/NAD(P)] of the cell, one would expect a change

in the activity of a module that has a role in maintaining the

redox homeostasis of the cell. Indeed, our results showed

‘‘pentose phosphate shunt’’ as an active module. The pentose

phosphate pathway is the main source of cellular reducing

power in the form of NADPH and plays critical role in

maintaining the redox balance of the cell. Reducing equiva-

lents in the form of NADPH are not only essential for

biosynthesis of cellular macromolecules but also required for

the action of many antioxidant enzymes.29 The shift towards

the pentose phosphate pathway under oxidative stress may

also be needed to provide ribonucleotides in order to repair

DNA and increase proliferation.30

In response to diverse stress stimuli, the disaccharide

trehalose is produced in large quantities to protect the cell

against denaturation and aggregation of proteins31 and also

enhances the buffer capacity of the cell to manage osmotic

instability and energy reserves.21 Consistent with previous

findings, our primary metabolite analysis revealed significant

increases in the levels of trehalose-6-phosphate, a precursor of

trehalose biosynthesis, in stress conditions vs. controls.21

A continuous decrease in trehalose-6-phosphate concentration

was observed over time during oxidative stress. Such a trend is

likely due to the co-induction of both biosynthetic (trehalose-

6-phosphate synthase) and catabolic (trehalase) enzymes of

trehalose in response to environmental stimuli.21 This

supports our finding that transcriptional activation of the

trehalose biosynthetic gene in response to stress stimulus was

not accompanied by a corresponding accumulation of

trehalose-6-phosphate, suggesting futile recycling of trehalose

resulted instead of accumulation.32

Lipid metabolism

Lipids are known to play important roles in oxidative stress.33

TEAFS detected changes in lipid related modules such as lipid

Table 3 Selected results of heuristic method TEAFS, which identifies module activity based on change in the local topological properties

Module name

Local in connectivity
(LIC)

Local out connectivity
(LOC) Local clustering (LC) GSEA results

EDA FDR EDA FDR EDA FDR ES P

G1/S transition of mitotic cell cycle 3176.25 0.01536 3179.05 0.02638 15.25 0 NA NA
Response to DNA damage stimulus 1738.66 0 1738.66 0 1.25 0.00097 NA NA
Cytokinesis 1573.19 0.03329 1489.44 0.05171 47.86 0 NA NA
Cell wall organization and
biogenesis

1562.55 0 1338.46 0 24.06 0.02369 NA NA

Response to osmotic stress 1397.20 0 1364.24 0 11 1 NA NA
Vacuolar acidification 1053.22 0 1486.41 0.00083 28.98 0.00882 NA NA
Glycogen metabolism 776.54 0.0004 777.51 0.00022 4.86 1 NA NA
Signal transduction 739.31 0 763.33 0 12.54 0 NA NA
Cellular morphogenesis during
vegetative growth

648.92 0.01586 648.92 0.01428 NA NA NA NA

Invasive growth (sensu
Saccharomyces)

405.96 0.00078 367.06 0.23532 3.3 0.14813 NA NA

Response to salt stress 348.11 0 349.44 0 NA NA NA NA
Methionine metabolism 264.47 0.00021 240.05 0.0024 8.07 0.02253 NA NA
Regulation of cell cycle 243.35 0.0068 245.39 0.01437 5.21 0.55413 NA NA
Ceramide biosynthesis 183.39 0.05922 183.39 0.064 NA NA NA NA
Pentose-phosphate shunt 137.18 0 237.59 0 15.69 0 NA NA
Regulation of transcription 123.22 0.01096 123.47 0.02475 NA NA NA NA
N-terminal protein myristoylation 62.93 0.03329 62.93 0.03557 NA NA NA NA
Thiamin biosynthesis 55.98 0.0004 55.98 0.00022 NA NA NA NA
Lipid metabolism 54.45 0.04958 54.45 0.05263 NA NA �0.554 0.04131
Protein sumoylation 47.03 0.05922 47.03 0.06354 NA NA NA NA
Sulfur metabolism 30.83 0 27.59 0 0.15 0 NA NA

Abbreviations: EDA, Extent of Differential Activity; FDR, False Discovery Rate q value; GSEA, Gene Set Enrichment Analysis; ES, Enrichment

Score; P, Nominal p value; NA, not significant.
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metabolism and phospholipid biosynthesis during oxidative

stress. Changes in the ceramide biosynthesis module were also

marginally significant (FDR q = 0.059). Consistent with the

results of TEAFS analysis, lipidomic analysis revealed signifi-

cant changes in the lipidome, particularly in ceramide and

phospholipid levels, during oxidative stress.

Plasma membrane phospholipids are vulnerable sites and

major targets of oxidative stress, which causes damage to the

cell by changing the structural organisation and membrane

permeability. The cytotoxic effect of hydrogen peroxide causes

disruption of phospholipids by generating lipoperoxides by

peroxidation of the fatty acid component.34 As the average

phospholipid levels are reduced in oxidative stress, our results

are in accordance with these findings.

The observed increase in ceramide concentrations over time

is in accordance with the previous findings that the cell

responds to diverse stresses with ceramide generation.35

Ceramides, a class of sphingolipids, are secondary messengers

Fig. 3 Increasing trend of average ceramide concentration and relative palmitate concentration.
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for various cellular functions and act as signalling molecules in

oxidative stress.36,37 Ceramides can be synthesized either by

hydrolysis of sphingomyelins by sphingomyelinases (SMase)

or de novo synthesis by ceramide synthase.38 Some of the

enzymes involved in ceramide generation have been shown

to be induced by environmental stress stimuli and signal from

damaged DNA, for example double strand breaks, which is

the most common consequence of oxidative stress.39

Hub proteins affected by oxidative stress

Our fatty acid analysis results showed a significant increase in

the levels of palmitic acid (16 : 0), a precursor of de novo

ceramide biosynthesis.40 As one of the major findings from

topological analysis of gene expression data, the fatty acid

elongase 3-ketoreductase (IFA38) which is encoded by the

YBR159w gene41 and was identified as one of the hub proteins

in our integrated networks, was absent at all time points under

oxidative stress (Table 2). The YBR159w mutant exhibits a

phenotype common to other mutants with defects in fatty acid

elongation, including accumulation of ceramides and related

reactive sphingolipids.41 It is therefore an intriguing possibility

that accumulation of palmitate, a substrate to elongase system

involving IFA38, and subsequent accumulation of ceramides

are in part consequences of IFA38 response to oxidative stress.

Interestingly, the human homolog of IFA38, type 12 17b-

hydroxysteroid dehydrogenase (HSD17B12; Uniprot ID:

Q53GQ0), is also involved in fatty acid elongation.42 Although

poorly characterized so far, recently it was shown that

HSD17B12 is also a major estrogenic 17b-hydroxysteroid

dehydrogenase responsible for the conversion of estrone into

estradiol in women43 and that it is highly expressed in the

human breast cancer tissue.44 HSD17B12 clearly needs to be

investigated further in the context of oxidative stress as well as

crosstalk of lipid and estrogen metabolism.

A hub protein, which was present at most of the time points,

was JSN1 from the Puf family of mRNA binding proteins.27

Puf proteins in S. cerevisiae belong to a structurally related

family of cytoplasmic RNA binding proteins that are implicated

in developmental processes in various eukaryotes.45 The human

homolog of JSN1, Pumilio-2 (PUM2), is expressed predomi-

nantly in human embryonic stem cells and germ cells, and is

required for germ cell development.46 Although both JSN1 and

PUM2 are poorly characterized, it appears that both in yeast

and in human these two homologous proteins act as transla-

tional regulators, interacting with multiple other proteins.

Comparison of TEAFS and GSEA

A large number of significantly active modules found by

TEAFS relevant to the oxidative stress response were not

found in the GSEA analysis. Note that these two methods

have inherent differences. TEAFS takes interaction network

structure into account by measuring the variation of the local

connectivity and clustering, whereas GSEA is based on mem-

bership of molecules in gene sets. The TEAFS method uses

gene expression data qualitatively, because the presence/

absence criteria gives raise to exactly two classes of proteins

nodes: present or absent, whereas GSEA takes the sign and

magnitude of the differential expression into account.

Notably, GSEA identified only one gene set to be affected

by the oxidative stress using the recommended FDR signifi-

cance cut-off. With the nominal p value cut-off it identified

only a small number of affected modules, which may be

unlikely because oxidative stress affects many biological pro-

cesses at transcriptional level. In contrast, TEAFS identified

multiple known oxidative stress-related responses that could

be verified based on existing literature. Moreover, within our

capabilities we confirmed some changes suggested by TEAFS

using comprehensive metabolomic profiling experiments.

Taken together, these observations show that TEAFS is more

sensitive in detecting active pathways than GSEA. The ideal

way to assess the accuracy of TEAF method would involve

performing extensive literature survey or a large number of

experiments to confirm the changes suggested by TEAFS.

This, however, is infeasible with our limited resources.

The ability of TEAFS to detect multiple changes related to

oxidative stress response thus suggests that change in module

Fig. 4 Clustering coefficients of the phospholipid biosynthesis module and phospholipid concentrations.

284 | Mol. BioSyst., 2009, 5, 276–287 This journal is �c The Royal Society of Chemistry 2009

VI/9



connectivity is a better measure of its activity than changes in

the levels of gene expression. It is possible, with some

modifications, to apply our methodology to analyze gene

expression data from different experimental designs.

Presence/absence criteria that we employed here for recon-

structing modules are specific to cDNA platforms and need to

be properly adopted for use with other platforms. Moreover, if

available, it would be advantageous to use protein expression

information rather than mRNA expressions. Likewise, instead

of GO, other methods for module definition could be applied,

e.g., by using other biological knowledge such as KEGG

metabolic pathways or alternatively by applying computa-

tional module identification methods.47,48

Experimental

Integration of interaction data

We previously presented an approach for heterogeneous data

integration.17,49 Our software presented there, called megNet,

is capable of integrating data from multiple types of biological

databases from an in-house database system and represent the

results as integrated networks. Here, we used megNet to

construct an S. cerevisiae genome-wide integrated interaction

network by obtaining information from multiple interaction

sources. We used S. cerevisiae protein–protein interaction data

from the January 2006 release of DIP,50 ‘gene encodes protein’

relationships from the EMBL nucleotide sequence database,51

metabolic interactions from the 9 February 2006 release of

KEGG52 and transcriptional regulatory relationships from

release 9.4 of Transfac.53

Integration of gene expression data

In this study, we used a genome-wide gene expression time

course data of the oxidative stress response from a study of

responses of S. cerevisiae cells to various environmental

changes.21 The oxidative stress data is based on dual channel

cDNA microarray experiments and provides gene expression

measurements at 10, 20, 30, 40, 50, 60, 80, 100, 120, and

160 min after exposing yeast to oxidative stress. In order to

integrate the gene expression information into the integrated

network, we first constructed a reference network by removing

from it the protein nodes (and their links) whose transcripts

were not analyzed in the oxidative stress experiment. Next, we

used the reference network as the starting point to reconstruct

the condition specific networks (time point networks) corres-

ponding to each time point of the oxidative stress experiment

by applying presence/absence criteria as follows.

In order to construct a condition specific network, we

defined presence/absence criteria for proteins based on the

expression of genes encoding them as described by Luscombe

and colleages.54 Briefly, we first classified the first channel

intensity (i.e., reference condition mRNA intensity) values as

high, medium and low by using k-means clustering of the log

transformed values. Each protein was designated as present or

absent based on this first channel intensity level and whether

the gene was up, constant or down-regulated in the stress

condition, as indicated by the corresponding expression log

ratio being positive, zero or negative, respectively (Table 4).

We mapped each spot on the array to the corresponding

protein by using the systematic name of the gene, also known

as ordered locus name (OLN). Each OLN was translated to its

corresponding Swissprot protein accession number using the

index of S. cerevisiae entries and their corresponding gene

designations.55 A condition specific (i.e. time point) network is

obtained by removing the absent proteins and their links from

the reference network using this criterion (Table 4).

Identification of biological process modules

We used Gene Ontology (GO)20 biological processes for the

identification of the biological process modules. UniProt

protein database55 provides GO term annotations for each

protein. These annotations were obtained by querying our

in-house databases. A biological process module in an inte-

grated network is identified as the interaction neighbourhood

of the proteins annotated by that GO biological process term.

We constructed the modules from the reference and time point

networks by identifying the network neighbourhood in the

corresponding integrated network.

Topological enrichment analysis of functional subnetworks

(TEAFS)

TEAFS consists of two main steps. In the first step, we

compute enrichment scores which represent the overall

amount of topological variation within a module over the

course of oxidative stress time points. In the second step, we

perform a permutation test to assess the statistical significance

of the enrichment score.

For each functional module, the extent of differential

activity (EDA) enrichment score is calculated for three topo-

logical parameters: local in- or out-connectivity (LIC, LOC

respectively) and local clustering (LC).

Local in- and out-connectivity, LIC(m, t) and LOC(m, t), of

a module m at time point t is the sum of in- and out-degrees of

proteins that are present at time point t, respectively. Local

clustering LC(m, t) is the sum of clustering coefficients of the

proteins present at time point t. LIC(m, 0), LOC(m, 0) and

LC(m, 0) represent the sum of degrees or clustering coefficients

of all proteins in the module m, because the time point 0

represents the functional module in the reference network.

Table 4 Criteria for the presence and absence of proteins. The
reference intensity levels are divided into high, medium or low regions
based on k-means clustering. A gene is up, down or constant based on
its log ratio being positive, negative, or zero. During the reconstruc-
tion of the network, proteins encoded by the absent genes are removed
from the network

Reference
condition intensity
value level

Change in expression
level during stress
condition

Conclusion on
presence or
absence

High Up Present
Constant Present
Down Present

Medium Up Present
Constant Present
Down Absent

Low Up Present
Constant Absent
Down Absent
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Extent of differential activity EDA(m) is the standard devia-

tion over time t of LIC(m, t), LOC(m, t) and LC(m, t). For

simplicity we call each of these EDAs as EDA(LIC, m),

EDA(LOC, m) and EDA(LC, m), respectively.

In summary, EDA corresponding to LIC, LOC, and LC are

defined as

EDA(LIC, m) = st(LIC(m,t)) (1)

EDA(LOC, m) = st(LOC(m,t)) (2)

and

EDA(LC, m) = st(LC(m,t)) (3)

In order to assess the statistical significance of the enrichment

score we calculated p values for each module by a permutation

test. In each permutation, we randomly deactivated proteins in

the module network based on deactivation ratios. The deacti-

vation ratio x(t) at time point t is defined as the ratio between

sum of a topological measure of the proteins that are present at

time t while absent at t + 1, and sum of the topological

measure of the proteins that are present at time t. Here, the

topological measure stands for in-degree, out-degree or

clustering coefficient, depending on the case. Our null model

therefore assumes that the proteins are being deactivated

uniformly across all networks. We generated 10 000 such

permutations. The p-value for a module’s EDA is the fraction

of the permutations which have at least as much EDA as that

of the real module network. In order to account for the multiple

comparisons, we applied Bonferroni correction to the p-values

as well as computed false discovery rate (FDR) q-values.

High EDA values represent high variation in the topological

parameters (LIC, LOC or LC). High variation in topological

parameters means that the module network underwent larger

topological changes, and hence is very active under the oxida-

tive stress condition. Modules with high EDA values and

corresponding FDR q-valueo0.05 are called significantly

topologically enriched modules or simply highly active modules.

Yeast experiment

Yeast strain CEN.PK was used in this study. Complete

experimental details are described in Supplementary Protocol

S1.w In brief, we performed the main cultivation and induced

oxidative stress via hydrogen peroxide treatment by following

the protocol identical to the one described by Gasch and

colleagues.21 Cells were grown to the mid-log phase and

20 ml of culture was taken out at time zero as a reference

and 20 ml of pre warmed YPD medium supplemented with

H2O2 was added to give a final concentration of 0.3 mMH2O2.

Samples were collected at 10, 20, 30, 40, 50, 60, 80, 100, 120

and 160 min. The same procedure was followed for controls

(i.e., without H2O2). We could not afford any biological or

technical replicates, because of the quick quenching for pri-

mary metabolite analysis, and collection of samples for fatty

acid and lipid analyses was within a time interval of

10 minutes, simultaneously for both cases and the controls.

Lipids were extracted using a chloroform–methanol solvent

and analysed with ultra performce liquid chromatography

(UPLCt) coupled to a Q-ToF Premier mass spectrometer

(Waters, Inc., Milford, MA). The raw data was converted into

netCDF files using Dbridge software fromMassLynx (Waters,

Inc., Milford, MA) and processed using MZmine software

version 0.60.56 In order to analyse primary metabolites,

samples were quickly quenched in cold methanol and meta-

bolites were extracted using boiling ethanol protocol. The

glycolytic phosphorous and TCA-cycle compounds were

detected using high performance liquid chromatography

(HPLC) coupled to a Quattro Micro triple quadrupole mass

spectrometer (Waters, Inc., Milford, MA) combined with

HPLC-MS. Fatty acids were extracted using absolute

methanol solvent and GC was carried out using a HP 5890

GC-FID System equipped with HP-FFAP that was directly

connected to a FID detector (Agilent Technologies,

Waldbronn, Germany). Additional experimental details are

provided in Protocol S1.w

Gene set enrichment analysis (GSEA)

We defined gene sets using GO biological process term anno-

tations. We developed a program in the Java programming

language to query the GO database and to generate a gene set

database in gene matrix transposed (GMT) file format. This

program accessed the GO database from our bioinformatics

system. We formatted the stress data in gene cluster text

(GCT) file format and created the phenotype data in contin-

uous file format (CLS) by entering numerical values for time

points in hours. The analysis was performed using the standa-

lone GSEA Java software. Description of all the file formats

and the GSEA software are available freely at the program

website (http://www.broad.mit.edu/gsea/). Parameters used

for the analysis are provided in the Supplementary Table S3.w

Conclusions

Our results imply that the connectivity of the system is being

dynamically modulated in response to oxidative stress, leading

to progressive accumulation of (lipo)toxic lipids such as

ceramides. Our approach differs from conventional strategies

for pathway analysis in two ways: (1) by achieving integration

of heterogeneous data and (2) by taking functional module

connectivity into account. The findings from the study of the

oxidative stress response in yeast presented in this paper stand

as a proof-of-concept for the applicability of our network

analysis strategy as well as supporting the hypothesis that

dynamic connectivity changes of the system in response to

stress or other external stimuli may determine biological

function. The study of local network topology dynamics can

therefore be used as an effective tool to investigate as well as

predict the activity of biological processes and system’s

responses to environmental challenges and interventions.
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