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Increased interest in longitudinal social networks and the recognition
that visualization fosters theoretical insight create a need for dy-
namic network visualizations, or network “movies.” This article con-
fronts theoretical questions surrounding the temporal representa-
tions of social networks and technical questions about how best to
link network change to changes in the graphical representation. The
authors divide network movies into (1) static flip books, where node
position remains constant but edges cumulate over time, and (2)
dynamic movies, where nodes move as a function of changes in
relations. Flip books are particularly useful in contexts where re-
lations are sparse. For more connected networks, movies are often
more appropriate. Three empirical examples demonstrate the ad-
vantages of different movie styles. A new software program for
creating network movies is discussed in the appendix.

INTRODUCTION

Ranging from simple histograms to dynamic images of the birth of galaxies

(Abel, Bryan, and Norman 2000), visualization tools have always been

key elements in scientific advancement. The ability to see data clearly

creates a capacity for building intuition that is unsurpassed by summary

statistics. Wide ranges of distributional shapes (Handcock and Morris
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1999), nonlinear relations, or spatial (geographic or social) proximity can

be easily summarized with an image that helps scientists develop theory.

While the basic principle of substantive clarity is key to successful data

visualization, work in this field is often as much art as science. To build

network visualization tools, we need to examine carefully questions about

the meaning and implication of time in the formation of social networks.

In this article, we hope to extend a bit more science into the art of dynamic

network visualizations and further the theoretical discussion about social

network dynamics.

Social network research has made extensive use of visualization since

Moreno first introduced the sociogram (Brandes, Raab, and Wagner 2001;

Freeman 2000a, 2000b; Freeman, Webster, and Kirke 1998). Actors are

usually represented as points, and relations among actors are represented

by lines, with relational direction indicated by arrows. Early sociograms

were drawn by hand (Whyte 1943; Coleman 1961), and the layout was

determined by the artistic and analytic eye of the author. Such early graphs

were usually simple, having few relations per person or a clear hierarchical

structure.

The state of the art has progressed remarkably since Whyte and Co-

leman, and a growing body of research has developed around various

definitions for optimal network layout (Brandes et al. 2001; Freeman

2000b; McGrath et al. 1997). Most network images do a poor job of

representing change in networks, and researchers make do by presenting

successive snapshots of the network over time (Bearman and Everett 1993;

Powell et al. 2005; Roy 1983). The problem is fundamental to the media.

To effectively display the relational structure of a social network, at least

two dimensions are needed to represent proximity, and that leaves no

effective space (on a printed page) to represent time.2 However, recent

media advances allow us to use space to represent social distance and

movement to represent change over time (Bender-deMoll and McFarland

2002; Freeman 2000b).

2 There have been a number of creative attempts to overcome this limitation, such as

producing multiple images of the network and placing them “next” to each other

temporally (see, e.g., http://www.stanford.edu/group/esrg/siliconvalley/docs/network-

memo.pdf). These approaches require a fair amount of reader training to see the

difference between each plotted time frame. The less-than-intuitive results follow be-

cause these approaches are attempting to replicate a dynamic process in a static me-

dium. Our approach is to use the dynamic nature of such networks directly, thereby

producing a more readily interpretable visualization.
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RESEARCH ON LONGITUDINAL SOCIAL NETWORKS

Much of the recent interest in longitudinal social networks revolves

around understanding how networks develop and change, as scientists

seek to build models of social processes that result in observed structures

(Doreian et al. 1996; Leenders 1996; Nakao and Romney 1993; Snijders

1998; Suitor et al. 1997; Weesie and Flap 1990; Zeggelink et al. 1996).

Such dynamics are important for understanding network stability, which

is necessary for understanding the effect of networks on individual and

group behavior. The clear importance of such questions has prompted a

good deal of methodological research on network change. For example,

Snijders (1996, 1998, 2001) has developed models for evaluating the extent

of change in a social network, conditional on structural features of the

graph.

The purpose of dynamic network visualizations is to help augment

theoretical intuition provided by summary statistics and standard static

visualizations. Until now, visualizations of network change have tended

to take two forms. The first common visualization approach plots network

summary statistics as line graphs over time. For example, Doreian et al.

(1996) present change in reciprocity and transitivity for the Newcomb

data (see also Gould 2002). However, such summary statistics provide

information on a single dimension of a network’s structure. For example,

one might find that a network reaches a given equilibrium transitivity

level, but since transitivity is a single average for the graph as a whole,

we cannot know if this—in itself—means the graph is now relationally

stable. The second common visualization approach is to examine separate

images of the network at each point in time. Unfortunately, such images

are often difficult to interpret, since it is impossible to identify the sequence

linking node position in one frame to position in the next.

THEORETICAL IMPLICATIONS OF NETWORK DYNAMICS

A standing critique of social network research has focused on a “structural

bias” that implicitly denies much of the dynamic nature of social relations

(Emirbayer 1997; Emirbayer and Goodwin 1994). For some types of re-

lations (such as conversations that occur in real time), one could argue

that the networks are largely artificial constructions built by aggregating

dead past events. The network “structure” as such only emerges from this

aggregation. While we do not think this argument should be pushed too

far, it raises important questions about how the temporal embeddedness

of relations defines a dynamic social space. While discussions of meaning

and temporal abstraction in themselves are not new (Abbott 1997; Bear-

man et al. 1999; Danto 1985), our goal is to identify a meaningful way
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to capture network dynamics empirically that simultaneously allows for

the importance of past relations typically captured in static network

images.

Basic Terms

Much research on social networks is filled with static nouns, such as

“roles,” “relations,” “obligations,” and so forth. Longitudinal research on

social networks requires a different set of process terms, such as “ritual,”

“dance,” “pulse,” “tempo,” “congealing,” or “dispersal.” The key distinction

is that an apparently static network pattern often emerges through a set

of temporal interactions, with important implications for the relational

process under investigation. For example, when viewed in continuous

time, networks may develop by spurts or build slowly and steadily, or

they may reflect repeated ritual behaviors that mix moments of order and

chaos.

The most basic dimension for dynamic relations is relational pace.

These are questions concerning the rate of change in relations, with par-

ticular interest in irregularities. The pace of relation formation can thus

be described with respect to levels (fast, slow), change (accelerating, de-

celerating), or stability (cascades, jumps and starts, etc.). Clearly, the exact

meaning of such terms depends on context, since the relevant scale will

vary across types of relations. Think, for example, of seconds for con-

versation networks, weeks for friendship networks, decades for world

trade networks, and generations for kinship networks (Nadel 1955; Collins

1981).

A second specifically temporal aspect of relations revolves around the

order of relations, or their sequence. In many circumstances, being able

to explain the prevalence of given structures depends on identifying the

order in which relations occur. For example, the distinguishing charac-

teristics of Johnsen’s (1985, 1986) process agreement models for friendship

formation depend on whether one first forms reciprocal friends, which

then generates agreement on third parties and creates transitive ties, or

if two people first agree on their admiration of a third, which draws them

together in friendship. Similarly, Chase’s (1980) explanation for the de-

velopment of hierarchy in social relations rests on a particular order of

relationship unfolding.

A special case of the intersection of pace and sequence is found in

notions of concurrency developed for disease networks (Kretzschmar and

Morris 1996; Morris 1993). Two relations are concurrent if they overlap

in time and share at least one person. While static views of networks

focus on multiplicity (the overlap of types of relations), concurrency is

effectively “temporal multiplicity,” which can dramatically complicate our
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understanding of relations. Moody (2002) shows that the temporal un-

folding of relations reduces reachability, which has implications for any

measures on networks with relations enacted in real time. Consider, for

example, the different disease implications of a relational “switching”

model, where actors retain past relations until they are secure in new

relations, leading to a sequence of short-duration overlaps and a multiple

partner model, where people overlap for extended periods of time with

multiple partners (Laumann and Youm 1999).

Finally, the richness of a relational structure further expands when we

link relational timing to types of tie. When we allow simultaneous con-

sideration of the pace and sequence of ties with variation across types of

ties, we can start to tap questions of how sets of interaction sequences

transform into stable relations (see Nadel 1955). For example, if theoretical

discussions of local action (Leifer 1988; Padgett and Ansell 1993) are

correct, then we should be able to map social interaction as a sequence

of seemingly random “milling around” that quickly cascades once role

positions are fixed. This type of rich network visualization provides a

more holistic understanding of the network’s structure than any single-

dimensional index could.

These are just a small number of the theoretical considerations evident

when one takes time seriously in the modeling and understanding of social

networks, and we expect that others will contribute much to this discus-

sion. Our belief is that any such discussions are best grounded in empirical

investigation (Abbott 2000), which will be enhanced with a set of flexible

tools for displaying dynamic network data.

REPRESENTING LONGITUDINAL NETWORK DATA

To develop dynamic network images, we need to conceptualize clearly

how time is encoded in social networks. We conceive of time in two

analytically distinct forms: discrete and continuous. Discrete renditions

of time consist of cross-sectional snapshots of the network. Hence, lon-

gitudinal analysis focuses on the change from one network state to another

without any (explicit) reference to the sequence of changes that generate

change. In such cases, a process is generally inferred from the total net-

work change across time. Due to research costs and design, most longi-

tudinal network studies use discrete time. Continuous renditions of time

consist of streaming relational events or interactions recorded with exact

starting and ending times. Streaming relational events consist of sequential

dyadic events or interactions whose visual representation should unfold

as a continuous social process. Continuous representations of time enable

researchers to identify how overall network changes emerge through or-
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dered dyadic events. But, researchers need not analyze the data in its

most reductive form, as they can aggregate relational events into larger

time units (such as minutes instead of seconds). Hence, it is possible to

develop discrete notions of time from continuous data but not vice versa.

If researchers have many panels of network data or continuous rep-

resentations of network change, they have several decisions to make before

they represent the data visually. First, what constitutes their networks?

With discrete waves of sociometric surveys, each wave becomes the net-

work used in graphic representation. However, with continuous data it

becomes more difficult to define a network’s temporal boundary (Lau-

mann, Marsden, and Prensky 1983).3 Is the network defined by 10 rela-

tional events, all the events in one minute, in 10 minutes, or in a single

day? The answer to this may depend on the empirical focus of the re-

searcher, but what is undeniable is that we cannot select each dyadic

event as a network. A network consists of a pattern of social relations,

and therefore we must identify chunks of time that substantively capture

the nature of relational events and the character of temporary networks

that arise in the focal context.4

For visualizing continuous network data, we characterize a network

by a time window that spans a set of relational events (Bender-deMoll

and McFarland 2002). The relational events that transpire within a win-

3 One could argue that Laumann et al.’s (1983) discussion of nominal and realist notions

of networks’ spatial boundaries also applies to networks’ temporal boundaries. Realist

notions of time will have natural boundaries that actors acknowledge and recognize

(i.e., school weeks and days, class periods, etc.). Nominalist notions of time boundaries

are defined by the researcher for a variety of theoretical concerns (i.e., development

focus, period of historical change, etc.).
4 There is a conceptual tension here regarding what a network consists of and how

different kinds of representations will offer different understandings of network change.

This is a conceptual issue that runs to the heart of network theory. The general

structuralist view is that relations form from repeated interactions and their aggregate

patterns (Nadel 1955; Hinde 1971). In contrast, interactionists argue that relations and

roles are established by ritual patterns of interaction that have a particular sequence,

such that reordering the sequence of interactions would undermine the meaning of the

ritual and relation being enacted (Goffman 1967). Work in social movements and

collective action suggest that it is not so much the accrual of everyday interactions

that constitutes a relation but the rare, jarring events which lock in or rewire relational

patterns (Gould 1995). Finally, work on diffusion treats relations as conduits for the

transferal of goods, and relational timing acts as a “switch” determining temporally

“downstream” nodes from “upstream” nodes (Moody 2002; Morris and Kretzschmar

1997). Regardless of the outlook, a more fine-grained perspective may reveal change

processes in more substantive detail. From the study of continuous relational events,

we may learn how ordered dyadic acts can form ritual patterns emblematic of roles

and relations (enriching the aggregate interaction view to include order), and how rare

jarring events reverberate through relational structures so as to create network change,

or how the unfolding of relations creates diffusion opportunities (Emirbayer 1997;

Emirbayer and Goodwin 1994; McFarland and Bender-deMoll 2003).
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dow of time are aggregated into a network. One implication of the time

window is that relational events have a residue that extends beyond their

occurrence, defined by the length of the time window. For example, in

the classroom data discussed below we have streaming interactions spec-

ifiable to seconds. Since many interactions take hold of actors’ attention

for a short time after they occur (at least), we decided to make the time

window equal to 2.5 minutes, which affords a relatively meaningful graph

for characterizing the interaction pattern arising in that class (see fig. 1).

The “time window” defines a right open interval (from “slice start” to

“slice end”). Events that fall inside the interval (arcs 2–5, node C) or

ongoing events that extend past the interval’s bounds (nodes A, B) are

included in the network. This method is quite flexible as it deals fairly

well with the aggregation of both “instantaneous” events and those having

a defined duration. Successive networks are generated by incrementing

the values for “slice start” and “slice end” points by a constant (delta)

value.

After we define the window of time, the next decision is whether suc-

cessively defined windows are to be overlapping or nonoverlapping.5 For

example, if we aggregate streaming dyadic relations into 2.5 minutes of

class time for defining the network, we can make the next window consist

of the next 2.5 minutes (nonoverlapping) or have it partially overlap with

the current one, as in a moving average (see Doreian 1980, 1986). The

most incremental relational change consists of a new window that only

has one tie added to the front of it and another dropped off the back.

The third set of concerns center on the timing of arc representation.

The placement of nodes in a graph is distinct from the animation of a

particular relation. One can use the network data to generate coordinates

for nodes and then control the animation of when relations are shown by

a different procedure. We have found that the timing of arc representation

helps viewers see the network process more clearly because it clarifies the

link between relational change and node placement. In essence, the an-

imation of arcs follows a second time window, a “render window” that

“slides” from one network time window to the next. Nodes and arcs are

drawn and deleted as the render moves over them, and the node coor-

dinates are adjusted incrementally between the two layouts (see fig. 2).

The process of creating a visual transition from one network’s layout

coordinates to another involves drawing a number of intermediate “ren-

ders” of the network while gradually adjusting node coordinates and

adding or deleting nodes and arcs as they fall within the moving render

window. Successive network windows may overlap, which is controlled

5 In SoNIA, we define the degree of overlap by a delta measure, which indicates how

much time is added or subtracted from the prior window.
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Fig. 1.—Construction of a “network slice” by binning node and arc events

by the relationship between the duration of the time slice window and

the offset between successive windows (bin delta).

If the network data are continuous, adjusting the size of the render

window in relation to the network window allows the researcher limited

control over how many new relations tend to lead or lag node movement.

For example, A’s interaction with B can lead nodal position such that

the arc transpires and then the nodes shift position; or we can lag inter-

action such that nodes move closer to one another and then an arc forms

(as if nodes first draw near each other and then talk). However, the actual

timing of arc representation is determined by where an arc’s time coor-

dinates land relative to those of the bin.

NETWORK VISUALIZATION

Graph Layout Principles

Good reviews of the history of network visualization can be found in the

literature (Freeman 2000b). The effectiveness of network visualization

technique differs by network size. Small networks can focus on detailed

elements of the graph structure while larger networks can mainly capture

gross topology. Visualizing networks of tens of thousands of nodes requires

further abstraction yet.6 Our interest in this article is identifying layout

principles that are useful for research in small to moderate sized networks

(fewer than about 100 people).

A useful goal for most social network layouts is to represent social

6 See app. B (online only) in this article for a static example and Powell et al. (2005)

for a dynamic example.
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Fig. 2.—Transitioning between slices with a sliding “render window”

distance as physical distance.7 This representation allows viewers to get

a spatial understanding of social relations, as nodes with many relations

in common are placed close together on the printed page. An intuitive

impression of the network structure then emerges from the proximities in

the image. For example, one can easily see racial segregation in a network

image as the clustering of races into distinct spaces on the page (Moody

2001b, p. 683). A social-distance-based representation of network structure

is facilitated when edge lengths are equated to relational strengths. Various

force-directed layout techniques are usually successful at this.8

Within the larger topology, aesthetic features of the graph help facilitate

readability. All else equal, edge crossing, running edges “under” nodes that

are not connected to each other, and stacking nodes on top of each other

7 For this article, social distance is defined graph theoretically as the length of the

shortest path in the network connecting two nodes. However, alternate formulations

might be interesting and advisable depending on a researcher’s theoretical framework.
8 There is a difficulty here when ties are directed, since the visual distance from i to

j has to equal the visual distance from j to i, even though social distance need not be

symmetric. In SoNIA, we use the basic correspondence between screen distance and

social distance to evaluate layout fit, using a modification of Kruskall’s stress measure,

2
� (ScreenDist � GraphDist)

ij

Stress p ,
2

� GraphDist
ij

where ScreenDist is the Euclidean distance of the layout x–y coordinates, and

GraphDist is the geodesic distance based on an underlying symmetric graph.
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all hinder readability of the graph (Davidson and Harel 1996). While we

do not explicitly control these features in the movies below, they are key

elements in our evaluation of the resulting graph layouts. Color, size, and

shape are useful ways to add additional information on actor or relational

attributes. We have found that visualizing multiplex ties—multiple ties

of different types—can be effectively represented with colors and “trans-

parent” arcs, which allow you to look through the edge to see multiple

relations on a single dyad as a blend of colors.

Graph Layout Algorithms

Force-directed or spring-embedder algorithms are among the most com-

mon automatic network layout strategies. These algorithms function sub-

stantively on an analogy, treating the collection of nodes and arcs as a

system of forces, and the layout as an “equilibrium state” of the system.

Generally, edges between nodes are represented as an attractive force (a

“spring” pulling them together), while nodes that do not share a tie are

pushed apart by some constraint to help prevent overlap. The two most

common layout algorithms are Kamada Kawai (KK; Kamada and Kawai

1989) and Fruchterman Reingold (FR; Fruchterman and Reingold 1991).

For FR, the underlying model roughly corresponds to one of electrostatic

attraction in which the attractive force between connected nodes is bal-

anced by a repulsive force between all nodes. For KK, it is as if all nodes

are connected by springs with a resting length proportional to the shortest-

path distance between them. For both KK and FR, the relations between

nodes must be expressed as distances rather than adjacencies. In KK, this

“dissimilarity” matrix is constructed from geodesic distances between

nodes. In FR, the dissimilarity matrix is constructed directly from

adjacencies.

Both of these algorithms are available in current network drawing

software, such as Pajek (Batagelj and Mrvar 2001) and NetMiner (Cyram

2003). The algorithms work by iterative optimization—adjusting a node’s

position by reacting to the positions of others. As such, the starting position

of the network affects the outcome. The details of the optimization pro-

cedure can also affect layout. Because there are no exact calculations of

global minima, layouts are subject to local convergence problems.

A second class of algorithms plots nodes using the dimensions that result

from multidimensional scaling (MDS) techniques based on the geodesic

distances or some alternate measure of node similarities.9 These layouts

are available in common software packages, such as NetDraw, Krackplot,

or MultiNet. Substantively, metric MDS models reduce the dimen-n � 1

9 Technically, KK could be considered a variant of nonmetric MDS.
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sions present in a network to the two dimensions that capture most of

the variance in observed multidimensional distance. Because they take

input distances as their starting point, these models do not, in themselves,

attempt to stop nodes from stacking on top of each other, and as such

they can easily generate layouts where structurally equivalent nodes oc-

cupy the same location. Many authors correct for this by adding a small

amount of noise or other correction to the resulting structure. One the-

oretical value to the metric MDS model is the direct linkage between

input relational distances and resulting display. Nonmetric MDS algo-

rithms use one of a number of optimization techniques to find a “low-

stress” (well-balanced relation between input and screen distances) layout.

Because of the necessity of giving results in terms of two-dimensional

distance, both force-directed and MDS models are symmetric, using either

a symmetric input distance matrix (MDS) or having symmetric forces

driving/pulling nodes together in force-directed layouts. While the dis-

tinction between direction and distance is irrelevant in static layouts, it

can be substantively important for dynamic layouts, as we often want

nodes to follow their nominations. To accommodate direction, we intro-

duce an algorithm that follows a simple peer influence analogy, building

on a suggestion in Moody (2001a). A node’s position is a function of their

prior position based on a self-weight and the average position of those

they nominate (see fig. 3).

In figure 3, the thin black arrows indicate nominations, while the wider

gray arrows indicate net force for each person’s movement. Person 2

should move down in response to the force of ties sent to persons 1 and

3, while 3 moves slightly to the right based on the net pull of 4 and 5

over the pull of 2, and slightly up as a function of the net pull of 2 and

4 over 5. Similarly, node 6 moves toward the center of nodes 1, 3, and 5,

based on the strong difference in their positions. It is important to note

that nodes 1, 4, and 5 should not move at all, since they send no ties

elsewhere in the network.

The peer influence algorithm works by computing the weighted average

of a node’s current x and y positions and that of those that node nominates.

This process is iterative, adjusting each node’s position to that of others

multiple times.10 As with the metric MDS layouts described above, the

algorithm makes no explicit reference to resulting node positions, which

can result in nodes stacked on top of each other. The result is often similar

in flavor to a metric MDS plot, which should not be surprising given their

10 In practice, the number of needed iterations is quite small, as the procedure tends

toward high “consensus” positions. Similarly, high self-weights generate more stable

movies.
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Fig. 3.—An example of the peer influence layout algorithm

common roots (under a particular set of assumptions) to a general class

of eigenvalue models (Friedkin 1998).

EMERGING NETWORKS

In many settings, the substantive question is the emergence of a cumu-

lative network structure. Relations in such settings are temporally sparse,

requiring the aggregation of many periods (i.e., a large time window) to

generate a meaningful image of the network structure. For example, a

high school romantic network viewed on any given day will consist largely

of a set of completely disconnected dyads, since only a small number of

students are involved in multiple romantic relations on any given day.

Viewed contemporaneously, this network is essentially structureless. How-

ever, sexually transmitted disease risk resides in the history of previous

relations, which cumulate and thus provide pathways for disease trans-

mission. As such, we are substantively interested in both the cumulative

structure of the network and the process through which the structure

unfolds.

We have found that one of the most effective ways for displaying such

sparse networks is to show how the network emerges over time, by adding
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nodes and relations as they appear, but placing them in the display plane

based on the final aggregate structure. The dynamic element then appears

by revealing the network over time and seeing the pieces grow together.

As new nodes and relations enter the population, they are added to the

graph. To effectively distinguish current relations from past relations, we

“ghost” relations when they end (i.e., fade out).

As an example, consider the graph given in figure 4 below, which is a

small section of the sociology collaboration network (Moody 2003), re-

cording all article collaborations (among this small sample) between 1963

and 1999. Based only on the image in figure 4, it appears clear that node

A is at the center of this network.

However, our impression of this network changes if we examine how

it develops over time, as can be seen in movie 1. (All movies in this article

may be viewed in the online copy of AJS.) Here we see that the relations

connecting the full component only form much later in the unfolding of

the network. Note also that the pace of relations is evident in the movie,

as the structure admits to a four-year “dormant” period between 1969 and

1973 when no changes occur. One’s understanding of the betweenness of

these center nodes changes once the temporal nature of the network is

revealed.

As a second example, consider relations among all people in the largest

connected component of an adolescent romantic network (see Bearman,

Moody, and Stovel [2004] for details of this structure’s development;

Moody [2002] for a discussion of dynamic diffusion implications). Figure

6 shows all relations that were active in the 18 months prior to the

interview.

The most striking feature of the static network is a large connected

component, linking 288 students through romantic involvement. When

viewed dynamically, we see that this structure emerges quite late in the

local history of the network and is never observed as a complete structure

at any point in time. Moreover, a close review of the movie reveals that

certain contemporaneous substructures never occur—namely four-cycles.

Prior work suggests that avoiding such four-cycles helps generate the

sparse treelike structure of the network (Bearman et al. 2004). In general,

this flip book approach is among the simplest network movies to imple-

ment. The technique will likely be most effective when one is interested

in the cumulative graph structure, or when one can meaningfully fix node

position in an x-y space.
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Fig. 4.—Sociology coauthor selection; nodes colored by sex, size proportional to degree

DYNAMIC NETWORK MOVIES

Perhaps the theoretically most promising advance for dynamic network

visualization lies in using node movement to map changes in the under-

lying network structure. Substantively we are often interested in endog-

enous network processes. Examples include identifying how conversations

build in classrooms to transform an ordered teaching environment into a

cacophonous menagerie, the development of powerful positions through

business exchange, or the endogenous emergence of social structure from

actor-based interaction rules. In all of these cases, we suspect that the

structure at time t influences the structure at time in systematict � 1

ways, and being able to visualize the transformation of the structure can

help identify the mechanisms through which such changes occur (Mc-

Farland and Bender-deMoll 2003).

Requirements for Meaningful Dynamic Layouts

All of the aesthetic requirements for static graphs apply to dynamic

graphs. In addition, however, a number of factors are unique to dynamic
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Movie 1.—Online

representations that need to be addressed. An animation or interpolation

technique is needed to create meaningful movement between temporally

adjacent network slices. Most useful for this is a sinosodal animation

technique that gradually interpolates the position of a node from one

resting position to the next. This interpolation is what helps the eye follow

changes in the graph structure over time.

Given the ability to animate change in the network structure, one must

then assure that the layout at time is linked to the layout at time tt � 1

to avoid meaningless movement in the graph. While simple on its face,

the separate application of standard layout algorithms to each time slice

will rarely give a satisfactory result. Instead, as network layouts usually

have no inherent coordinate axes, the entire graph tends to “rotate” and

“flip” in the display space. A partial solution to the problem of spurious

movement rests in developing an adequate starting position or “anchor”

for the network that results in a meaningful orientation for the graph.

The anchor choice is not theoretically neutral, as it will affect the resulting

layout. Below we identify multiple anchor possibilities and discuss the

implication of each.

In addition to providing meaningful movement linked to relational

change, a number of additional features of nodes and relations should be

temporally variable as well. A successful layout should be able to accom-

modate changes in relational strength, type, and valence (expressed as

edge attributes), as well as changes in node attributes (expressed as shape,

color, and size of nodes), so that temporal changes in attributes will also

be apparent. Finally, while static graphs are usually agnostic with respect

to relational direction, in a dynamic setting we might want to distinguish

movement based on tie direction.
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Anchoring Temporal Networks

The first layout possibility is really not an anchor but the use of random

starting positions, which we term “random anchoring.” Points are initially

distributed randomly throughout the x-y plane, and the algorithm uses

these initial starting positions. In general, a random anchoring is effective

only for determining the initial (time 1) layout, and using a new random

set of starting coordinates at each observed time point usually results in

meaningless motion. However, one can test (qualitatively at least) the

effect of starting position on eventual layout by running the same figure

multiple times with new starting values.

Alternatively, one can use a constant fixed position as the starting an-

chor for all times, resulting in a “fixed anchor.” The most common such

anchor might be a simple circle. A second common starting point would

be based on some function of the overall graph structure. For example,

one might build a cumulative graph as the sum of all interaction over

the observation period and generate initial layout positions from this

aggregate graph. Or, one might use a meaningful nonrelational distance

metric for the starting conditions, such as the latitude and longitude of

cities in a trade network or the seating chart in a classroom network.

In any such fixed anchor case, movement from time 1 to time 2 reflects

differences in the structure of relations between time 1 and time 2, since

starting positions are “held constant” across graph observations, which

greatly reduces superfluous movement. Substantively, using the circle as

a fixed start point can result in systematic distortion in the overall display

fit (if, e.g., nodes that are often connected to each other are placed on

opposite sides of the starting circle), though movement will still be con-

sistently related to graph changes. Using an aggregate graph layout po-

sition can sometimes lend a bit more consistency, as each observation

window starts “near” the bulk of the structure observed for the whole
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period. In practice, we have found these types of starting values most

effective for the metric MDS and peer influence algorithms.

Finally, an obvious anchor for a network layout at time t is the graph

layout at time . We term this a “chaining anchor,” and it fits well,t � 1

substantively, with our intuitive notion of a network movie, as we are

literally plotting the change in node position from time t to time .t � 1

Substantively, this model uses only the information embedded in prior

positions for graph layout. As we show below, the chaining anchor seems

to work best with force-directed layout algorithms, particularly when

network change is small, as starting from coordinates helps thet � 1

algorithm find an optima at t that is geometrically close. But when used

with the metric MDS or peer influence algorithms, we often see a network

“inertia” effect, where nodes quickly converge on a very small portion of

the total display space, resulting in a largely unreadable movie.

MOVIE EXEMPLARS

Data

In the examples that follow, we use data from three sources chosen to

reflect a wide range of potential applications, moving from theoretical a

priori simulations, to a well-known classical dynamic network, and finally

to complex, multiple relations, streaming interaction data within class-

rooms. Below we first describe the three data sources and then describe

the dynamic movies for each.

Simulating Social Balance

Social balance theory encapsulates the folk notion that “a friend of a

friend is a friend,” suggesting that people avoid friendships where their

friends are not friends with each other and form friendships when others

relink the pair. Primarily a theory of relational change, social balance

theory is a clear candidate for exploration with dynamic tools. The es-

sential prediction of much of the work on balance theory is that through

a relational adjustment process, ordered social structure can emerge en-

tirely endogenously (Davis 1963, 1970; Davis and Leinhardt 1972; Doreian

et al. 1996; Johnsen 1985). Part of the power of this model rests in the

understanding that global implications follow from local relational action.

The simulation starts with a simple random network of 45 actors who

each nominate (on average) four other people. At each of 200 iterations,

five randomly chosen nodes evaluate their local network with respect to

transitivity, intransitivity, and reciprocity; nominations are changed if do-

ing so increases the comfort of the actors’ overall position with respect
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to these characteristics. Actors favor relations that are transitive, avoid

those that are intransitive, seek to reciprocate nominations, and avoid

making long-term asymmetric nominations (Gould 2002). In addition,

actors have a small preference for current ties over changing ties and do

not have perfect vision, but instead evaluate the returns to changes in

their local network with a small amount of random error.11 This model

is useful for demonstrating the endogenous emergence of order from ran-

domness and demonstrates how seemingly stable summary statistics on

one network dimension can mask significant structural change on other

dimensions, highlighting the holistic-view payoff to this technique. For

the purposes of the movie, we sample the network at every other iteration,

resulting in 100 discrete images of the network.

Newcomb Fraternity

Newcomb’s fraternity is among the best-known dynamic data sets in

common usage. We use a version of this data that comes standard with

UCINET (Borgatti et al. 1999). The data consists of each student pro-

viding friendship rankings for every other student in the fraternity. Fol-

lowing Doreian et al. (1996), we recode the original rank data so that the

top four positive ties are retained as “friends,” but use the original rank

data for summary transitivity measures. These data provide a real-world

complement to questions of social balance raised in the simulation above.

McFarland Classrooms

A third data set stems from McFarland’s repeated observations of social

interactions in over 150 high school classrooms during the 1996–97 school

year. We show dynamic network representations of social interaction from

two of these classes below. The first class (class 173) is an accelerated

trigonometry class at a magnet high school. It is composed of tenth graders

who are tightly controlled by an authoritarian male teacher. The second

class (class 182) is an honors algebra 2 class at the same magnet high

school. It is composed of mostly tenth graders (light gray), but also a few

eleventh graders (dark gray), and it is taught by a progressive but bum-

bling male teacher (McFarland 2001).

The data on classroom interactions consists of streaming observations

of conversation turns. The conversation turns were recorded as pairs of

senders and receivers and for types of content. Speakers were viewed as

directing their communication in one of two fashions: (1) indirect sound-

11 The simulation is implemented in SAS IML (interactive matrix language) and is

available from the first author.
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ings, such as lectures (where a teacher addresses all students); and (2)

direct interactions that are focused on particular others. Each type of

directional speech is viewed as having different forms of network recep-

tion—indirect speech reaches all bystanders as passive hearers, and di-

rected speech reaches the focal person as an active coauthor of the con-

versation (Goffman 1981).

Two types of interaction are found to prevail in classroom contexts:

task and sociable (McFarland 2003). Task interactions are those behaviors

that pertain to the ongoing teacher-prescribed task (content is academic).

In contrast, sociable interactions concern everyday concerns of adoles-

cents’ social lives, such as parties, dating, social outings, plans, and so

on. While the content is the key distinction, it is often the case that these

speech acts are distinguishable in style as well, where sociable behaviors

are more playlike, fast paced, and free than the more constrained academic

styles of speech during lessons (Cazden 1988). Last, observations also

recorded when task and sociable forms of interaction were laminated with

evaluative meaning. Such evaluations were seen as being either positive

or negative—either giving praise or attempting a reprimand (Ridgeway

and Johnson 1990).12

RESULTS

Example 1: Dynamic Order from Randomness

Our first example is of the simulated balance process. Figure 5 presents

summary statistics over time, including the reciprocity and transitivity

rates and the proportion of arcs that change from iteration to iteration.

Balance theory predicts that people should adjust their relations until

they reach largely consonant friendship groups, at which point the net-

work should stabilize around a pattern where everyone’s ties are (largely)

transitive. The simulation summary evident in figure 5 suggests this is

essentially the case, as transitivity rises steadily for the first 100 iterations

or so, then largely stabilizes after that. Reciprocity quickly rises early in

the simulation, then falls briefly (around iteration 20), then continues to

12 This coding method was piloted in two prior studies by McFarland (2001) and had

a high degree of accuracy in more teacher-centered classroom lessons due to the turn-

taking sequential nature of discourse. In more chaotic classrooms, simultaneous turns

at talk often prevented the observer from acquiring perfect accuracy. However, some

record was made of when such diminished accuracy was acquired. The two class

periods used in this paper were considered to have a high degree of accuracy in their

coding. For the movies included below, we use 2.5-minute moving windows that

overlap in incremental shifts of 0.5 minutes. We believe this method best captures the

fluidity of interaction patterns but diminishes the amount of artificial fluctuation across

frames so that some continuity is had.
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Fig. 5.—Reciprocity and transitivity in a dynamic balance simulation

rise steadily throughout the simulation.13 Movie 3 presents a dynamic

visualization of this simulation. In this figure, blue ties represent asym-

metric nominations and green ties represent symmetric relations.

The movie shows the emergence of structure out of randomness. The

initial stages of the movie show very little structure. Instead, actors are

simply “milling around”—as they adjust relations in response to the initial

random tie allocation. After about 50 iterations, two patterns emerge.

First, a set of initial “protogroups” forms around four-person cliques.

These small protogroups form the structural kernels that future relations

orient around as time progresses. Second, a small number of “stars”—

people receiving a relatively large number of asymmetric ties—become

evident. Star status proves somewhat unstable, however, as the search

for reciprocity means that nodes only nominate stars for a short time.

However, as a counterforce, the push for transitivity means that connected

pairs will nominate thirds in concert, resulting in a continuous existence

of stars in the setting. About halfway through the simulation, it becomes

13 The network movie provides a nice explanation for this pattern. The drop in reci-

procity seems to occur because the initial rise in reciprocity leads to a large number

of intransitive triads. As the number of intransitive triads increases, the transitivity-

seeking pressure seems to overpower reciprocity seeking, and adjustments are made

to build transitive ties, and then within the transitive sets, reciprocity increases. This

pattern is consistent with theoretical and empirical expectations on real networks

(Sorensen and Hallinan 1976).
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clear that the network is no longer a purely random collection of nodes,

but instead a loose federation of groups weakly connected through asym-

metric ties. At this point, the group-group structure becomes interesting,

as high-degree actors change asymmetric ties between groups, changing

the relative links of groups to the remaining network. Here we see the

component structure change, as groups break away from each other into

smaller collections.

Throughout the remainder of the movie, the structure never crystallizes,

but instead “bubbles” as nodes form links between different groups. Nodes

make nominations to others in the setting that are then built on by others

in response to the changing conditions. The resulting temporal network

story, then, becomes one of changes building on change, and a group-

level dance that emerges as some group members form ties to others. That

some of these changes are, surely, the result of the random component

built into the simulation is less interesting than the fact that such random

events can have systematic effects in the structuring of others’ responses.

While not intended to model any particular real setting, the image one

gets from the resulting movie might well mirror the development of con-

versation groups in a cocktail party, as sets of people mingle and even-

tually find those they wish to speak with on a more engaging basis. The

simulation also fits well with recent work on the systematic effects of a

small number of random ties (Newman 2000; Watts and Strogatz 1998).

Technically, we consider this a successful visualization because almost

all of the movement evident in the graph results directly from interpretable

changes in underlying network structure. The visualization used the KK

layout algorithm and a chain-based anchor. (For alternative movies using

different layout algorithms, see app. B).
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Example 2: Multiple Visions of Newcomb’s Fraternity

The substantive story usually told about Newcomb’s fraternity is one of

structural convergence as a group of new college students meet and form

friendships (Doreian et al. 1996; Newcomb 1961; White et al. 1976). This

description of the data rests on evaluations of summary measures (or

aggregate blockmodels) of the network. However, the “convergence” story

of the Newcomb data is not uncontroversial since up to 20% of the ties

change even in the last few weeks of observation. Finding local fluidity

and global stability (as measured in blocks or summary statistics) suggests

that change moves through structurally equivalent actors. Figure 6 plots

the reciprocity and transitivity rate over the 15 observations.

Figure 6 plots the change in reciprocity and transitivity, using the coding

scheme described in Doreian et al. (1996). The figure suggests, and many

have interpreted these data as showing, that the network reached a par-

ticular level of reciprocity early, while transitivity increased throughout

the 15-week observation period. However, when combined with the arc

change information, one could argue that reciprocity never converges in

any meaningful sense but instead fluctuates substantially over the entire

observation period. Similarly, transitivity increases steadily, and the

change is more than you would expect by chance (Doreian et al. 1996,

p.124), but the degree of change is not dramatic (moving from 0.75 to

0.80).14 How does our image of the Newcomb data differ when we view

changes in the entire network simultaneously? In the movies that follow,

reciprocated nominations are colored green and given a width equal to

the average of the two arcs. Asymmetric ties are blue, with width equal

to the strength of the nomination.

Movie 4 presents a KK algorithmic chain-anchor layout version of the

Newcomb fraternity network, matching the version used in the balance

simulation above. The first impression of this movie is that the network

seems to change a great deal over time. This is partially due to the fact

that, unlike the simulation example, the Newcomb data were collected

in discrete waves, so there are large numbers of edge changes between

subsequent networks. Close examination suggests that many nodes are

moving even when their relational ties do not change (though the ties of

the people they are tied to change, and thus the whole system should

change shape). Some of this movement, however, seems excessive and

hard to follow. Consider instead movie 5, which uses the FR layout

algorithm.

Movement in movie 5 is more subdued, and the pattern of interaction

is somewhat easier to follow. For example, one can see that nodes 1, 6,

14 The transitivity measure used here is based on a sorted rank model.
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Fig. 6.—Reciprocity, transitivity, and change in Newcomb’s fraternity

8, and 13 remain strongly connected to each other throughout the obser-

vation period, occupying a small cluster at the right of the graph. Nodes

7, 12, and 4 form a cluster early in the group’s history, but node 4 then

breaks with this group at about week 8, instead nominating nodes 17 and

2. In general, there is still a great deal of movement in this graph, and

the large number of asymmetric ties suggests that we might gain some

insight by using a layout method that accounts for this asymmetry.

Movie 6 uses the peer-influence layout algorithm, with a cumulative

graph anchor (the starting position is based on a KK layout of the average

positive tie value between every pair cumulated over the entire obser-

vation period). Here we immediately see a quick break between those

embedded in largely symmetric relations and those hanging on to the edge

of the structure. Nodes 10 and 15, for example, quickly emerge as nodes

on the edge of the social structure. While they nominate each other sym-

metrically early in the observation period, they lose interest in each other

by the end. Neither node receives top-five nominations from any other

node in the network. Their nominations to others seem to dance around

the graph, never resting for long on a single person. The group-structure

dynamics also become clearer, as node 17 seems to be a popular actor

bridging the cluster formed around nodes 1, 6, 8, and 13 and a smaller

(and less stable) cluster surrounding nodes 7 and 4.

Hence, the movies suggest that the overall structure does not converge

on a single form, and that the process of change is heterogeneous, with
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some actors forming stable relations while others dance between friends

throughout the observation period. This insight suggests disaggregating

the network change statistics evident in figure 6, which we do in figure

7.

Figure 7 presents the results of a cluster analysis on the sequence of

network change scores (calculated as the correlation between each per-

son’s time t and time nomination vector, to retain the full range oft � 1

rank data). A three-cluster solution is instructive. Two groups follow a

simple convergence story, with their nominations getting progressively

more stable as time passes. The first of these groups (group 1 in fig. 7)

has seven members, including the cluster at the right of the movie (1, 6,

13, 8), and presents a gradual convergence of nomination patterns, while

the second (group 2, with six members) does not converge on stable nom-

ination patterns until week 5. Finally, group 3 (with four members, in-

cluding the hanger-on nodes 10 and 15) never seems to settle on a par-

ticular nomination pattern, but changes nominations steadily over the

observation period.

The substantive advantage of the dynamic movie, in this case, is to

identify a level of internal heterogeneity to the network evolution that

had never been noticed before, given the focus on global network sum-

mary statistics. This type of exploratory interaction between visualization

and analysis is one of the best reasons to push progress on dynamic

network visualizations.

Example 3: Ritual and Rebellion in the Classroom

Our final example presents a network representation of the streaming

interaction data in two classrooms observed by McFarland. Each inter-

action observed is represented by a directed arc. Statements that were

directed “to all” appear as a “star” of links. Direct interactions were

weighted as 1 (thick lines), and indirect interactions were weighted as
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(where ). Ties are coded as “social,” “task,” and “sanction”1/n n p class size

to control the red, green, and blue color values of the ties. “Task” inter-

actions appear black, “social” interactions as blue, “praise” as green, and

“sanction” as red. The networks are shown in slices of 2.5 minutes du-

ration, so it is possible that multiple ties will exist between a given pair.

In all figures, the teacher is represented as a yellow node. Gender is coded

in the shape of the nodes ( , ) and age insquare p male circle p female

color (tenth graders are light gray, eleventh graders are dark gray).

Class 173: Development of an Interaction Ritual

This example presents an orderly classroom, and movie 7 demonstrates

this order. To start, figure 8 presents the summary graph scores for class

173 comparable to those seen in the figures above. The bottom axis reveals

half-minute increments of class time so that a value of 70 indicates the

thirty-fifth minute of a class period. Viewing the figure, we see an im-

mediate difference with the previous friendship networks: transitivity

seems much less important in the conversation networks examined here.

On the other hand, reciprocity tends to be quite strong throughout the

observation period, though it admits to a high variance over time. Note

that none of the summary graph statistics converge toward a particular

value, suggesting that the interesting story in this setting deals with the

shape of change in the network rather than with the shape of the resultant

structure. Relational change remains relatively constant until 35 minutes

into the class period (see unit 70) when the level of interaction drops

significantly.

The movie for this class shows the transition across two primary activity

structures: recitation and group quizzes. Each type of segment calls upon

students to organize their behaviors in different sequential and relational

patterns. In the opening phase of the class, the teacher does some main-

tenance, collecting papers and making announcements as students slowly
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discard their sociable routines (minutes 0–2). Then the teacher settles the

class into a recitation routine concerning homework problems (minutes

3–28). Once the recitation routine is established, a clear ritual structure

emerges where the teacher broadcasts questions to the class, and indi-

vidual students sequentially reply to those questions as they move to the

center of the network image (Mehan 1979; Cazden 1988). At around min-

ute 26 (see unit 52) the teacher makes a joke (sociable broadcast) and

describes a humorous problem for the students to solve. Here, the task

retains the same structure of recitation but has a “blip” of bracketed social

activity. In the final phase of the class, there is a clear shift to dyads and

triads. Here the teacher asks students to get into assigned pairs and triads

to work quietly on their quiz. This final segment shows lower rates of

behavior that arise in an intermittent, localized nature. Near the end of

class, the teacher makes a final announcement, and then the students

break off and leave.

This movie illustrates how interaction dynamics can be represented in

a network form that captures both the sequential and relational nature

of ritual interaction. Moreover, it illustrates how the coordination and

mobilization of students through these routines is accomplished (i.e.,

through some sanctions and sociable activity, in this case). What we ob-

serve are two distinct kinds of relational “dances” and clear switches across

them.

Class 182: Ignoring authority

Moving from order to disorder, we now turn to class 182, with the now-

familiar summary scores presented in figure 9. As with the previous class-

room, we find no general pattern toward convergence in these values.

The amount of change and transitivity are generally higher in this class-

room. As will become clear, the higher transitivity levels follow from the

generally higher level of sociable activities.
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Fig. 7.—Nomination stabilization, Newcomb’s fraternity

Movie 8 shows the students in honors algebra 2 move through essen-

tially two phases of classroom activity. In the first phase, the teacher

lectures on and then invites discussion on student test performance

(minutes 0–15). The students ignore and deride this effort, so we see a

great deal of sociable interaction and conflict. About halfway through this

shortened class period (to make time for an assembly), the teacher shifts

into discussing and modeling homework problems with calculators. This

shift offers little change in form, as no one really listens and the sociable

routines continue. In the final 10 minutes of class, the teacher allows

students to work alone in their groups, and here their sociable interactions

can persist unabated (minutes 16–35). Throughout the class period, stu-

dents stay involved in their social affairs, and the teacher is forced to

interrupt them, but still fails to secure their attention.

The point of this movie is to show what disorder and lack of control

look like in dynamic form. While the movie shows that different patterns

of relations arise with each shift in activity, it does not show as clear a

shift as observed in the more controlled class above. This makes sense

since the class never really pays attention to the teacher’s prescribed

scripts for behavior. What we see is a high degree of social cliquing among

students that never abates in spite of the teacher’s sanctions efforts. It is

in the later phases of unabated social activity that we see the most stability

in network form.

In comparison to the other movies of discrete time, the movies of class-
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Fig. 8.—Reciprocity, transitivity, and change, class 173

room interaction and continuous time seem to be qualitatively different.

This may be more of an artifact of the examples and slices of time we

chose than of the methods. The simulation on balance and Newcomb’s

acquaintance story both show a progression in affective ties toward some

end state and uses of discrete notions of time. In classroom interactions,

the ties are represented in minutes of continuous class time, and since the

movie is specific to a single class period, there really is no story of pro-

gressive equilibrium in affective ties. Instead, the aim is to mobilize and

coordinate collective action in various formats (lecture, recitation, group

work, student presentations, etc.) and types of ties (task, social, etc.).

Hence, states of equilibrium are specific to tasks like lecture, recitation,

and group quizzes. While the shifts in rates of network change somewhat

align with changing ritual patterns, it is the movies that offer the most

meaningful evidence of change in relational sequence and form.

By using longer time slices (of say, class periods) and relating them over

the course of the school year, we may acquire something akin to the pattern

of tie formation in the Newcomb study or the balance simulation. A stable

pattern of behavior may eventually form in a classroom and act like a

central tendency (norm) adopted across tasks. The stability of this pattern

may even depend on how close ties reach an equilibrium state of balance

and transitivity. Future work will explore this empirical question further.
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SUMMARY AND CONCLUSION

This article has presented a first step toward developing a new class of

dynamic network visualizations. As with most methodological develop-

ments in social networks, the use and development of dynamic network

movies is grounded in the substantive need present in empirical research.

To build intuition about network dynamics effectively, a fine-grained tool

for visualizing relational change is necessary. We have focused on two

types of dynamic network visualizations: network flip books and dynamic

movies. The flip books are a combination of fixed node layout and dy-

namic social relations, where nodes remain in a constant position and

arcs fill in the holes among these nodes. They are particularly effective

at showing how sparse relational structures emerge from temporally dis-

aggregated social interaction. In contrast, fully dynamic network movies

allow nodes to move as a function of relational change. We have examined

three substantive examples, and in each case the movie makes it possible

to observe directly a relational feature that would be lost if we focused

only on summary statistics of the complete network.

The theoretical promise of network visualization rests in helping sci-

entists see their data. We hope that this type of visualization will spark

theoretical development as people are able to engage their data in new

ways. Abbott (2000) makes a similar point, when he argues, “Important

general theory always grows out of extensive empirical work; every great

sociological theorist has been a datahead” (p. 299). Social network movies

allow a limited form of data abstraction and exploration. We are neither

embedded directly in the relations themselves (which we could never do

due to the constraints of time and place) nor forced to limit our obser-

vations to one-dimensional summary statistics that filter out much of the

interesting temporal and relational variation in the data. Instead, like

much recent work in geography and meteorology, dynamic maps provide

a combined synthesis of information, allowing one to view the relevant

abstract features of a given interaction system.
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Fig. 9.—Reciprocity, transitivity, and change, class 182

Technically, we have described the use and performance of a number

of particular layout algorithms for building movies. More detail on con-

structing such movies can be found in the software description given in

appendix A (Bender-deMoll and McFarland 2002). In many ways these

algorithms are somewhat crude, so additional and ongoing research is

necessary. While we think it is much too early in the development of this

form of data visualization to make strong claims for a superior method,

a few summary statements of our experience are in order. In general,

layout methods should seek to minimize movement such that any change

can be directly related to a particular relational event. As with static

graph visualization procedures, simplicity is the goal. While judicious use

of colors, shapes, and sizes can help, too much of any of these elements

leads to a confusing visual cacophony.

With respect to particular graph layout algorithms, we have invested

the most time and had the most general success with the KK layout

algorithm. It is best at preventing node stacking, making it possible to

disentangle relational patterns at any given moment in the movie. KK

suffers, however, from superfluous local movement generated by changes

in the behaviors of others. Because KK pushes away from all nodes si-

multaneously, and due to details of its optimization procedure, nodes tend

to “float” around a space, filling in vacancies left by nodes that are drawn

into new spaces. This is evident in the Newcomb fraternity movie and
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can be seen as well in the movement of students around the teacher in

our classroom movies.

When asymmetric ties form a significant part of the relational story,

the peer-influence-based model seems to work well, though we find it very

sensitive to initial conditions and anchor points. When used with a con-

stant graph layout anchor, such as in the Newcomb example, movement

is often usefully limited to the most direct changes in graph structure.

When applied to our classrooms, for example, students tend not to cycle

around the initial circle, but remain fixed until they engage in a moving

interaction (see app. B, available in the online version of this article, for

examples).

The most obvious directions for extending network movies is to move

from an exploratory data analysis stage to a confirmatory analytic mod-

eling stage (McFarland and Bender-deMoll 2003). A good deal of headway

could be made, for example, by linking network movies to statistical

models of network change (Snijders 1998, 1990, 1996), or to models that

generate positional confidence intervals for nodes (Hoff et al. 2001). This

linkage would help us judge the degree of change in a network. This

linkage will be complicated, however, because much of the promise of

exploratory analysis is to identify elements from the data that are not

customarily included in global models. We suspect, however, that a closer

linkage between data and visualization will help us build better statistical

models.

APPENDIX A

Introduction to SoNIA Software

SoNIA (Social Network Image Animator) is a Java-based software pack-
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age for visualizing networks that change over time.15 SoNIA is being

developed as an open-source freeware project and is available with limited

documentation (see http://sonia.stanford.edu/). Work on SoNIA began ini-

tially out of a desire for a set of visualization tools specifically tailored

for dealing with network data that include explicit time information and

push the limits of the more traditional single-matrix approach to network

data collection. Although time is dealt with to some degree in existing

network packages such Pajek, it seemed useful to focus attention on al-

gorithms and techniques aimed at creating dynamic visualizations or an-

imated “movies” of network change. Also, implementations of the most

common layout algorithms rest on assumptions seldom discussed in the

network literature. SoNIA attempts to make some of these decisions more

explicit, provides some limited criteria for assessing the accuracy of a

given layout, and aims to produce layouts with a high degree of com-

parability and replicability. In addition, SoNIA serves a useful function

as a “browser” for time-based network data, and its modular construction

allows it to serve as test bed for the development and comparison of

network visualization algorithms.

SoNIA has the ability to read in a somewhat limited version of Pajek’s

arc-list-based “time network” format, and its own arc-list/spreadsheet style

format (.son files) in which tab-delimited columns control node and arc

attributes. Once data are loaded into SoNIA, the user has the ability to

choose a region of time to examine the duration and offset of the “slices”

used to bin the data and the layout algorithm to be employed. Currently

implemented are versions of Kamada Kawai, Furchterman-Riengold,

Moody’s Peer Influence, metric MDS, file coordinates, and circle. Plans

are to include GEM, Davidson-Harel, nonmetric MDS, and several other

multidimensional projection techniques. For each layout, SoNIA uses the

user’s bin criteria to divide up arc events in regions of time and aggregate

them to form network matrices to be fed into the layout algorithm. For

most algorithms, these matrices are converted to dissimilarities and sym-

metrized for use in distance computation. Several options are provided

for layout preprocessing (node starting positions, desired scaling, treat-

ment of isolates), postprocessing (rescaling, centering, etc.), as well as

parameters specific to each algorithm. For algorithms that use an opti-

mization technique, options are provided to control the “cooling schedule”

and stopping times, and feedback is provided about algorithm conver-

gence. Several algorithms (KK and FR) attempt to create layouts in which

15 SoNIA is currently under development by Dan McFarland and Skye Bender-deMoll.

The software, source files, installation instructions, and additional documentation are

available at http://sonia.stanford.edu/. Comments, suggestions, and programming as-

sistance would be greatly appreciated; please contact skyebend@stanford.edu.
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screen distances are proportional to values in the network matrix. For

most real-world networks, it is impossible to create a zero-distortion rep-

resentation. However, the degree of distortion can be estimated using a

modified version of Kruskal’s stress statistic to compare the matrix and

screen distances. This value and a “Shepard’s plot” showing the distri-

bution of distortions can be displayed.

The animation procedure for transitioning between layouts is similar

to “tweening,” in which a user-specified number of frames are displayed

showing gradual interpolation of nodes’ positions between successive lay-

outs. The transition takes place in “network time,” meaning that for real-

valued continuous data, node and arc additions and deletions between

the networks are shown in sequence as they occur. In addition, the time

coordinates for a “render slice” can be entered manually, allowing the user

to “browse” the data by displaying any arbitrarily sized region of time.

Node and arc attributes such as color, size, shape, labeling, and position

can be controlled from the input file (or to a limited degree in the program)

and are permitted to vary over time. SoNIA takes advantage of some of

Java’s 2D capabilities, which means graphics can be anti-aliased, and

arcs can have some degree of transparency (useful in situations were

multiplex ties exist). SoNIA has the ability to save out QuickTime movie

files of the network animation, a log file describing the sequence of op-

erations and parameter settings used to create the layout, and a series of

“slice” matrices for analysis in other SNA programs.

Because SoNIA is coded in Java, it is cross-platform compatible, and

there are many possibilities for extending its capabilities and integrating

it with other packages. SoNIA’s internal structure and Java’s modular

object-oriented design make it relatively easy to add additional layout

techniques and explore modifications. In addition, source files are avail-

able for inspection if the details of algorithm behavior are not clear from

documentation. However, a great deal of additional work is needed, par-

ticularly in the area of extending the design to facilitate communication

with other open-source projects and network software.
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