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In this paper, we study the problem of dynamic coverage of a set of points of interest (POIs) in a time-varying
environment. We consider the scenario where a physical quantity is constantly growing at certain rates at
the POIs. A number of mobile agents are then deployed to periodically cover (sense or service) the POIs and
keep the physical quantity under control bounded at all the POIs. We assume a communication-constrained
operation, where the mobile agents need to communicate to a fixed remote station over realistic wireless
links to complete their coverage task. We then propose novel mixed-integer linear programs (MILPs) to
design periodic trajectories and TX power policies for the mobile agents that minimize the total energy (the
summation of motion and communication energy) consumption of the mobile agents in each period, while
1) guaranteeing the boundedness of the quantity of interest at all the POIs, and 2) meeting the constraints
on the connectivity of the mobile agents, the frequency of covering the POIs, and the total energy budget
of the mobile agents. We furthermore provide a probabilistic analysis of the problem. Our results show the
superior performance of the proposed framework for dynamic coverage in realistic fading environments.
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1. INTRODUCTION

Deployment of a group of mobile agents to dynamically cover a spatially large environment
has a broad range of applications in robotics and mobile sensor networks [Smith et al. 2011;
Smith et al. 2012; Grocholsky et al. 2006; Wang and Hussein 2010]. In a spatially-large
environment, there exist a number of points of interest (POIs) that cannot be fully covered
by any static configuration of the mobile agents, possibly due to the small effective ranges
of their onboard sensors/actuators compared to the size of the environment. In the dynamic
coverage problem, we are then interested in planning the motion of the mobile agents such
that they can cover all the POIs in a spatially-large environment. This translates to planning
the motion of the mobile agents to minimize/maximize/bound a quantity of interest at the
POIs.

A small part of this work appeared in the 2nd IEEE Globecom International Workshop on Wireless Net-
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A:2 A. Ghaffarkhah and Y. Mostofi

m Number of POIs Pℓ,s,k Power loss when the kth agent stops at
a POI for sensing/servicing

n Number of mobile agents Pℓ,m,k Power loss when the kth agent moves
W Workspace (a subset of R2) PTX,max,k Max TX power of the kth agent
Q Set of the positions of the POIs Emax,k Total energy budget of the kth agent

in each period
V Set of indices of the POIs Tmax Max allowable period for each agent
Vk Set of indices of the POIs assigned to

the kth agent (
⋃n

k=1 Vk = V)
tc Communication time at each pre-

selected communication point
qi Position of the ith POI PTX,i,k TX power of the kth agent at the ith

POI in the comm-intensive case
ti,k Stop time of the kth agent at the ith

POI
PTX,k TX power of the kth agent at its comm

point in the comm-efficient case
ξk(t) Position of the kth agent at time t ξTX,k Comm point of the kth agent in the

comm-efficient case
Ψi(t) Quantity of interest at the ith POI vmax,k Max velocity of the kth agent
ρi Rate at which Ψi(t) increases linearly

at the ith POI
Hk Hamiltonian cycle on the set of POIs

assigned to the kth agent
αi,k Service rate of kth agent at the ith POI H∗

k
Min-length Hamiltonian cycle on the
set of POIs assigned to the kth agent

λk(t) Binary variable which is 1 if the kth
agent is connected to the remote sta-
tion at time t, and is 0 otherwise

PTX,min(q, χ) Min required TX power to guarantee
the probability of connectivity at point
q is no less than χ (see Section 2.1)

G(q) Stochastic channel power at position q
(GdB(q) denotes the value of G(q) in
the dB domain)

P̃TX,min(χ) Min required TX power to guarantee
the probability of connectivity at a
random point in W is no less than χ
(see Section 5)

ĜdB(q) Predicted channel power at position q
in the dB domain (see Appendix A)

d(Hk) Euclidean length of Hk

σ2(q) Variance of channel power prediction
at position q (see Appendix A)

θ Path loss parameters (see Appendix A)

SNRTH Min received SNR required for connec-
tivity at the receiver of the remote sta-
tion

ϑ2, β Variance (power) and decorrelation
distance of the shadowing component
of the channel (see Appendix A)

N0B Power of thermal noise at the receiver
of the remote station (B is the total
bandwidth)

ω2 Variance (power) of the multipath fad-
ing component of the channel (see Ap-
pendix A)

Table I: List of the main variables used throughout this paper.

In this paper, we consider a networked dynamic coverage problem, an extended version
of the dynamic coverage problem where a number of mobile agents, with limited energy
budgets and sensing/actuation capabilities, are deployed to cover a set of POIs in a time-
varying environment. By a time-varying environment, we refer to an environment where
the quantity of interest is time-varying and increasing in time at every POI that is not
in the effective range of any mobile agent. By networked, we consider a communication-
constrained scenario, where the mobile agents are required to communicate to a fixed remote
station in order to complete their coverage task. Our goal in this paper is then to plan the
motion and communication policies of the mobile agents to minimize the total energy (the
summation of the motion and communication energy) consumption of the mobile agents,
while 1) guaranteeing the boundedness of the quantity of interest at all the POIs, and 2)
meeting the constraints on the connectivity of the mobile agents to the remote station, the
frequency of covering the POIs, and the total energy budget of the mobile agents. Note that
since the quantity of interest is continuously increasing at the POIs, periodic trajectories
need to be devised for the mobile agents in order to repeatedly cover the POIs. A schematic
of the dynamic coverage problem considered in this paper is shown in Fig. 1.
Several real-world applications can be modeled by a dynamic coverage problem. Next, we

provide a number of examples from mobile sensor networks and robotics literature:
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Fig. 1: Dynamic coverage of a time-varying environment using a team of mobile agents. Ψi(t) is
the quantity of interest to keep bounded at the ith POI.

(1) The first example is surveillance and monitoring of a time-varying environment using a
team of mobile agents. Here, the remote station is a monitoring station and the quantity
of interest that needs to be kept bounded is the uncertainty on the time-varying states
of the POIs at the remote station. In this example, a POI is covered if it can be sensed
by the onboard sensor of a mobile agent (e.g., a digital camera).

(2) The second example is estimation over wireless communication links. The POIs in
this example represent a number of dynamical systems, spatially distributed over the
workspace, whose states need to be estimated at a remote station. A number of mobile
agents then observe the dynamical systems along periodic trajectories and send their
observations to the remote station over wireless communication links. A POI is covered
in this examples if its state can be observed by a mobile agent and communicated to
the remote station. The quantity of interest to keep bounded for each POI is then the
uncertainty of its state estimation (e.g., the estimation error variance) at the remote
station. This uncertainty is increasing in time when the POI is not covered by any
agent. This problem can be thought of as an extension of the problem of estimating
dynamical systems over wireless links, which received considerable attention in recent
years [Sinopoli et al. 2004].

(3) The third example is information collection in a time-varying environment, where the
POIs represent a number of stationary data loggers that are distributed over a spatially-
large environment to log time-variations of an environmental feature (e.g. temperature,
humidity, radioactive contamination). The information bits (which are increasing in
time at each data logger) need to be collected and transmitted to a remote station. A
number of mobile agents are then tasked to move along periodic trajectories, collect
the information bits from the data loggers, and transmit them to the remote station
at positions where they get connected along their trajectories. The quantity of interest
to keep bounded in this example is the size of the queue of the data loggers through
proper information collection and communication.

In all these examples, communication to the remote station is needed and considering
the effect of realistic fading communication channels between the mobile agents and the
remote station is considerably important. A communication-aware strategy is then required
to co-optimize the information-gathering (local coverage) and information-exchange (com-
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munication) performance of the mobile agents. Next, we explain our communication-aware
approach for dynamic coverage of time-varying environments in more details.
We assume a linear1 dynamics for the time-variation of the quantity of interest at the POIs

and a limited total energy budget for the mobile agents. We also consider the case where
the sensing/actuation range of the mobile agents is small such that each agent is required to
move to the position of each POI and stop there for some time to sense/service it. Then, we
optimize motion (trajectories and stop times) and communication (transmission powers)
of the mobile agents to minimize the total energy consumption of the mobile agents in
each period, while guaranteeing that the quantity of interest at the POIs remains bounded,
and the constraints on the connectivity of the mobile agents, the frequency of covering
the POIs, and the total energy budget of the mobile agents are satisfied. To keep our
framework general, we consider two variants of the problem: communication-intensive and
communication-efficient. Communication-intensive case refers to the case where the mobile
agents are required to be connected at all the POIs they visit, in order to send their collected
information to the remote station in real-time. Communication-efficient case, on the other
hand, refers to the case where the mobile agents are only required to connect to the remote
station once along their trajectories, decreasing the communication burden considerably. In
both communication-intensive and communication-efficient cases, we show how to optimally
find the trajectories of the mobile agents, as well as their stop times and transmission powers,
using mixed-integer linear programs (MILPs). The properties of the optimal solutions of the
MILPs, as well as their asymptotic properties, are also characterized mathematically.2 To
the best of our knowledge, this is the first time that dynamic coverage is solved optimally,
in the presence of realistic communication channels and under several constraints on the
connectivity and total energy consumption of the mobile agents. Also, there is no existing
work that mathematically analyzes the dynamic coverage problem, as we do so in this paper.

1.1. Related Work

The existing literature related to the dynamic coverage problem of this paper is categorized
based on the type of the environment (time-invariant or time-varying) and motion planning
approach (analytical or algorithmic). For instance, the exploration strategies of [Wang and
Hussein 2010] can be considered dynamic coverage strategies used to cover a time-invariant
environment based on analytical motion planning approaches (gradient-based approaches).
The algorithmic motion planning approaches of [Choset 2001; Acar and Choset 2002; Acar
et al. 2006] can also be used for dynamic coverage of a time-invariant environment. In
these works, the authors determine the paths that pass through a set of points or cells in
a known [Choset 2001] or unknown [Acar and Choset 2002] environment. Their proposed
approaches involve 1) cellular decomposition (for known environments) or Morse decom-
position (for unknown environments), and 2) devising heuristic and exact algorithms to
achieve coverage. In their more recent work in [Acar et al. 2006], the authors also extend
their algorithmic approach to the case of sensing ranges that go beyond the size of the
robot. These works, however, do not consider planning periodic trajectories for dynamic
coverage of time-varying environments. Furthermore, none of these works consider realistic
communication and energy constraints when planning the motion of the mobile agents.
In terms of the class of the trajectories considered, the proposed approaches of this paper

are related to current literature on sweep coverage and patrolling [Li et al. 2011; Chevaleyre
2004; Machado et al. 2003; Agmon et al. 2011; Elmaliach et al. 2009] and persistent moni-
toring [Hokayem et al. 2007; Smith et al. 2011], where periodic trajectories for the mobile

1While the dynamics of the quantity of interest in the aforementioned problems could be nonlinear, a linear
approximation may be a close enough approximation depending on the system parameters.
2It should be noted that given the constraints of the dynamic coverage problem, a feasible solution may not
exit. Our proposed MILPs find the optimal feasible solution if such a policy exists.
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agents are planned to repeatedly cover a set of POIs in the environment. The approaches of
[Li et al. 2011; Chevaleyre 2004; Machado et al. 2003; Agmon et al. 2011; Elmaliach et al.
2009; Hokayem et al. 2007] are based on designing heuristic near-optimal algorithms for
covering the POIs (under a constraint on the frequency of visiting the points or by maxi-
mizing the frequency of the visits). The authors, however, do not consider a time-varying
environment and realistic communication and energy constraints. The authors in [Smith
et al. 2011] propose a trajectory planning algorithm, based on a constrained version of the
Bellman-Ford algorithm, to persistently visit a set of cells in a discretized version of the
environment. Their goal is to maximize a reward function and meet the constraint on the
maximum allowable time for an agent to complete a cycle, without considering the com-
munication and energy issues. The formal definition of a time-varying environment that we
utilize in this paper is first presented in [Smith et al. 2012], where the authors introduce
the dynamics of the quantity of interest at the POIs. In order to stabilize the dynamic
coverage task, they then propose strategies to adapt the velocities of the mobile agents
along predefined periodic trajectories. Similarly, no communication or energy constraint is
considered in [Smith et al. 2012]. In this paper, we extend the previous work on multi-agent
coverage to a time-varying environment and in the presence of communication, time and
energy constraints. More specifically, we consider a generalized version of the linear dynam-
ical model of [Smith et al. 2012] to capture the time variations of the quantity of interest in
the presence of realistic fading channels. We then propose optimal trajectories, stop times
and transmission powers for the mobile agents to minimize the total energy consumption
of the mobile agents in each period, while guaranteeing that the quantity of interest at the
POIs remains bounded, and the constraints on the connectivity of the mobile agents, the
frequency of covering the POIs, and the total energy budget of the mobile agents are sat-
isfied. Our proposed approach enables networked multi-agent dynamic coverage in realistic
communication settings, which is not possible using the current methods.
The rest of the paper is organized as follows. In Section 2, we introduce the dynam-

ical models of the quantity of interest at the POIs, as well as the connectivity and en-
ergy consumption models of the mobile agents. The dynamic coverage problems in the
communication-intensive and communication-efficient cases are formulated and solved us-
ing MILPs in Sections 3 and 4. Probabilistic analysis of the dynamic coverage problem is
studied in Section 5. We present our simulation results in Section 6, followed by conclusions
in Section 7. A list of main variable used throughout the paper is also provided in Table I.

2. SYSTEM MODEL

Consider an obstacle-free3 workspace W ⊂ R
2 that contains a set of m POIs Q =

{q1, · · · , qm}. Let Ψi(t), for i = 1, · · · ,m, represent the quantity of interest that need to be
controlled at the ith POI. We assume a time-varying workspace, where Ψi(t) increases at
a certain rate as long as the ith POI is not being covered4 by any mobile agent. Then, as
soon as the POI is covered by a mobile agent, Ψi(t) decreases at a rate that depends on the
onboard capabilities of the mobile agent. In order to keep Ψi(t) bounded at all the POIs,
we use a team of n mobile agents. Each mobile agent is assigned to a nonempty subset of
the POIs. A closed periodic trajectory is then planned for each agent to repeatedly cover
every point in this subset.

3Note that the results of Sections 3 and 4 are readily applicable to the case where there exists some obstacles
in the workspace as well. In this case it is sufficient to replace the Euclidean distance between the POIs
with the length of the obstacle-free path between them.
4The term “covered” in this paper refers to being sensed/serviced by the onboard sensor/actuator of a
mobile agent.
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Let V = {1, · · · ,m} denote the set of the indices of the POIs. Also, let Vk, for k = 1, · · · , n,
represent the nonempty subset of V assigned to the kth agent. In this paper, we consider
the following assumptions:

Assumption 2.1. The sets {Vk}nk=1 define a partition of V, i.e.,
⋃n

k=1 Vk = V and
Vk1 ∩ Vk2 = ∅, for k1 6= k2. Therefore, each POI is assigned to one agent only.

Assumption 2.2. The effective ranges of the onboard sensors/actuators of the mobile
agents are negligible, compared to the size of the workspace. Therefore, in order to cover
each POI, each agent is required to physically move to the position of the POI.

These assumptions imply that 1) the optimal trajectory for the kth agent, without loss of
generality, is a Hamiltonian cycle on the set of POIs in Vk and 2) due to negligible effective
ranges, each agent requires to stop for a limited time at each POI to sense/service it. In this
paper, we adopt an extended version of the linear model proposed in [Smith et al. 2012] for
the dynamics of Ψi(t):

Ψi(t) = Φi

(
τk(t)

)
+ ρi

[
t− τk(t)

]
,

Φ̇i(t) = I
(
Φi(t) ≥ 0

)[
ρi − I

(
ξk(t) = qi

)
αi,k

]
, ∀i ∈ Vk, k = 1, · · · , n, (1)

where I(.) denotes the indicator function, ξk(t) is the position of the kth mobile agent at
time t, λk(t) is a binary value which is one if the kth agent is connected to the remote station

at time t along its trajectory and zero otherwise, and τk(t) , max
{
0 ≤ τ ≤ t

∣∣λk(τ) = 1
}

specifies the last time the kth agent has been connected to the remote station up to time t.
Furthermore, ρi determines the constant rate at which Ψi(t) increases while it is not being
covered by any mobile agent, αi,k represents the constant service rate of the kth mobile
agent at the ith POI and Φi(t) is an auxiliary quantity.
The dynamical model of (1) implies that Ψi(t), for i ∈ Vk, increases with rate ρi while

the kth mobile agent is not connected to the remote station. Then, whenever the mobile
agent gets connected and communicates to the remote station, Ψi(t) becomes equal to
Φi(t), which can be treated as the local version of Ψi(t) at the k

th mobile agent. Φi(t) itself
increases with rate ρi while the kth mobile agent is not at the ith POI, and decreases with
rate αi,k − ρi otherwise.
Depending on how often the mobile agents are required to communicate along their

trajectories, we consider two cases: communication-intensive and communication-efficient.
In the communication-intensive case, the mobile agent k is required to be connected and
communicate to the remote station at all the POIs in Vk. This case is suitable for the
scenarios where the remote station requires a constant update on the states of the POIs or
communication to the remote station is needed for the operation of the coverage process.
In the communication-efficient case, on the other hand, connectivity at all the POIs is
not required. Each mobile agent k covers the POIs in Vk and completes its coverage task
by communicating to the remote station at one pre-selected position along its trajectory,
reducing the communication burden considerably. At this position, the mobile agent informs
the remote station of the states of all the POIs it has covered in one period. We next continue
with the connectivity and energy consumption models of the mobile agents.

2.1. Connectivity Model of the Mobile Agents

The binary value λk(t) used in (1) is a function of the signal-to-noise ratio (SNR) of the
channel between the kth agent and the remote station at time t along its trajectory [Gold-
smith 2005]. It can be shown that in a realistic communication setting and in the presence
of a packet dropping receiver at the remote station, λk(t) is given as follows [Goldsmith
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2005; Ghaffarkhah and Mostofi 2011]:

λk(t) =

{
1,

PTX,k(t)Gk(t)
N0B

≥ SNRTH,
0, otherwise,

k = 1, · · · , n, (2)

where PTX,k(t) is the transmission power of the kth agent at time t along its trajectory,
Gk(t) determines the instantaneous channel power in transmission from the kth agent to the
remote station at time t along its trajectory,N0/2 is the power spectral density (PSD) of the
receiver noise, and B is the channel bandwidth. Also, SNRTH denotes the packet dropping
threshold of the receiver of the remote station, which depends on the quality of decoding at
the remote station [Goldsmith 2005; Son et al. 2006; Ghaffarkhah and Mostofi 2011]. The
instantaneous channel power Gk(t) is a function of the position of the kth agent at time
t: Gk(t) = G

(
ξk(t)

)
, where G(q), for q ∈ W , denotes the 2D map of channel power in the

workspace. In practical applications, the channel power G(q) is either unknown or known
only at a small number of positions, different from the positions of the POIs. In such cases,
G(q) is best modeled probabilistically. In Appendix A, we briefly introduce a multi-scale
probabilistic model of wireless channels and present our previously-proposed probabilistic
channel assessment framework. This framework enables prediction of the distribution of
G(q) at unvisited locations, conditioned on a small number of a priori channel power mea-
surements. In the rest of this paper, we use this framework to probabilistically assess the
channel along the trajectory of the mobile agents and find conditions on the transmission
powers to increase the probability of connectivity at all the POIs (in the communication-
intensive case) or at one pre-selected communication point along the trajectory of each
agent (in the communication-efficient case).5

Note that in the communication-intensive case, each mobile agent needs to be connected
and communicate to the remote station at all its assigned POIs. Let PTX,i,k, for i ∈ Vk,
denote the transmission power of the kth mobile agent at the ith POI in the communication-
intensive case. Also, let tc denote a fixed communication time assigned for communicating
to the remote station. We assume that tc is small enough such that sending/receiving the
packets at each POI can be finished while the mobile agent is stopped at the POI (or still
very close to it). This assumption facilitates mathematical derivations by ensuring that
the channel power remains stationary while communicating at each POI.6 Then, in the
communication-intensive case we have PTX,k(t) = PTX,i,k for a time period of length tc at
(or close to) the ith POI, and PTX,k(t) = 0 otherwise. In the communication-efficient case,
on the other hand, the mobile agents communicate to the remote station at one pre-selected
point along their trajectories. Let ξTX,k and PTX,k denote the communication point of the
kth agent and its fixed transmission power at this point in the communication efficient case,
respectively. Similar to the communication-intensive case, we then have PTX,k(t) = PTX,k

for a time period of length tc at (or close to) position ξTX,k, and PTX,k(t) = 0 otherwise.
We find the optimal values of PTX,i,k, for i ∈ Vk, in Section 3 and the optimal values of
ξTX,k and PTX,k in Section 4.

2.2. Energy Consumption Model of the Mobile Agents

The total energy consumed by a mobile agent in one period is the summation of its motion
energy and its communication energy. The motion energy is the time integral of the motion

5In case the mobile agents are able to measure the channel, G(q) is assessed probabilistically to initially
plan the coverage policy. Then, after the first period G(q) will be known at the POIs.
6This is a fair assumption as the transmission rates when connected are usually large. For instance in IEEE
802.11 g the maximum achievable rate is 54 Mbit/s, which implies that sending/receiving a large packet of
data in case of a good channel does not take more than a couple of seconds. Note that the results of this
paper can also be extended to the case where transmission occurs throughout the trajectory as well, i.e. the
case that tc is bigger than the sensing time at a POI.
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power, which itself is a function of the velocity and power loss of the mobile agent. We
adopt the following model for the motion power of the kth agent [Mei et al. 2006; 2005]:

Pm,k(t) =

{
Pℓ,s,k, ξk(t) = qi, for some i ∈ Vk,
Pℓ,m,k + wkvk, otherwise,

(3)

where vk and Pℓ,m,k are the velocity and the power loss of the kth agent while moving from
one POI to another, Pℓ,s,k denotes its power loss while stopping at one of the POIs, and
wk is a constant that depends on the dynamics of the kth agent. Note that we include all
the constant power losses (i.e., motion, computation and actuation losses) in Pℓ,m,k and
Pℓ,s,k. Therefore, generally Pℓ,m,k is different from (typically smaller than) Pℓ,s,k. Another
note is that, without loss of generality, the velocity of the each mobile agent is assumed
constant. The reason is that both sensing/actuation and communication happen either at
the positions of the POIs or at one point along the trajectory of the mobile agents. Therefore,
adaptation of speed is not required. In fact the optimal velocity for each mobile agent is
the maximum possible velocity, as shown in the next section.
Let Hk denote the Hamiltonian cycle defined on the set of POIs in Vk, with d(Hk)

denoting its total Euclidean length. Also, let ti,k, for i ∈ Vk, denote the stop time of the kth
mobile agent at the ith POI. The motion energy consumed in one period by the kth agent,
in both communication-intensive and communication-efficient cases, is then calculated as
follows:

Em,k = Pℓ,s,k

∑

i∈Vk

ti,k +

(
Pℓ,m,k

vk
+ wk

)
d(Hk). (4)

The communication energy, on the other hand, is consumed when a mobile agent transmits
data to the remote station. Based on the connectivity model of the mobile agents discussed
in the previous section, the communication energy consumed in one period by the kth agent
in the communication-intensive case becomes:

ETX,k = tc
∑

i∈Vk

PTX,i,k. (5)

Similarly, in the communication-efficient case, we have the following for communication
energy consumed in one period by the kth agent:

ETX,k = tcPTX,k. (6)

Finally, the total energy consumed by the kth agent in one period is given as Ek = Em,k +
ETX,k. In Sections 3 and 4, we consider a constraint on the total energy consumption of the
mobile agents in one period, when finding the optimal dynamic coverage policies using the
proposed MILPs.

3. DYNAMIC COVERAGE OF TIME-VARYING ENVIRONMENTS IN THE

COMMUNICATION-INTENSIVE CASE

In this section, show how to find optimal feasible dynamic coverage policies for a team of
mobile agents in the communication-intensive case using an MILP. Based on the system
models presented in Section 2, a dynamic coverage policy in the communication-intensive
case, which is a tuple of all the design variables, is defined as follows:

Definition 3.1. A dynamic coverage policy for the kth mobile agent in the
communication-intensive case is a tuple Pk =

(
Vk,Hk, vk, {PTX,i,k}i∈Vk

, {tTX,i,k}i∈Vk

)
. The

overall dynamic coverage policy to find is then the tuple P = (P1, · · · ,Pn).

The following lemma gives a necessary and sufficient condition for P to stabilize the dynamic
coverage task:
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Lemma 3.1. Under the assumption of periodic motion and communication (the same
motion and communication policies in each period), a feasible dynamic coverage policy P
is stabilizing, i.e., it stabilizes the dynamic coverage task if 1) it guarantees that the mobile
agents are connected at least once along their trajectories, and 2) there exist non-negative
stability margins ∆1, · · · ,∆n such that

αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Hk)

vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n. (7)

Proof. A dynamic coverage task is stable, in both communication-intensive and
communication-efficient cases, if there exists a finite Ψ, independent of the initial conditions,
such that max1≤i≤m supt≥0 Ψi(t) ≤ Ψ. In case the mobile agents are connected at least once
along their trajectories, this holds if Φi(t+ Tk) ≤ Φi(t), for i ∈ Vk and k = 1, · · · , n, where
Tk is the period of the kth mobile agent. Based on the dynamical model (1), we have

Φi(t + Tk) − Φi(t) = ρiTk − αi,kti,k. Furthermore, we have Tk =
∑

i∈Vk
ti,k + d(Hk)

vk
. By

substituting Tk, we obtain the conditions of (7) for stability. Note that these conditions are
valid in both communication-intensive and communication-efficient cases.

Based on Lemma 3.1, in order to stabilize the dynamic coverage it is necessary to ensure
that each mobile agent is connected at least once along its trajectory. A feasible dynamic
coverage policy in the communication-intensive case, however, puts more constraints on the
connectivity of the mobile agents and require each mobile agent to be connected at all its
assigned POIs. This is to guarantee that the remote station is updated on the states of the
POIs as frequently as possible. A feasible policy also satisfies the constraints on stability,
the frequency of covering the POIs, the total energy budget, and the maximum transmission
power and velocity of the mobile agents. Mathematically, a dynamic coverage policy P is
feasible in the communication-intensive case if the following conditions hold:

1) αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Hk)

vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n, (8)

2)
∑

i∈Vk

ti,k +
d(Hk)

vk
≤ Tmax, k = 1, · · · , n,

3) Pℓ,s,k

∑

i∈Vk

ti,k +

(
Pℓ,m,k

vk
+ wk

)
d(Hk) + tc

∑

i∈Vk

PTX,i,k ≤ Emax,k, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,i,k ≥ SNRTHN0B

G(qi)
, ∀i ∈ Vk, k = 1, · · · , n,

5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n,
where Tmax is the maximum acceptable period for covering all the POIs and Emax,k,
PTX,max,k and vmax,k are the total energy budget, maximum possible transmission power

and maximum velocity of the kth agent. Note that SNRTHN0B
G(qi)

is the minimum transmission

power required for connectivity at the ith POI.
In case of stochastic wireless channels, G(qi) is not known and is estimated probabilis-

tically as explained in Appendix A. Then, the constraints of (8) cannot be guaranteed de-
terministically, since the conditions depend on the stochastic channel powers G(qi). In such
cases, the feasibility can only be guaranteed probabilistically. It is then desired to find deter-
ministic conditions on a policy P that guarantee feasibility with a probability larger than a
given threshold. This is, however, very challenging as the set of feasible P in (8) is a complex
function of the channel powers. To simplify the problem, we use a sub-optimal approach
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from the stochastic programming literature [Shapiro et al. 2009]. The idea is to replace any
constraint in (8), that is directly a function of the main random variables (G(qi) in our case),
with its chance constraint. A chance constraint is simply a constraint that guarantees that
the probability of meeting the stochastic constraint is larger than a given χ, for 0.5 < χ < 1,
while assuming that all the other optimization variables are deterministic [Shapiro et al.
2009]. Following this approach, in order to account for stochastic channel powers, it is suffi-

cient to replace PTX,i,k ≥ SNRTHN0B
G(qi)

in (8) with P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
≥ χ, for a large

0.5 < χ < 1.

To calculate P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
we use the channel assessment framework of

Appendix A. There, we show that, based on a set of a priori channel power measurements
in W , the conditional distribution of G(q) in the dB domain can be estimated by a Gaussian

pdf with mean ĜdB(q) and variance σ2(q), for any q ∈ W . The exact formulations of ĜdB(q)
and σ2(q) as functions of q can be found in Appendix A. We then have

P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
= Q

(
10 log10

(
SNRTHN0B

PTX,i,k

)
− ĜdB(qi)

σ(qi)

)
, (9)

where Q(x) = 1√
2π

∫∞
x
e−x2/2dx is the tail probability of Gaussian distribution. After

some straightforward calculations, we can find the necessary and sufficient condition for

P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
≥ χ as follows:

PTX,i,k ≥ 10−
σ(qi)Q

−1(χ)+ĜdB(qi)

10 SNRTHN0B = PTX,min(qi, χ), ∀i ∈ Vk, k = 1, · · · , n,
(10)

where we defined PTX,min(q, χ) , 10−
σ(q)Q−1(χ)+ĜdB(q)

10 SNRTHN0B, for q ∈ W . Therefore,

to find the chance-constrained version of (8), it is sufficient to replace SNRTHN0B
G(qi)

with

PTX,min(qi, χ). Note that the case of known channel power becomes a special case of (10)
for σ(qi) = 0 (see Appendix A).
Based on the chance-constrained version of (8), we then propose the following optimiza-

tion problem to find the optimal feasible dynamic coverage policy in the communication-
intensive case:

min
P

n∑

k=1

̺kEk (11)

s.t.

1) αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Hk)

vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n,

2)
∑

i∈Vk

ti,k +
d(Hk)

vk
≤ Tmax, k = 1, · · · , n,

3) Pℓ,s,k

∑

i∈Vk

ti,k +

(
Pℓ,m,k

vk
+ wk

)
d(Hk) + tc

∑

i∈Vk

PTX,i,k ≤ Ek, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,i,k ≥ PTX,min(qi, χ), ∀i ∈ Vk, k = 1, · · · , n,
5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n,
6) Ek ≤ Emax,k, k = 1, · · · , n,
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where ̺k > 0, for k = 1, · · · , n, denote the weights assigned to the agents. The solution
of (11) minimizes a weighted sum of the total energy consumptions of the mobile agents
in each period, while satisfying the chance-constrained version of (8). Note that feasibility
of (11) may not exactly translate to feasibility of the actual dynamic coverage problem,
as defined by (8), unless the quality of channel estimation is high and χ is selected large.
Still, we refer to the solution of (11) as the optimal feasible dynamic coverage policy since
it provides a good assessment of the feasibility and is the best you can do without the
full knowledge of the channel. Also, depending on the channel qualities at the POIs and
the thresholds Tmax, PTX,max,k and Emax,k, a feasible dynamic coverage policy may or may
not exist in the communication-intensive case. Finally, choosing positive stability margins
(∆k > 0, for k = 1, · · · , n) increases the robustness of the optimal policy to the effects of
unmodeled system parameters. Robustness, however, comes at the cost of consuming more
energy, as expected.

3.1. Optimal Solution of Dynamic Coverage Problem in the Communication-Intensive Case

In the main theorem of this section (Theorem 3.1), we provide a closed-form expression for
the solution of (11), given a partition {Vk}nk=1.

Theorem 3.1. Consider a partition {Vk}nk=1 of V. Then, the following are true for the
solution of optimization problem (11):

(1 ) For a given set of non-negative stability margins ∆k, k = 1, · · · , n, (11) is feasible if
and only if the following are true, for k = 1, · · · , n:

1) PTX,min(qi, χ) ≤ PTX,max,k, ∀i ∈ Vk, (12)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(H∗

k)

vmax,k
≤ min

{
Tmaxφk −∆kηk,

(
Emax,k − wkd(H∗

k)
)
φk −∆kηkPℓ,s,k

(1− φk)Pℓ,s,k + φkPℓ,m,k

}
,

where H∗
k denotes the minimum-length Hamiltonian cycle on Vk, Emax,k , Emax,k −

tc
∑

i∈Vk
PTX,min(qi, χ), φk , 1−∑i∈Vk

ρi

αi,k
and ηk ,

∑
i∈Vk

1
αi,k

.

(2 ) The maximum stability margin that can be selected for each agent k, for k = 1, · · · , n,
is given as follows when

∑
i∈Vk

ρi

αi,k
< 1:

∆max,k = min





Emax,k − wkd(H∗
k) +

(
Pℓ,s,k − Pℓ,m,k

) d(H∗

k)
vmax,k

Pℓ,s,k
, Tmax




φk
ηk

− 1

ηk

d(H∗
k)

vmax,k
.

(13)

(3 ) If (11) is feasible, the optimal Hamiltonian cycle of the kth agent is the minimum-length
Hamiltonian cycle H∗

k and its optimal velocity is the maximum velocity vmax,k. We also
have the following for the rest of the optimal variables:

P ∗
TX,i,k = PTX,min(qi, χ), ∀i ∈ Vk, (14)

t∗i,k = ∆k

(
1

αi,k
+

ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(H∗
k)

vmax,k
, ∀i ∈ Vk,

E∗
k = Pℓ,s,k

(
∆kηk
φk

+
1− φk
φk

d(H∗
k)

vmax,k

)
+

(
Pℓ,m,k

vmax,k
+ wk

)
d(H∗

k) + tc
∑

i∈Vk

PTX,min(qi, χ).

Proof. See Appendix B for the proof.
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Theorem 3.1 can be used to determine whether there exists a feasible policy for a given
partition {Vk}nk=1. Then, we can find the solution of (11) by searching through all the par-
titions {Vk}nk=1 of V that satisfy (12), and finding the one with minimum

∑n
k=1 ̺kE∗

k . A
more efficient alternative for solving (11) is to use a mixed-integer program (MIP) to find
the optimal partitions and optimal stopping times for the mobile agents, when maximum
allowed velocities and minimum possible transmission powers are used. Generally, there is
more than one way to formulate the MIP. Since there are multiple mobile agents, some MIP
formulations can be nonlinear, in which case the optimal solution is very challenging to find.
Next, we show how to formulate a mixed-integer linear program (MILP), by transforming
the nonlinear mixed-integer constraints to linear ones. This makes finding the optimal dy-
namic coverage policies tractable even for large number of POIs. Note that MILPs can be
solved much more efficiently than their nonlinear alternatives.
Let us consider auxiliary binary variables xi,k and zi,j,k, for i, j ∈ V and k = 1, · · · , n.

We have xi,k = 1 whenever the ith POI is assigned to the kth mobile agent, and xi,k = 0
otherwise. Also, zi,j,k = 1 if there exists an edge between the ith and jth POIs in the
Hamiltonian cycle assigned to the kth mobile agent, and zi,j,k = 0 otherwise. To guarantee
that every POI that is on the Hamiltonian cycle Vk have one degree in and one degree out,
we can add the following set of constraints:

∑m
j=1,j 6=i zi,j,k = xi,k,

∑m
j=1,j 6=i zj,i,k = xi,k,

for all i ∈ V . Then, by defining di,j , ‖qi − qj‖, we have the following constraints for the
period and total energy per period of the kth agent:

m∑

i=1

xi,kti,k +
1

vmax,k

m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j ≤ Tmax, (15)

Pℓ,s,k

m∑

i=1

xi,kti,k +

(
Pℓ,m,k

vmax,k
+ wk

) m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j + tc

m∑

i=1

xi,kPTX,min(qi, χ) ≤ Emax,k,

with ti,k ≥ 0 for all i, k. As can be seen, the left-hand side of both constraints are nonlinear
functions of ti,k and xi,k. In order to make the constraints linear, we consider a large constant
Ω > 0. We then add the linear constraints ti,k ≤ xi,kΩ, for all i, k, to guarantee that ti,k = 0
whenever xi,k = 0 (i 6∈ Vk), while there is no constraint on ti,k whenever xi,k = 1 (i ∈ Vk).
This way we can replace the nonlinear term xi,kti,k with ti,k in (15), without changing the
optimal solution. Furthermore, since the kth mobile agent does not need to stabilize any
POI out of Vk, we should modify the stability constraints of the kth mobile agent such that
they automatically become true for all i 6∈ Vk. This is done by considering the following
stability constraints:

αi,kti,k − ρi




m∑

i=1

ti,k +
1

vmax,k

m∑

i=1

m∑

j=1,j 6=i

zi,j,kdi,j



 + (1− xi,k)Ω ≥ ∆k, ∀i, k. (16)

We can see that when xi,k = 0, constraint (16) becomes true if Ω > 0 is large enough. It
is easy to confirm that any Ω ≥ max

{
Tmax,

(
maxi ρi

)
Tmax +maxk ∆k

}
can be considered

large enough for this set of constraints. Such an Ω also guarantees that whenever xi,k = 1,
the constraint ti,k ≤ xi,kΩ is always true. Based on this discussion, the MILP formulation
for solving (11) is given by Program 1.
Constraints 1, 2 and 3 in Program 1 are the stability, time and energy constraints, as

introduced before. Constraint 4 forces each POI i ∈ V to have exactly one degree in and
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PROGRAM 1 : MILP for finding optimal dynamic coverage policy in the communication-
intensive case

min
∑n

k=1 ̺kEk,
s.t.

1) αi,kti,k − ρi

(∑m
i=1 ti,k +

1
vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j

)
+ (1− xi,k)Ω ≥ ∆k, ∀i, k,

2)
∑m

i=1 ti,k +
1

vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j ≤ Tmax, ∀k,

3) Pℓ,s,k

∑m
i=1ti,k+

(
Pℓ,m,k

vmax,k
+ wk

)∑m
i=1

∑m
j=1,j 6=izi,j,kdi,j + tc

∑m
i=1xi,kPTX,min(qi, χ) ≤ Ek, ∀k,

4)
∑m

j=1,j 6=i zi,j,k = xi,k,
∑m

j=1,j 6=i zj,i,k = xi,k, ∀i, k,
5)
∑n

k=1 xi,k = 1, ∀i,
6)
∑m

i=1 ei = n,

7) ui − uj −m(ei + ej) + (m− 1)
∑n

k=1 zi,j,k ≤ m− 2, ∀i, j 6= i,
8) 2− ei ≤ ui ≤ m, ∀i,
9) ti,k ≤ xi,kΩ, ∀i, k,
10) xi,kPTX,min(qi, χ) ≤ PTX,max,k, ∀i, k,
11) Ek ≤ Emax,k, ∀k,
12) zi,j,k ∈ {0, 1}, xi,k ∈ {0, 1}, ei ∈ {0, 1}, ui ∈ N, 0 ≤ ti,k ≤ Ω, ∀i, j, k,

one degree out. Constraint 5 guarantees that each POI is assigned to one mobile agent.7

Constraints 6, 7 and 8 are the sub-tour elimination constraints (SECs), which are added
to prevent any invalid sub-tour on the set of POIs assigned to each agent [Gutin and
Punnen 2004]. To prevent sub-tours, we have introduced 2m auxiliary variables ei and ui,
for i ∈ V , and used a modified version of the well-known Miller-Tucker-Zemlin (MTZ)
constraints [Gutin and Punnen 2004; Na 2007]. Constraint 9 forces ti,k = 0 whenever
xi,k = 0. Constraint 10 is the transmission power constraint, which implies that if a POI is
assigned to a mobile agent, that mobile agent should be connected with a probability larger
than χ at the POI. Finally, constraint 11 is the constraint on the maximum total energy
consumption in each period. Note that the number of the POIs is assumed larger than the
number of the mobile agents (m > n).
Solving the MILP of Program 1 is NP-hard and, therefore, the computational complexity

of finding the optimal solution increases exponentially as a function of the number of POIs
and/or the number of mobile agents. However, the fact that the proposed dynamic coverage
problem becomes an MILP is helpful as there exist many solvers (such as IBM ILOG CPLEX
[CPL ] and SAS/OR [SAS ]) that can solve large scale MILPs very efficiently.
It is worth mentioning that MTZ formulations for sub-tour elimination, as used in vehicle

routing problem (VRP) or multiple traveling salesman problem (mTSP), typically assume
a fixed POI, called depot, through which all the mobile agents must pass [Bektas 2006].
The MTZ formulation used in Program 1 is different from those formulations, as it assumes
no depot [Na 2007]. The idea here is to introduce floating depot variables ei, for i ∈ V ,
which guarantee that whenever ei = 1 (the ith POI is selected as a depot), constraint 7 in
Program 1 is always true. Also note that the MTZ formulation has a polynomial size (i.e.,
the number of SECs is of polynomial order), compared to the exponential size of several
alternative formulations in the literature [Bektas 2006].
Next, we continue with solving the dynamic coverage problem in the communication-

efficient case.

7Note that if xi,k = 1, the kth mobile agent needs to visit at least one more POI (other than POI i) to
satisfy constrain 4 in Program 1. Therefore, the case of one single POI assigned to one agent is automatically
prevented, i.e., |V∗

k
| > 1 for all k.
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4. DYNAMIC COVERAGE OF TIME-VARYING ENVIRONMENTS IN THE

COMMUNICATION-EFFICIENT CASE

Unlike the communication-intensive case, the mobile agents in the communication-efficient
case are required to be connected only once along their trajectories. In this case, the commu-
nication points ξTX,k, for k = 1, · · · , n, are extra design variables that need to be optimized
along with the ones already introduced in the communication-intensive case. A dynamic
coverage policy in the communication-efficient case is defined as follows:

Definition 4.1. A dynamic coverage policy for the kth mobile agent in the
communication-efficient case is a tuple Pk =

(
Vk,Hk, vk, ξTX,k, PTX,k, {tTX,i,k}i∈Vk

)
. The

overall dynamic coverage policy to find is then the tuple P = (P1, · · · ,Pn).

Similarly, a dynamic coverage policy P is feasible in the communication-efficient case if the
following are true:

1) αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Hk)

vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n, (17)

2)
∑

i∈Vk

ti,k +
d(Hk)

vk
≤ Tmax, k = 1, · · · , n,

3) Pℓ,s,k

∑

i∈Vk

ti,k +

(
Pℓ,m,k

vk
+ wk

)
d(Hk) + tcPTX,k ≤ Emax,k, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,i,k ≥ SNRTHN0B

G(ξTX,k)
, k = 1, · · · , n,

5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n.
Note that based on Lemma 3.1, the dynamic coverage policy can be stabilized if each
mobile agent k is connected at the communication point ξTX,k. Following the stochastic
programming approach of Section 3, the optimal feasible dynamic coverage policy in the
communication-efficient case is given by the solution of the following optimization problem:

min
P

n∑

k=1

̺kEk (18)

s.t.

1) αi,kti,k − ρi

(
∑

i∈Vk

ti,k +
d(Hk)

vk

)
≥ ∆k, ∀i ∈ Vk, k = 1, · · · , n,

2)
∑

i∈Vk

ti,k +
d(Hk)

vk
≤ Tmax, k = 1, · · · , n,

3) Pℓ,s,k

∑

i∈Vk

ti,k +

(
Pℓ,m,k

vk
+ wk

)
d(Hk) + tcPTX,k ≤ Ek, k = 1, · · · , n,

4) PTX,max,k ≥ PTX,i,k ≥ PTX,min(ξTX,k, χ), k = 1, · · · , n,
5) 0 ≤ vk ≤ vmax,k, k = 1, · · · , n,
6) Ek ≤ Emax,k, k = 1, · · · , n,

where PTX,min(q, χ), for any q ∈ W , is defined in (10). The solution of (18) minimizes
a weighted sum of the total energy consumptions of the mobile agents in each period,
while satisfying the chanced-constrained version of (17). Similar to the communication-
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intensive case, we emphasize that a feasible dynamic coverage policy may not exist in
the communication-efficient case, depending on the channel qualities at the POIs and the
thresholds Tmax, PTX,max,k and Emax,k. Next we show how to find the optimal solution of
(18) using an MILP, in case the communication point for each agent is selected to be at one
of the POIs assigned to it.

4.1. Optimal Solution of Dynamic Coverage Problem in the Communication-Efficient Case

Generally, the communication point ξTX,k can be any point on the trajectory of the kth
agent. Finding the optimal dynamic coverage policy in this general case is, however, very
challenging. This is due to the fact that given the partition {Vk}nk=1 and conditioned on the
channel power over the workspace, the optimal Hamiltonian cycle for an agent k may become
different from the minimum-length Hamiltonian cycle H∗

k. In other words, since there is no
requirement for transmission at the POIs, moving to a point out of the minimum-length
Hamiltonian cycle can possibly minimize the communication energy and the resulting overall
energy consumption. In order to simplify the problem, we consider the following assumption
in this section:

Assumption 4.1. The communication point ξTX,k is selected to be at one of the POIs
in Vk, i.e., ξTX,k = qi, for some i ∈ Vk.

Based on this assumption and given a partition {Vk}nk=1, the optimal policy in the
communication-efficient case is then given by the following theorem:

Theorem 4.1. Consider a partition {Vk}nk=1 of V. Then, the following are true for the
solution of optimization problem (18):

(1 ) For a given set of non-negative stability margins ∆k, k = 1, · · · , n, (18) is feasible if
and only if the following are true, for k = 1, · · · , n:

1) min
i∈Vk

PTX,min(qi, χ) ≤ PTX,max,k, (19)

2)
∑

i∈Vk

ρi
αi,k

< 1,

3)
d(H∗

k)

vmax,k
≤ min

{
Tmaxφk −∆kηk,

(
Emax,k − wkd(H∗

k)
)
φk −∆kηkPℓ,s,k

(1− φk)Pℓ,s,k + φkPℓ,m,k

}
,

where H∗
k denotes the minimum-length Hamiltonian cycle on Vk, Emax,k , Emax,k −

tc mini∈Vk
PTX,min(qi, χ), φk , 1−∑i∈Vk

ρi

αi,k
and ηk ,

∑
i∈Vk

1
αi,k

.

(2 ) The maximum stability margin that can be selected for each agent k, for k = 1, · · · , n,
is given as follows when

∑
i∈Vk

ρi

αi,k
< 1:

∆max,k = min





Emax,k − wkd(H∗
k) +

(
Pℓ,s,k − Pℓ,m,k

) d(H∗

k)
vmax,k

Pℓ,s,k
, Tmax




φk
ηk

− 1

ηk

d(H∗
k)

vmax,k
.

(20)

(3 ) If (18) is feasible, the optimal Hamiltonian cycle of the kth agent is the minimum-length
Hamiltonian cycle H∗

k and its optimal velocity is the maximum velocity vmax,k. We also
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have the following for the rest of the optimal variables:

P ∗
TX,k = min

i∈Vk

PTX,min(qi, χ) and ξ
∗
TX,k = qi∗

k
, for i∗k = argmini∈Vk

PTX,min(qi, χ),

t∗i,k = ∆k

(
1

αi,k
+

ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(H∗
k)

vmax,k
, ∀i ∈ Vk, (21)

E∗
k = Pℓ,s,k

(
∆kηk
φk

+
1− φk
φk

d(H∗
k)

vmax,k

)
+

(
Pℓ,m,k

vmax,k
+ wk

)
d(H∗

k) + tc min
i∈Vk

PTX,min(qi, χ).

Proof. The proof is similar to the proof of Theorem 3.1 and is omitted for brevity.

Program 2 then shows an MILP formulation for solving (18). This MILP can be used
to find the optimal partitions, optimal cycles, optimal communication points and optimal
stopping times of the mobile agents, when the optimal velocities and transmission powers are
used. Note that, as compared to the communication-intensive case, the MILP formulation
is more complicated in this case, since the optimal transmission points of the mobile agent
are not known beforehand.

PROGRAM 2:MILP for finding optimal dynamic coverage policy in the communication-efficient
case

min
∑n

k=1 ̺kEk,
s.t.

1) αi,kti,k − ρi

(∑m
i=1 ti,k +

1
vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j

)
+ (1− xi,k)Ω

′ ≥ ∆k, ∀i, k,
2)
∑m

i=1 ti,k + 1
vmax,k

∑m
i=1

∑m
j=1,j 6=i zi,j,kdi,j ≤ Tmax, ∀k,

3) Pℓ,s,k

∑m
i=1ti,k+

(
Pℓ,m,k

vmax,k
+ wk

)∑m
i=1

∑m
j=1,j 6=izi,j,kdi,j + tc

∑m
i=1yi,kPTX,min(qi, χ) ≤ Ek, ∀k,

4)
∑m

j=1,j 6=i zi,j,k = xi,k,
∑m

j=1,j 6=i zj,i,k = xi,k, ∀i, k,
5)
∑n

k=1 xi,k = 1, ∀i,
6)
∑m

i=1 ei = n,

7) ui − uj −m(ei + ej) + (m− 1)
∑n

k=1 zi,j,k ≤ m− 2, ∀i, j 6= i,

8) 2− ei ≤ ui ≤ m, ∀i,
9) ti,k ≤ xi,kΩ

′, ∀i, k,
10)

∑m
i=1 yi,k = 1, ∀k,

11) yi,k ≤ xi,kΩ
′, ∀i, k,

12) yi,kPTX,min(qi, χ) ≤ PTX,max,k, ∀i, k,
13) Ek ≤ Emax,k, ∀k,
14) zi,j,k ∈ {0, 1}, xi,k ∈ {0, 1}, yi,k ∈ {0, 1}, ei ∈ {0, 1}, ui ∈ N, 0 ≤ ti,k ≤ Ω′, ∀i, j, k,

In Program 2, the constant Ω′ is selected large enough, similar to Ω in Program 1. Fur-
thermore, in addition to the variables used in Program 1, we have introduced mn auxiliary
binary variables yi,k, for i ∈ V and k = 1, · · · , n. For each mobile agent k, yi,k = 1 if the
ith POI is selected as the communication point, and yi,k = 0 otherwise. Constraint 10 in
Program 2 guarantees that only one POI in Vk is selected as the communication point.
Constraint 11 also forces yi,k = 0 whenever xi,k = 0. Explanation of other constraints is
similar to Program 1. Also, similar to the communication-intensive case, the number of the
POIs is assumed larger than the number of the mobile agents (m > n).
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4.2. Virtual POIs in the Communication-Efficient Case

The coverage task in the communication-efficient case can be feasibly stabilized if at least one
POI is connected along the Hamiltonian cycle of each mobile agent (as opposed to all POIs
in the communication-intensive case). In case there is no feasible dynamic coverage policy
in the communication-efficient case, due to a poor channel quality at the POIs, we may be
able to feasibly stabilize the coverage task by adding a number of virtual POIs. These are
points close enough to the actual POIs, which have a good channel quality. Adding virtual
POIs does not guarantee the existence of a feasible coverage policy. It, however, increases
the chance of finding such a policy in case the channel quality is low at the positions of the
actual POIs.

5. PROBABILISTIC ANALYSIS OF THE DYNAMIC COVERAGE PROBLEM

In this section, we complete our dynamic coverage framework by probabilistically analyzing
some of the properties of the considered dynamic coverage problem, such as average mini-
mum energy required for coverage or maximum number of POIs that can be covered by a
mobile agent. In other words, we want to answer the following questions: if the positions of
the POIs assigned to an agent and the channel powers at the POIs are distributed according
to certain distributions, what is the maximum number of POIs that can be covered by that
agent and what is the average minimum total energy consumed by the agent to cover a given
number of POIs? Such analysis can help considerably in the planning phase by providing
a priori knowledge about the dynamic coverage performance before the deployment of the
mobile agents. Note that probabilistic analysis is very common in both wireless commu-
nications and TSP literature. For instance, average performance metrics are characterized
for a case that a cell phone user is going to operate in an environment where the channel
has a certain distribution (see Chapter 6 of [Goldsmith 2005]). Also, probabilistic analysis
of TSP is performed for a given spatial distribution for the POIs [Bullo et al. 2011; Gutin
and Punnen 2004]. The contribution of this section is then to provide a probabilistic perfor-
mance analysis for our networked dynamic coverage problem considering the distribution
of the communication links and the spatial distribution of POIs.
Next, we build on our communication-intensive and communication-efficient results and

derive conditions for a dynamic coverage policy to be feasible with a large probability, in case
the channel powers at the POIs as well as the positions of the POIs assigned to the agent
are stochastic and drawn from certain distributions. We then find the maximum number of
POIs that can be assigned to the agent given limited energy and time budgets, as well as
the average minimum energy required to feasibly cover a given number of POIs. Without
loss of generality, in this section we assume that ρi and αi,k are constant, i.e., ρi = ρ and
αi,k = αk, for i ∈ V and k = 1, · · · , n. We furthermore assume that Pℓ,s,k = Pℓ,m,k = Pℓ,k,
for k = 1, · · · , n.8 Also, in order to better follow the discussion, we assume that the channel
is known, i.e., for any realization of the channel and for any given set of POIs, the agents
plan based on the full knowledge of the channel.
Note that, given the distributions of the channel powers and the positions of the POIs

assigned to each agent, our main goal is to find the probability of having a feasible dy-
namic coverage policy and derive conditions that guarantee this probability is larger than
a threshold. More specifically, we are interested in satisfying the following:

P

{
Constraints 1 to 5 of (8) or (17) hold

}
≥ χ. (22)

8Note that these assumptions are made to simplify the theoretical analysis of this section. Similar results
can be found for the case that either one of these assumptions does not hold. For instance, the results of this
section can be easily extended to the case that ρi, for i = 1, · · · , n, are i.i.d. random variables, independent
of the channel and the positions of the POIs, or the case where Pℓ,s,k 6= Pℓ,m,k.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 A. Ghaffarkhah and Y. Mostofi

Deriving such conditions for our networked dynamic coverage problem without any simpli-
fication is, however, considerably challenging. Therefore, similar to Section 3 and Section
4, we use a sub-optimal approach based on stochastic programming, i.e., we replace any
stochastic constraint in (8) or (17) with its chance constraint, while treating the rest of the
variables, aside from channel powers and the positions of the POIs, deterministically.
Consider the kth mobile agent to which mk POIs are assigned. Based on the well-

established probabilistic channel models, we assume that the pdf of the channel power
(in the dB domain) at any position q ∈ W is given by a Gaussian distribution with mean

G̃dB(q) and variance σ̃2(q).9 Moreover, we assume that the joint pdf of the channel pow-

ers at any given set of positions Qk ,
[
qT1 , · · · , qTmk

]T
, corresponding to the positions of

the POIs assigned to the kth agent, is given by a multi-variate Gaussian distribution with

mk × 1 mean vector G̃dB(Qk) and mk ×mk covariance matrix Σ̃(Qk). As for the pdf of the
positions of the POIs assigned to the kth agent, we consider a large10 number of POIs that
are independently and identically distributed (i.i.d.) according to an absolutely continuous
pdf ψ(q). The following result from the probabilistic traveling salesman problem (PTSP)
literature is also used extensively in the rest of this section:

Lemma 5.1. Consider a single mobile agent, e.g., the kth one. Assume that the POIs
assigned to this agent are i.i.d. according to an absolutely continuous pdf ψ(q) defined over
the compact set W. Then, there exists a constant θTSP such that

P

{
lim

mk→∞
d(H∗

k)√
mk

= θTSP

∫

W

√
ψ(q)dq

}
= 1,

lim
mk→∞

E
{
d(H∗

k)
}

√
mk

= θTSP

∫

W

√
ψ(q)dq, (23)

where mk = |Vk| is the number of POIs assigned to the kth mobile agent.

Proof. See [Gutin and Punnen 2004].

The constant θTSP has been estimated to be around 0.765 [Larson and Odoni ]. Let us define

ζ , θTSP

∫
W
√
ψ(q)dq. Lemma 5.1 implies that asymptotically d(H∗

k) converges to ζ
√
mk

with probability one. For convex environments, ζ
√
mk is a tight approximation for d(H∗

k)
for mk as small as 15 [Larson and Odoni ]. The assumption of large number of POIs in
this section is then equivalent to mk ≥ 15, for k = 1, · · · , n, which is required to guarantee
that ζ

√
mk remains a tight approximation for d(H∗

k). Next, we continue with probabilistic
analysis of the dynamic coverage problem in the communication-intensive case.

5.1. Probabilistic Analysis of the Dynamic Coverage Problem in the Communication-Intensive

Case

Let us start with finding the probability of connectivity of the kth mobile agent at the ith
POI in the communication-intensive case, when qi is a random variable and distributed
according to pdf ψ(q). We calculate this by first conditioning on qi and then averaging over
its distribution:

P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
=

∫

W
Q

(
10 log10

(
SNRTHN0B

PTX,i,k

)
− G̃dB(qi)

σ̃(qi)

)
ψ(q)dq. (24)

9We assume a general Gaussian distribution for the channel power in this section. A special case of such
channel distribution is the one given by our probabilistic channel assessment framework, which we used in

Section 3 and Section 4. In that case, G̃dB(q) = ĜdB(q) and σ̃(q) = σ(q).
10The meaning of a large number of POIs will be explained shortly in this section.
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By using the fact that the right-hand side of (24) is an increasing function of PTX,i,k, we

have the following condition to guarantee P

{
PTX,i,kG(qi)

N0B
≥ SNRTH

}
≥ χ:

PTX,i,k ≥ 10−ĞdB(χ)/10 SNRTHN0B , P̃TX,min(χ), i ∈ Vk, k = 1, · · · , n, (25)

where ĞdB(χ) is the unique solution to the following equation as a function of G:

∫

W
Q

(
G− G̃dB(q)

σ̃(q)

)
ψ(q)dq = χ. (26)

Consequently, in the chance-constrained version of (8) in this case, it is sufficient to replace
SNRTHN0B

G(qi)
in constraint 4 with P̃TX,min(χ).

Next consider the constraints 1, 2 and 3 in (8). It can be seen that given mk, the only
stochastic quantity in these constraints is d(Hk). From Theorem 3.1, we know that, for
a given set of POIs, the optimal Hamiltonian cycle for the kth is the minimum-length
Hamiltonian cycle H∗

k. Without loss of generality, we can therefore replace d(Hk) with
d(H∗

k) in these constraints. On the other hand, from Lemma 5.1, d(H∗
k) converges to ζ

√
mk.

If mk is large enough such that the d(H∗
k) is approximately equal to ζ

√
mk, we can then

replace d(Hk) with ζ
√
mk in constraints 1, 2 and 3 in (8) to form the chance constraints.

Based on these results, we can conclude that to form the chance-constrained version of

(8) in this case, it is sufficient to replace d(Hk) with ζ
√
mk and SNRTHN0B

G(qi)
with P̃TX,min(χ),

assuming that mk remains large. Furthermore, the results of Theorem 3.1 hold in this case
too, provided that the same replacement is done. Given a large mk, this implies that there
exists at least one feasible solution that satisfies the chance-constrained version of (8) if the
following are true, for k = 1, · · · , n:

1) P̃TX,min(χ) ≤ PTX,max,k, (27)

2) mk <
αk

ρ
,

3) min

{
Emax,k − tcmkP̃TX,min(χ)− wkζ

√
mk

Pℓ,k
, Tmax

}(
1−mk

ρ

αk

)
≥ ζ

√
mk

vmax,k
.

Note that to find the conditions in (27), we set ∆k = 0. By setting ∆k = 0, we find the
least restrictive feasibility conditions. Also, since mk is assumed large, it is necessary (but
not sufficient) to assume a large αk

ρ in order to satisfy (27).

5.1.1. An Upper Bound on the Maximum Number of POIs Covered by a Mobile Agent in the

Communication-Intensive Case. The conditions in (27) can be used to characterize an upper
bound on the maximum number of POIs that can be covered by a mobile agent, which is
an important performance metric for a given dynamic coverage task. Consider the following
theorem:

Theorem 5.1. Assume that for the kth agent and for the given χ, we have P̃TX,min(χ) ≤
PTX,max,k, where P̃TX,min(χ) is given by (25). Then, an upper-bound on the maximum num-
ber of POIs that can be assigned to the kth agent in the communication-intensive case, to
satisfy (27), is given as follows:

mk =






min
{
s2k,1, s

2
k,2

}
, Ak ∩ Bk = ∅, Emax,k > Pℓ,kTmax

max
{
s2
∣∣s ∈ Ak ∩ Bk

}
, Ak ∩ Bk 6= ∅, Emax,k > Pℓ,kTmax

max
{
s2
∣∣s ∈ A′

k ∩ Bk

}
, A′

k ∩ Bk 6= ∅, Emax,k ≤ Pℓ,kTmax

, (28)
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provided that such mk exists and is sufficiently large. Here,

sk,1 =
−ζ/vmax,k +

√
ζ2/v2max,k + 4T 2

maxρ/αk

2Tmaxρ/αk
, (29)

sk,2 =
−ζwk +

√
ζ2w2

k + 4tcP̃TX,min(χ) (Emax,k − Pℓ,kTmax)

2tcP̃TX,min(χ)
,

sk,3 = min






√
αk

ρ
,
−ζwk +

√
ζ2w2

k + 4tcP̃TX,min(χ)Emax,k

2tcP̃TX,min(χ)




 ,

Ak =
{
s
∣∣sk,2 ≤ s ≤ sk,3

}
, A′

k =
{
s
∣∣0 ≤ s ≤ sk,3

}
,

Bk =

{
s

∣∣∣∣
(
ζPℓ,k

vmax,k
+ζwk

)
s+

(
tcP̃TX,min(χ)+

Emax,kρ

αk

)
s2−ζwkρ

αk
s3−tcP̃TX,min(χ)ρ

αk
s4 ≤ Emax,k

}
.

Proof. Consider the constraints in (27) and assume thatmk is large enough. By defining

the variable s ,
√
mk and considering two cases of

Emax,k−tcmkP̃TX,min(χ)−wkζ
√
mk

Pℓ,k
≥ Tmax

and
Emax,k−tcmkP̃TX,min(χ)−wkζ

√
mk

Pℓ,k
≤ Tmax separately, we can conclude that any feasible

s ≥ 0 satisfies one of the following sets of constraints:
{

Tmaxρ
αk

s2 + ζ
vmax,k

s ≤ Tmax,

tcP̃TX,min(χ)s
2 + wkζs ≤ Emax,k − Pℓ,kTmax

(30)

or




Emax,k ≥ tcP̃TX,min(χ)s
2 + wkζs ≥ Emax,k − Pℓ,kTmax,

s2 ≤ αk

ρ ,(
ζPℓ,k

vmax,k
+ ζwk

)
s+

(
tcP̃TX,min(χ) +

Emax,kρ
αk

)
s2− ζwkρ

αk
s3− tcP̃TX,min(χ)ρ

αk
s4 ≤ Emax,k.

(31)

Note that the condition s2 ≤ αk

ρ is not necessary for the first set of constraints. First

assume that Emax,k > Pℓ,kTmax. Then, the maximum s ≥ 0 that satisfies the first set of

constraints is simply the minimum of the positive roots of Tmaxρ
αk

s2 + ζ
vmax,k

s = Tmax and

tcP̃TX,min(χ)s
2 + wkζs = Emax,k − Pℓ,kTmax, which are sk,1 and sk,2 in (29), respectively.

Similarly, any s ≥ 0 that satisfies the second set of constraints 1) must be greater than

or equal to sk,2 and less than or equal to the minimum of
√
αk/ρ and the positive root

of tcP̃TX,min(χ)s
2 + wkζs = Emax,k, which is sk,3 in (29), and 2) must satisfy the fourth-

order polynomial inequality in the second set of constraints. Therefore, the maximum s that
satisfies the second set of constraints is simply the maximum s in Ak ∩ Bk, for Ak and Bk

defined in (29). Note that all the elements of Ak∩Bk are necessarily greater than or equal to
min

{
sk,1, sk,2

}
. Therefore, if Ak ∩ Bk 6= ∅, the upper bound on s is the maximum element

of Ak ∩ Bk. However, if Ak ∩ Bk = ∅, the upper bound on s is given by min
{
sk,1, sk,2

}
.

Now assume that Emax,k ≤ Pℓ,kTmax. In this case the first set of constraints does not hold
for any s ≥ 0 and only the second set of constraints needs to be considered. Following a
similar procedure, we can conclude that the maximum s possible that satisfies the second
set of constraints is the maximum s in A′

k ∩ Bk. This completes the proof.
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5.1.2. Average Minimum Energy Per Period Consumed to Cover a Set of POIs by a Mobile Agent

in the Communication-Intensive Case. Another performance metric to characterize probabilis-
tically is the average of the minimum energy consumed in one period by the kth mobile
agent to feasibly cover its assigned POIs. We can directly characterize this, without having
to use the chance-constrained approximation. This is given by the following theorem in case
of large mk, i.i.d. POIs and Gaussian channels (in the dB domain):

Theorem 5.2. Assume that for any given channel and any set of POIs in the envi-
ronments, the channel powers at the POIs are known by the mobile agents. Then, in the
communication-intensive case, the average of the minimum energy consumed in one period
by the kth mobile agent to feasibly cover its assigned mk POIs is given as follows:

Emin,ave,k =



 Pℓ,k(
1−mk

ρ
αk

)
vmax,k

+ wk



 ζ√mk + tcmkSNRTHN0B

∫

W

exp
(
1
2 σ̄

2(q)
)

10
G̃dB(q)

10

ψ(q)dq,

(32)

where σ̄(q) , log(10)
10 σ̃(q), mk <

αk

ρ , and mk remains large enough.

Proof. The minimum energy occurs when the stability margin is zero. Also, when
the channel is assessed perfectly at the positions of the POIs, we have PTX,min(qi, χ) =
SNRTHN0B

G(qi)
, for any qi. By setting ∆k = 0 and PTX,min(qi, χ) = SNRTHN0B

G(qi)
in (14), we

obtain

Emin,ave,k = E {E∗
k} =


 Pℓ,k(

1−mk
ρ
αk

)
vmax,k

+ wk


E
{
d(H∗

k)
}

+ tcmkSNRTHN0B

∫

W
E

{
1

G(q)

∣∣∣∣q
}
ψ(q)dq, (33)

where averaging is done over every possible distribution of the channel. The channel power
G(q) is log-normally distributed in the linear domain (it has a Gaussian distribution in the

dB domain, with mean G̃dB(q) and variance σ̃2(q)). We then have

E

{
1

G(q)

∣∣∣∣q
}

=

∫ ∞

0

10

log(10)
√
2πσ̃(q)G2

exp

(
−
(
10 log10(G) − G̃dB(q)

)2

2σ̃2(q)

)
dG

=
exp

(
1
2 σ̄

2(q)
)

10
G̃dB(q)

10

. (34)

Also, using Lemma 5.1, E
{
d(H∗

k)
}
= ζ

√
mk for large mk. By substituting E

{
1

G(q)

∣∣∣q
}

and

E
{
d(H∗

k)
}
into (33), (32) is obtained.

5.2. Probabilistic Analysis of the Dynamic Coverage Problem in the Communication-Efficient

Case

The same approach of Section 5.1 can be followed to probabilistically analyze the dynamic
coverage problem in the communication-efficient case. Assume that mk is large. Similar to
Section 5.1, to form the chance-constrained version of (17), when both the channel and
the positions of the POIs are stochastic, it is sufficient to replace d(Hk) with ζ

√
mk and

SNRTHN0B
G(ξTX,k)

with P̃TX,min(χ), assuming that mk remains large. Similarly, it can be easily

shown that there exists at least one feasible solution that satisfies the chance-constrained
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version of (17) if the following are true, for k = 1, · · · , n:
1) P̃TX,min(χ) ≤ PTX,max,k, (35)

2) mk <
αk

ρ
,

3) min

{
Emax,k − tcP̃TX,min(χ)− wkζ

√
mk

Pℓ,k
, Tmax

}(
1−mk

ρ

αk

)
≥ ζ

√
mk

vmax,k
,

where mk is assumed large enough. It can be seen that assuming tc is the same for both
communication-intensive and communication-efficient cases, the conditions in (35) are less
restrictive than those of (27), as the mobile agents are required to communicate to the
remote station once during their trajectories.

5.2.1. An Upper Bound on the Maximum Number of POIs Covered by a Mobile Agent in the

Communication-Efficient Case. Similar to the communication-intensive case, we use (35) to
find an upper bound on the maximum number of POIs that can be assigned to each agent.
Consider the following theorem:

Theorem 5.3. Assume that for the kth agent and for the given χ, we have P̃TX,min(χ) ≤
PTX,max,k, where P̃TX,min(χ) is given by (25). Then, in the communication-efficient case,
an upper-bound on the maximum number of POIs that can be assigned to the kth agent, to
satisfy (35), is given as follows:

mk =






min
{
s2k,1, s

2
k,2

}
, Ak ∩ Bk = ∅, Emax,k − tcP̃TX,min(χ) > Pℓ,kTmax

max
{
s2
∣∣s ∈ Ak ∩ Bk

}
, Ak ∩ Bk 6= ∅, Emax,k − tcP̃TX,min(χ) > Pℓ,kTmax

max
{
s2
∣∣s ∈ A′

k ∩ Bk

}
, A′

k ∩ Bk 6= ∅, Emax,k − tcP̃TX,min(χ) ≤ Pℓ,kTmax

, (36)

provided that such mk exists and is sufficiently large. Here,

sk,1 =
−ζ/vmax,k +

√
ζ2/v2max,k + 4T 2

maxρ/αk

2Tmaxρ/αk
, (37)

sk,2 =
Emax,k − tcP̃TX,min(χ)− Pℓ,kTmax

ζwk
,

sk,3 = min

{√
αk

ρ
,
Emax,k − tcP̃TX,min(χ)

ζwk

}
,

Ak =
{
s
∣∣sk,2 ≤ s ≤ sk,3

}
, A′

k =
{
s
∣∣0 ≤ s ≤ sk,3

}
,

Bk =

{
s

∣∣∣∣
(
ζPℓ,k

vmax,k
+ ζwk

)
s+

(
Emax,k − tcP̃TX,min(χ)

)
ρ

αk
s2 − ζwkρ

αk
s3 ≤ Emax,k

}
.

Proof. Consider the constraints in (35) and assume thatmk is large enough. By defining

the variable s ,
√
mk and considering two cases of

Emax,k−tcP̃TX,min(χ)−wkζ
√
mk

Pℓ,k
≥ Tmax and

Emax,k−tcP̃TX,min(χ)−wkζ
√
mk

Pℓ,k
≤ Tmax separately, we can conclude that any feasible s ≥ 0

satisfies one of the following sets of constraints:
{

Tmaxρ
αk

s2 + ζ
vmax,k

s ≤ Tmax

s ≤ Emax,k−tcP̃TX,min(χ)−Pℓ,kTmax

ζwk

(38)
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or




Emax,k−tcP̃TX,min(χ)
ζwk

≥ s ≥ Emax,k−tcP̃TX,min(χ)−Pℓ,kTmax

ζwk
,

s2 ≤ αk

ρ ,(
ζPℓ,k

vmax,k
+ ζwk

)
s+

(Emax,k−tcP̃TX,min(χ))ρ
αk

s2 − ζwkρ
αk

s3 ≤ Emax,k.

(39)

The maximum s that satisfies one of these constraints is then found using a procedure

similar to that of Theorem 5.1 for two cases of Emax,k − tcP̃TX,min(χ) > Pℓ,kTmax and

Emax,k − tcP̃TX,min(χ) ≤ Pℓ,kTmax.

5.2.2. Average Minimum Energy Per Period Consumed to Cover a Set of POIs by a Mobile Agent in

the Communication-Efficient Case. Similar to the communication-intensive case, the average of
the minimum energy consumed in one period by the kth mobile agent to cover its assigned
POIs in the communication-efficient case is given by the following theorem:

Theorem 5.4. Without loss of generality, assume that Vk = {1, · · · ,mk}. Also, assume
that for any given channel and any set of POIs in the environments, the channel powers at
the POIs are known by the mobile agents. Then, in the communication-efficient case, the
average of the minimum energy consumed in one period by the kth mobile agent to feasibly
cover its assigned mk POIs is given as follows:

Emin,ave,k =



 Pℓ,k(
1−mk

ρ
αk

)
vmax,k

+ wk



 ζ√mk

+ tcSNRTHN0B

∫

W
· · ·
∫

W

∫ ∞

−∞
10−x/10 ∂

∂x
Υ(x,Qk)ψ(q1) · · ·ψ(qmk

)dxdQk,

(40)

where Qk ,
[
qT1 , · · · , qTmk

]T
is the stacked vector of the positions of the POIs in Vk, mk <

αk

ρ ,

Υ(x,Qk) ,

∫ x

−∞
· · ·
∫ x

−∞

exp
(
− 1

2

(
GdB − G̃dB(Qk)

)T
Σ̃−1(Qk)

(
GdB − G̃dB(Qk)

))

(2π)
mk
2

∣∣Σ̃(Qk)
∣∣ 12

dGdB,

(41)

and G̃dB(Qk) and Σ̃(Qk) denote the mean vector and the covariance matrix of the multi-
variate Gaussian distribution characterizing the channel powers at the POIs in the dB do-
main.

Proof. The proof is similar to the proof of Theorem 5.2. The minimum energy occurs
when the stability margin is zero. Also, when the channel is assessed perfectly at the posi-
tions of the POIs, we have PTX,min(qi, χ) =

SNRTHN0B
G(qi)

, for any qi. By setting ∆k = 0 and

PTX,min(qi, χ) =
SNRTHN0B

G(qi)
in (21), we obtain

Emin,ave,k = E {E∗
k} =


 Pℓ,k(

1−mk
ρ
αk

)
vmax,k

+ wk


E
{
d(H∗

k)
}

+ tcSNRTHN0B

∫

W
· · ·
∫

W
E

{
1

maxi∈Vk
G(qi)

∣∣∣∣Qk

}
ψ(q1) · · ·ψ(qmk

)dQk. (42)
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The joint distribution of the channel powers G(qi), for i ∈ Vk, is given by a multivariate

Gaussian distribution with mean vector G̃dB(Qk) and covariance matrix Σ̃(Qk), in the dB

domain. Let us define Gmax , maxi∈Vk
GdB(qi). Then, the cumulative density function

(cdf) of Gmax is given as follows:

P{Gmax ≤ x} =

∫ x

−∞
· · ·
∫ x

−∞

exp
(
− 1

2

(
GdB − G̃dB(Qk)

)T
Σ̃−1(Qk)

(
GdB − G̃dB(Qk)

))

(2π)
mk
2

∣∣Σ̃(Qk)
∣∣ 12

dGdB

= Υ(x,Qk). (43)

We therefore have

E

{
1

maxi∈Vk
G(qi)

∣∣∣∣Qk

}
=

∫ ∞

−∞
10−x/10 ∂

∂x
Υ(x,Qk)dx. (44)

Also, using Lemma 5.1, E
{
d(H∗

k)
}

= ζ
√
mk for large mk. By substituting E

{
1

G(q)

∣∣∣q
}

and E
{
d(H∗

k)
}
into (42), (40) is obtained.

Note that the average of the minimum energy per period in the communication-efficient
case is more complicated than the one derived in the communication-intensive case, due
to the dependency of the joint pdf of the channel powers at the POIs. Another important
difference is that the communication part in Emin,ave,k is a decreasing function of mk in the
communication-efficient case, while it is an increasing function ofmk in the communication-
intensive case. This can be explained using the fact that in a given environment by increasing
the number of POIs, the chance of finding a larger channel power will also increase. This
decreases the transmission power required for connectivity in the communication-efficient
case. This is explained in more details in the next section.

6. SIMULATION RESULTS

In this section, we present our simulation results for the dynamic coverage of a time-varying
environment using the proposed framework. The simulation environment was implemented
in C++ and MATLAB. To solve the MILPs, we used IBM ILOG CPLEX Optimization
Studio v12.2.
Fig. 3 shows the result of applying the proposed dynamic coverage framework to cover 24

POIs using 3 mobile agents, in a 200 m by 200 m workspace. The wireless channel between
the mobile agents and the remote station is generated using our probabilistic channel sim-
ulator, which can generate path loss, shadowing and multipath fading with realistic spatial
correlations. A detailed description of this channel simulator can be found in [Mostofi et al.
2009; Gonzalez-Ruiz et al. 2011]. The 3D plot of the channel power over the workspace is
shown in Fig. 2. In this example, the shadowing component of the channel is log-normally
distributed in the linear domain (has a zero-mean Gaussian distribution in the dB domain).
The multipath fading component is also Rician-distributed in the linear domain. The remote
station is located at position qb = (−80, 80, 0.5) m. The following channel parameters are
also used: KdB = −5 dB, nPL = 2, ϑ = 5 dB, β = 30 m and ω = 2 dB. See Appendix A for
the descriptions of the channel parameters and the distributions of the shadowing and mul-
tipath components. The rest of the parameters are as follows: SNRTH = 25 dB, BN0 = −90
dB, αi,k = 100, Tmax = 6000 s, Emax,k = 40 J, vmax,k = 0.1 m/s, PTX,max,k = 800 mW,
Pℓ,m,k = 0.1 mW, Pℓ,s,k = 0.2 mW, wk = 0.1 J/m (corresponding to a small-size light-load
robot) and ∆k = 0, for i = 1, · · · , 24 and k = 1, 2, 3. Furthermore, we set ̺k = 1

3 , for
k = 1, 2, 3, and tc = 20 s in both communication-intensive and communication-efficient
cases. Note that the value of tc is small enough such that communication can be done while
stopping at the positions of the POIs (or while being very close to them).
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Fig. 2: The 3D plot of the channel power G(q) over the workspace of Fig. 3.

Fig. 3 (left) and Fig. 3 (right) show the optimal trajectories of the mobile agents in
the communication-intensive and communication-efficient cases respectively and for the
case of known channel. The optimal communication points for each mobile agent in the
communication-efficient case is also specified by a circle in Fig. 3 (right). The values of
ρi and G(qi) for all the POIs are listed in Table II. The optimal stop times at all the
POIs, in both communication-intensive and communication-efficient cases, are listed in Ta-
ble III. The optimal period, optimal total energy per period, optimal motion energy per
period and optimal communication energy per period, in both communication-intensive and
communication-efficient cases and for all the mobile agents, are also listed in Table IV.
In can be seen that the optimal period and the optimal motion energy per period are larger

for longer routes, as expected. The optimal communication energy per period, on the other
hand, is a function of channel qualities at the POIs. For instance, in the communication-
intensive case, Agent 2 (dashed-blue trajectory) is assigned to 5 POIs only. However, the
optimal communication energy per period is the largest for this agent. This is due to the
fact that the POIs assigned to this agent experience the lowest channel qualities among
the POIs, as can be seen from Table II. On the other hand, Agent 1 (solid-red trajectory)
consumes the minimum communication energy in the communication-intensive case as its
assigned POIs experience highest channel qualities. The same discussion applies to the
optimal motion and communication energies in the communication-efficient case.
From Table IV, one can also see that the communication energy per period in the

communication-efficient case is much less than the one in the communication-intensive case,
as expected.11 Furthermore, it can be confirmed that the optimal communication point for
each mobile agent in the communication-efficient case is the POI that experiences the maxi-
mum channel power among all the POIs assigned to that agent. It is worth mentioning that
in this example the mobile agents are identical. Therefore, we can alternatively assign any
mobile agent to any partition, in both communication-intensive and communication-efficient
cases, without changing the optimal solution. Another important note is that for a given
Emax,k, the communication-efficient case imposes less constraint on the motion, since less
communication energy is consumed as compared to the communication-intensive case (same
tc is used for both cases). Note that the optimal partition found for the communication-
efficient case cannot be used for the communication-intensive case as it violates the con-
straint on the total energy per period.

11Note that we assumed the same tc for both cases.
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POI ρi G(qi) (dB) POI ρi G(qi) (dB) POI ρi G(qi) (dB)
1 2.01 -48.3 9 2.89 -42.8 17 2.38 -43.2
2 1.47 -49.3 10 1.92 -62.7 18 1.26 -30.3
3 1.23 -46.3 11 1.78 -51 19 1.74 -40.1
4 2.84 -45.9 12 1.54 -56.4 20 2.78 -43.7
5 2.91 -37.1 13 2.97 -51.4 21 1.34 -35.5
6 2.71 -46.5 14 1.59 -53.8 22 2.85 -54.1
7 1.19 -45.2 15 1.78 -49.4 23 2.42 -42.9
8 1.71 -39.8 16 1.39 -41.7 24 2.07 -34.9

Table II: The value of ρi and G(qi) at the POIs in Fig. 3.

Communication-Intensive Case Communication-Efficient Case
POI t∗i,k POI t∗i,k POI t∗i,k POI t∗i,k
1 63.3 s 13 93.5 s 1 107 s 13 158 s
2 46.1 s 14 50 s 2 77.6 s 14 84.2 s
3 54.4 s 15 78.5 s 3 49.9 s 15 72 s
4 50.2 s 16 24.4 s 4 151 s 16 56.1 s
5 91.6 s 17 105 s 5 154 s 17 96.2 s
6 47.8 s 18 55.6 s 6 144 s 18 6.2 s
7 52.6 s 19 76.8 s 7 48.2 s 19 8.56 s
8 75.6 s 20 123 s 8 69.4 s 20 113 s
9 128 s 21 42.1 s 9 117 s 21 70.9 s
10 33.8 s 22 89.7 s 10 101 s 22 151 s
11 56 s 23 76 s 11 94.4 s 23 128 s
12 27.1 s 24 91.6 s 12 81.4 s 24 84 s

Table III: The optimal stop times at all the POIs in Fig. 3 in both communication-intensive and
communication-efficient cases.

Communication-Intensive Case Communication-Efficient Case
k T ∗

k E∗
k E∗

m,k E∗
TX,k k T ∗

k E∗
k E∗

m,k E∗
TX,k

1 4414 s 37.85 J 36.26 J 1.587 J 1 4050 s 33.94 J 33.92 J 0.01939 J
2 1764 s 31.14 J 16 J 15.14 J 2 5298 s 38.67 J 38.64 J 0.02229 J
3 3144 s 31.66 J 25.74 J 5.924 J 3 492.1 s 4.831 J 4.824 J 0.006781 J

Table IV: The optimal period, optimal total energy per period, optimal motion energy per period and
optimal communication energy per period in both communication-intensive and communication-efficient
cases and for all the mobile agents in Fig. 3.

Fig. 4 (left) and Fig. 4 (right) show the plots of Ψi(t) at the remote station for one sample
POI in Fig. 3 (POI #4), in communication-intensive and communication-efficient cases
respectively. In the communication-efficient case, the plot of Φi(t) is also shown (note that
in the communication-intensive case Ψi(t) is identical to Φi(t)). Without loss of generality,
in both figures we assume that at t = 0 the agent starts at POI 4. In the communication-
efficient case, we also assume that communication happens at the end of visiting the POI
that is selected as the optimal communication point (POI 21 in this case). In can be seen
that Ψi(t) remains bounded at the remote station in both cases. Similar plots can also be
obtained for other POIs in Fig. 3.
Note that for a fixed Vk, the maximum value of Ψi(t) for any i ∈ Vk is larger in the

communication-efficient case, as compared to the communication-intensive case. This is due
to the fact that in the communication-efficient case, there is generally a delay in reporting
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Fig. 3: The optimal trajectories of the mobile agents in the communication-intensive (left) and
communication-efficient (right) cases for the case of known channel. The solid red, dashed blue and dot-
dashed green lines correspond to the trajectories of Agent 1, 2 and 3 respectively. The location of the remote
station is denoted at the top left corner of the figures. The optimal communication points for each mobile
agent in the communication-efficient case is also specified by a circle in the right figure.

the observation of each POI, which results in a non-zero minimum for Ψi(t). However, the
communication-efficient case can stabilize the dynamic coverage task with less constraints
on the connectivity.
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Fig. 4: The plot of Ψi(t) at the remote station for POI #4 in Fig. 3 in communication-intensive (left) and
communication-efficient (right) cases. In the communication-efficient case, the plot of Φi(t) at the mobile
agent is also provided.

Next, consider the case where the channel powers at the POIs are not known and are
assessed probabilistically. Assume the same workspace and channel of Fig. 3. In order to
show our results more clearly, assume that only one mobile agent is used to cover the
POIs. The system parameters are taken to be the same as the previous case, except we
have αi = 200, Tmax = 12000 s, Emax = 200 J, and ∆ = 2000 in this case. Note that
we dropped the dependency of the system parameters on k, as we have only one mobile
agent in this case. In this example, we assume that the channel is assessed using 0.5% of
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POI t∗i PTX,min(qi, χ)
SNRTHN0B

G(qi)
POI t∗i PTX,min(qi, χ)

SNRTHN0B
G(qi)

1 113.13 s 67.259 mW 21.316 mW 13 162.38 s 127.25 mW 43.702 mW
2 85.084 s 122.72 mW 26.615 mW 14 91.422 s 200.61 mW 74.99 mW
3 73.151 s 44.735 mW 13.532 mW 15 101.09 s 125.84 mW 27.739 mW
4 155.76 s 45.637 mW 12.171 mW 16 81.005 s 36.209 mW 4.7053 mW
5 159.26 s 4.1431 mW 1.6186 mW 17 131.75 s 16.905 mW 6.5547 mW
6 148.9 s 71.488 mW 14.09 mW 18 74.563 s 1.338 mW 0.33904 mW
7 71.034 s 49.583 mW 10.496 mW 19 99.129 s 12.229 mW 3.206 mW
8 97.799 s 18.894 mW 2.9919 mW 20 152.51 s 22.329 mW 7.4526 mW
9 158.17 s 28.176 mW 6.0823 mW 21 78.6 s 7.8333 mW 1.1143 mW
10 108.17 s 774.54 mW 589.35 mW 22 156.13 s 224.98 mW 80.994 mW
11 101.33 s 165.64 mW 39.749 mW 23 133.92 s 41.428 mW 6.118 mW
12 88.73 s 185.93 mW 136.71 mW 24 116.3 s 2.1681 mW 0.96975 mW

Table V: The optimal stop times (for both communication-intensive and communication-efficient cases),

and the values of SNRTHN0B

G(qi)
and PTX,min(qi, χ) for all the POIs in Fig. 5.

the total channel power samples (804 samples in a 401 × 401 grid), which are assumed
to be randomly collected during an offline survey of the channel (see Appendix A for a
discussion on our probabilistic channel assessment framework). Fig. 5 (left) compares the
estimated and actual channel powers at the positions of the POIs. Fig. 5 (right) then
shows the optimal trajectory of the mobile agent in both communication-intensive and
communication-efficient cases respectively. Note that, as proved by Theorems 3.1 and 4.1,
the optimal trajectory in case of a single mobile agent is the minimum-length Hamiltonian
cycle, in both communication-intensive and communication efficient cases. The optimal
communication point in the communication efficient case, i.e., the POI with the smallest
PTX,min(qi, χ) (see Section 4.1), is also specified by a circle in Fig. 5 (right). Table V lists
the optimal stop times and the value of PTX,min(qi, χ) at all the POIs. For the sake of
comparison, this table also shows the minimum required transmit power for the case of
known channel powers, i.e., SNRTHN0B

G(qi)
, for all the POIs. The optimal period, optimal total

energy per period, optimal motion energy per period and optimal communication energy
per period, estimated based on the assessed channel in both communication-intensive and
communication-efficient cases, are listed in Table VI.12 In this example, we set χ = 0.95.
From Table V, one can see that PTX,min(qi, χ) is larger than the minimum required transmit

power in case of known channel power, i.e., SNRTHN0B
G(qi)

, at each POI. This is to guarantee

that, based on the variance of channel estimation, the probability of connectivity is larger
than χ. Note that in Table V, the optimal periods are the same for both communication-
intensive and communication-efficient cases, since we only have one mobile agent. Also, as
can be seen from Table V, the estimated optimal communication energy per period and, as a
direct result, the estimated optimal total energy per period is larger in the communication-
intensive case, as expected (tc is taken to be the same for both cases).
Fig. 6 (left) and Fig. 6 (right) show the plots of Ψi(t) at the remote station for two

sample POIs in Fig. 5 (POI #4 and POI #10). For the sake of comparison, each fig-
ure shows the plots of Ψi(t) at the remote station for three cases: communication-intensive,
communication-efficient and communication-unaware. By communication-unaware we mean
the case where the same transmission power is used at all the POIs, without adapt-

12The calculated energy values are based on assuming that the mobile agent will use the a priori found
optimal channel powers, based on the probabilistic channel assessment at the POIs. Alternatively, the agent
can measure the channel at the POIs after deployment and better adapt its transmission powers at the
POIs.
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Fig. 5: The comparison of the estimated and real channel powers at the POIs (left) and the optimal
trajectory of one mobile agent in both communication-intensive and communication-efficient cases and for
the case of unknown channel powers (right). The location of the remote station is denoted at the top left
corner of the right figure. The optimal communication point for the mobile agent in the communication-
efficient case is also specified by a circle in the right figure. It can be seen that the optimal trajectory is the
Hamiltonian cycle over the set of POIs.

Communication-Intensive Case Communication-Efficient Case
T ∗ E∗ E∗

m E∗
TX T ∗ E∗ E∗

m E∗
TX

10250 s 124.36 J 76.403 J 47.957 J 10250 s 76.43 J 76.403 J 0.02676 J

Table VI: The optimal period, optimal total energy per period, optimal motion energy per period and
optimal communication energy per period, estimated based on the assessed channel in both communication-
intensive and communication-efficient cases and for the mobile agent of Fig. 5. Note that the dependency
on k has been dropped as there is one mobile agent in this case.

ing to channel powers. To have a fair comparison, we set this fixed communication en-
ergy budget to be the same as the estimated optimal communication energy found in the
communication-intensive case (47.9573 J). The transmission power at every POI is then fixed
to 1

m

∑
i∈V PTX,min(qi, χ) = 99.91 mW in this case. It can be seen that in communication-

intensive and communication-efficient cases, both of the POIs could be stably covered. The
communication-unaware case, however, could stabilize the coverage of only one POI (POI
#4). This is due to the fact that the mobile agent is not connected to the remote station
at the position of POI #10 in the communication-unaware case. This has been explained
visually in Fig. 7. This figure shows the positions of the POIs superimposed on the connec-
tivity map to the remote station for the communication-unaware case, assuming that the
fixed transmission power of 99.91 mW is used. It can be seen that POI #10 and POI #12
are disconnected, resulting in an unstable Ψi(t) at these points.
Note that after solving the proposed MILP to find the feasible stabilizing policy in this

specific example, all the POIs in the communication-intensive case or the optimal commu-
nication point in the communication-efficient case are connected, although the channel is
assessed probabilistically. This may or may not be the case in general, depending on the
quality of the channel assessment, especially the power of the multipath fading component
of the channel. Since multipath fading is not predictable using sparse sampling of the chan-
nel, one expects that by increasing the power of multipath fading the number of POIs that
can be covered decreases. This is shown in Fig. 8. Fig. 8 (left) shows the percentage of the
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Fig. 6: The plots of Ψi(t) at the remote station for POI #4 (left) and POI #10 (right) in Fig. 5.
These figures compare the time evolution of Ψi(t) in communication-intensive, communication-efficient and
communication-unaware cases.
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Fig. 7: Positions of the POIs superimposed on the connectivity map to the remote station, assuming
that the fixed transmission power 1

m

∑
i∈V

PTX,min(qi, χ) is used in the communication-unaware case. The
disconnected POIs are circled on the figure.

connected POIs in Fig. 5 that can be covered by the mobile agent in the communication-
intensive case, as a function of square root of multipath fading power, ω. The figure also
shows the results for the non-adaptive communication-unaware case. The communication
energy per period in the communication-intensive case is calculated for χ = 0.95. The same
energy budget is then used in the communication-unaware case, where the power is uni-
formly distributed among all the POIs. The results are averaged for 500 different realizations
of the channel. In this example, the path loss and shadowing components are kept fixed and
only the multipath fading component is regenerated in each realization. Similar to Fig. 5,
the channel is assessed using 0.5% of the total channel power samples. Interesting results
can be observed. First, it can be seen that the percentage of the POIs that can be covered
in the communication-intensive case decreases as the power of multipath fading increases.
Second, for a fixed multipath power, the percentage of POIs, covered in the communication-
unaware case, is lower than the communication-intensive case, unless multipath power is
very large. Third, for a very large multipath power, the percentage of the POIs covered
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by the communication-intensive case converges to that of the communication-unaware case.
These results can be justified as follows:
As the multipath fading power increases, the quality of channel assessment de-

grades considerably. Although the optimal energy allocated for communication, i.e.,∑
i∈V PTX,min(qi, χ), also increases as the power of multipath fading increases, the over-

all number of connected POIs decreases in the communication-intensive case. The increase
in the optimal energy allocated for communication, however, results in an opposite effect
in the communication-unaware case. Since the power is distributed uniformly among all
the POIs in this case, the increase in the allocated transmission power, along with more
randomness in channel variations, increases the chance of connectivity at the POIs. Fi-
nally, for very large multipath fading power, adaptation of the transmission power in the
communication-intensive case is not effective anymore as channel becomes unpredictable
and channel assessment can be prone to errors. This can result in almost the same per-
centage (or possibly worse) of connected POIs as compared to the communication-unaware
case. Note that we used Rician multipath fading in this example. Therefore, the maximum
possible multipath fading power in the dB domain is 26.1 (for ω = 5.1195 dB), which cor-
responds to the case when Rician distribution becomes a Raleigh distribution [Goldsmith
2005; Gonzalez-Ruiz et al. 2011].13 To get a better idea about how the channel looks like
for very small and very large multipath fading powers, Fig. 9 shows two sample channels
with ω = 0.8730 dB (left) and ω = 5.0941 dB (right). The Rician K-parameter (the ratio of
the power of the non-multipath component to that of the multipath component [Goldsmith
2005]) is equal to 50 for the left figure and 0.2 for the right one.
The probability of connectivity of the optimal transmission point found in the

communication-efficient case also presents a similar behavior. Fig. 8 (middle) shows the plot
of the probability of connectivity of the optimal transmission point in the communication-
efficient case, as a function of ω. The result is averaged over 500 realizations of the channel.
Similar to the communication-intensive case, it can be seen that the probability of con-
nectivity decreases as multipath power increases. Finally, Fig. 8 (right) shows the total
optimal communication energy as a function of ω for both communication-intensive and
communication-efficient cases. As expected, the energy increases as the multipath power
increases.
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Fig. 8: The percentage of the POIs that can be covered by the mobile agent of Fig. 5 in the communication-
intensive case (left), the probability of connectivity of the optimal transmission point in the communication-
efficient case (middle), and the total optimal communication energy (right) as a function of ω.

Finally, in order to confirm the probabilistic analysis of Section 5 for a large number of
POIs, Fig. 10 compares the actual and theoretical average minimum total energy per period,
consumed to cover a set of POIs by one mobile agent, as a function of the number of POIs.
Fig. 11 (left) and Fig. 11 (right) also show the average minimum communication energy

13Note that the average of multipath fading term introduced in Appendix A is one in the linear domain.
Thus, there is only one variable to work with for the Rician distribution.
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Fig. 9: Two sample channels with ω = 0.8730 dB (left) and ω = 5.0941 dB (right). The path loss and
shadowing components of both channels are the same as in Fig. 2

per period for communication-intensive and communication-efficient cases respectively. The
results for every m are calculated by averaging over 500 different channels and sets of POIs.
The POIs are distributed according to a uniform pdf over the workspace of Fig. 5. The
channel in the dB domain is generated using a Gaussian distribution, with a mean equal to
the path loss component of the channel of Fig. 3 and a standard deviation equal to ϑ = 5 dB.
Also, in this example we set Pℓ,m = Pℓ,s = Pℓ = 0.1 mW, ρ = 1 and α = 200 for all the POIs.
The rest of the parameters are the same as in Fig. 3. Note that we dropped the dependency
of the parameters on i and k as there is only one mobile agent and the parameters are
the same for all the POIs. Fig. 11 shows that the average minimum communication energy
per period is an increasing function of the number of POIs in the communication-intensive
case, as expected (the communication part of (32) is a linear function of mk). However, it
is a decreasing function of the number of POIs in the communication-efficient case. This is
explained by the fact that by increasing the number of POIs in an environment, the chance
of finding a higher channel power at one of the POIs increases. Also, it can be seen that
overall the theoretical values provide a good approximation to the simulated ones.
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Fig. 10: The actual and theoretical average minimum total energy consumed in each period to cover a set
of POIs, as a function of the number of POIs.
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Fig. 11: The actual and theoretical average minimum communication energy consumed in each period
to cover a set of POIs as a function of the number of POIs, in the communication-intensive (left) and
communication-efficient (right) cases.

7. CONCLUSIONS

In this paper, we considered the problem of networked dynamic coverage of a number of
POIs in a time-varying environment and in the presence of realistic fading channels. By a
time-varying environment, we referred to an environment where a quantity of interest is
constantly growing at certain rates at the POIs. We considered a linear dynamics for the
time-variation of the quantity of interest at the POIs and a limited total energy budget
for the mobile agents. We also considered the case where the sensing/actuation range of
the mobile agents is small such that each agent is required to move to the position of each
POI and stop there for some time to sense/service it. We then optimized motion (trajec-
tories and stop times) and communication (transmission powers) of the mobile agents to
minimize the total energy consumption of the mobile agents in each period, while guaran-
teeing that the quantity of interest at the POIs remains bounded, and the constraints on
the connectivity of the mobile agents, the frequency of covering the POIs, and the total
energy budget of the mobile agents are satisfied. We considered two variants of the prob-
lem: communication-intensive and communication-efficient. Communication-intensive case
refers to the case where the mobile agents are required to be connected at all the POIs
they visit, in order to send their collected information to the remote station in real-time.
Communication-efficient case, on the other hand, refers to the case where the mobile agents
are only required to connect to the remote station once along their trajectories, decreasing
the communication burden considerably. In both cases, we showed how to optimally find
the trajectories of the mobile agents, as well as their stop times and transmission powers
at the POIs, using mixed-integer linear programs (MILPs). The properties of the opti-
mal solutions of the MILPs, as well as their asymptotic properties, were also characterized
mathematically.
Through theoretical analysis and simulation results, we showed that our proposed frame-

work enables networked dynamic coverage of time-varying environments in the presence of
realistic fading channels, which is not possible using the previous methods in the literature.

APPENDIX

A. PROBABILISTIC ASSESSMENT OF THE SPATIAL VARIATIONS OF A WIRELESS

CHANNEL

Our proposed probabilistic channel assessment framework in [Ghaffarkhah andMostofi 2011;
Mostofi et al. 2010] can be used to assess the spatial variations of the channel power at the
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POIs based on a small number of channel power measurements in the same environment. It
also provides a mathematical characterization of the channel assessment uncertainty (how
much one can trust the channel assessment).
Let us start with probabilistic modeling of wireless channels. As shown in the communi-

cation literature [Goldsmith 2005], the channel power G(q) can be probabilistically modeled
as a multi-scale non-stationary random process, with three major dynamics: path loss, shad-
owing and multipath fading. We then have the following characterization for G(q) (in dB)
using a 2D non-stationary random field model that characterizes all three dynamics of the
channel [Goldsmith 2005]: GdB(q) = KdB − 10 nPL log10

(
d(q)

)
+GSH(q) +GMP(q), where

GdB(q) = 10 log10
(
G(q)

)
, d(q) is the Euclidean distance from q ∈ W to the remote station,

KdB and nPL are path loss parameters, and GSH(q) and GMP(q) are independent random
variables representing the effects of shadowing and multipath fading in dB respectively.
The distributions of GSH(q) and GMP(q), as well as their spatial correlations, are typically
given by empirical channel models. For instance, a lognormal distribution, with an expo-
nential correlation, is a good fit for the distribution of GSH(q) in linear domain. Nakagami,
Rician, Rayleigh and lognormal distributions are also proven to match the distribution of
GMP(q) in linear domain. For more details on wireless channel modeling, see [Goldsmith
2005; Ghaffarkhah and Mostofi 2011; Mostofi et al. 2010].

Let Qch =
[
qTch,1, · · · , qTch,l

]T
denote the stacked vector of the positions corresponding to

l channel power measurements available. These measurements could be gathered through
an offline survey of the channel at positions that are generally different from the positions
of the POIs. Based on the probabilistic model for G(q), the stacked vector of the received
channel power measurements in dB can then be expressed by Ych = H(Qch)θ + Ξch + Λch,

whereH(Qch) =
[
h(qch,1), · · · , h(qch,l)

]T
, h(q) =

[
1, −10 log10

(
d(q)

)]T
, for any q ∈ W , θ =

[
KdB nPL

]T
is the vector of path loss parameters, Ξch =

[
GSH(qch,1), · · · , GSH(qch,l)

]T
and

Λch =
[
GMP(qch,1), · · · , GMP(qch,l)

]T
. Based on the commonly used lognormal distribution

for shadow fading and its reported exponential spatial correlation [Ghaffarkhah and Mostofi
2011; Mostofi et al. 2010], Ξch is a zero-mean Gaussian random vector with the covariance

matrix R(Qch), where
[
R(Qch)

]
i,j

= ϑ2 exp
(
− ‖qch,i−qch,j‖

β

)
, for 1 ≤ i, j ≤ l, with ϑ2 and β

denoting the variance of the shadow fading component in dB and its decorrelation distance
respectively. As for multipath fading, we assume uncorrelated lognormal distribution that
results in a zero-mean Gaussian distribution with covariance matrix ω2Il for Λch. Here,
ω2 is the power of the multipath fading component (in dB) and Il is the l-dimensional
identity matrix. For a detailed discussion about validation of this model using real channel
measurement, readers are referred to [Gonzalez-Ruiz et al. 2011; Goldsmith 2005].
As we proved in [Ghaffarkhah and Mostofi 2011; Mostofi et al. 2010], conditioned on

the channel measurements and parameters θ, ϑ, β and ω, the assessment of the channel
at an unvisited position q ∈ W is given by a Gaussian distribution with mean ĜdB(q) and
variance σ2(q). We then have

ĜdB(q) = hT(q)θ + ϕT(q,Qch)U
−1(Qch)

(
Ych −H(Qch)θ

)
,

σ2(q) = ϑ2 + ω2 − ϕT(q,Qch)U
−1(Qch)ϕ(q,Qch) (45)

where ϕ(q,Qch) =
[
ϑ2 e−‖q−qch,1‖/β , · · · , ϑ2 e−‖q−qch,l‖/β

]T
and U(Qch) = R(Qch) + ω2Il.

Note that to assess the channel, the channel parameters θ, ϑ, β and ω also need to be
estimated. We, however, skip the details of the estimation of the underlying parameters and
refer readers to our previous work in [Ghaffarkhah and Mostofi 2011; Mostofi et al. 2010]
for more details.
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B. PROOF OF THEOREM 3.1

Consider (11), where a partition {Vk}nk=1 is given. In this case the problem becomes decou-
pled and can be solved individually for each mobile agent. It can immediately be seen that
the optimal transmission power for each mobile agent k at the ith POI is the minimum
transmission power required to guarantee the probability of connectivity at the POI is no
smaller than χ, i.e., P ∗

TX,i,k = PTX,min(qi, χ). Thus, the first set of conditions for feasibility

of the problem are PTX,min(qi, χ) ≤ PTX,max,k, for i ∈ Vk and k = 1, · · · , n. Moreover, for
any set of stop times ti,k, for i ∈ Vk, the total energy and the period are increasing functions
of d(Hk) and decreasing functions of vk. Then, to obtain the minimum total energy, the op-
timal cycle is the one with the minimum total length, i.e., the minimum-length Hamiltonian
cycle H∗

k, and the optimal velocity is the maximum possible velocity, i.e., vmax,k.

Let us replace d(Hk) with d(H∗
k) and vk with vmax,k in (11). Also, let us define Emax,k ,

Emax,k − tc
∑

i∈Vk
PTX,min(qi, χ). Then, the optimal stop times for each mobile agent k are

given by the solution of the following optimization problem, provided that the optimal stop
times are all positive:

min
∑

i∈Vk
ti,k,

s.t.

1) αi,kti,k − ρi

(∑
j∈Vk

tj,k +
d(H∗

k)
vmax,k

)
≥ ∆k, ∀i ∈ Vk,

2)
∑

i∈Vk
ti,k +

d(H∗

k)
vmax,k

≤ Tmax,

3) Pℓ,s,k

∑
i∈Vk

ti,k +
(

Pℓ,m,k

vmax,k
+ wk

)
d(H∗

k) ≤ Emax,k.

(46)

The optimal solution of this linear program satisfies the Karush-Kuhn-Tucker (KKT) con-
ditions. The Lagrangian of the problem is given by

Lk =
∑

i∈Vk

ti,k −
∑

i∈Vk

µi,k

(
αi,kti,k − ρi

∑

j∈Vk

tj,k − ρi
d(H∗

k)

vmax,k
−∆k

)
+ (47)

γk

(∑

i∈Vk

ti,k +
d(H∗

k)

vmax,k
−Tmax

)
+ νk

(
Pℓ,s,k

∑

i∈Vk

ti,k +
Pℓ,m,kd(H∗

k)

vmax,k
+ wkd(H∗

k)− Emax,k

)
,

where µi,k, γk and νk are the Lagrange multipliers. The KKT conditions are then as follows:

1) ∂Lk

∂ti,k
= 1− αi,kµi,k +

∑
j∈Vk

µj,kρj + γk + νkPℓ,s,k = 0, ∀i ∈ Vk,

2) µi,k

(
αi,kti,k − ρi

∑
j∈Vk

tj,k − ρi
d(H∗

k)
vmax,k

−∆k

)
= 0, ∀i ∈ Vk,

3) γk

(∑
i∈Vk

ti,k +
d(H∗

k)
vmax,k

− Tmax

)
= 0,

4) νk

(
Pℓ,s,k

∑
i∈Vk

ti,k +
Pℓ,m,kd(H∗

k)
vmax,k

+ wkd(H∗
k)− Emax,k

)
= 0,

5) αi,kti,k − ρi
∑

j∈Vk
tj,k − ρi

d(H∗

k)
vmax,k

−∆k ≥ 0,

6)
∑

i∈Vk
ti,k +

d(H∗

k)
vmax,k

− Tmax ≤ 0,

7) Pℓ,s,k

∑
i∈Vk

ti,k +
Pℓ,m,kd(H∗

k)
vmax,k

+ wkd(H∗
k)− Emax,k ≤ 0,

8) µi,k ≥ 0, ∀i ∈ Vk, γk ≥ 0, νk ≥ 0.

(48)

From the first set of conditions in (48), we conclude that µi,k > 0, for i ∈ Vk, which results

in the following optimality conditions: αi,kti,k − ρi
∑

j∈Vk
tj,k − ρi

d(H∗

k)
vmax,k

= ∆k, for i ∈ Vk.
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By solving this set of equations, we get the following for the optimal stop times:

t∗i,k = ∆k

(
1

αi,k
+

ρiηk
αi,kφk

)
+

ρi
αi,kφk

d(H∗
k)

vmax,k
, ∀i ∈ Vk, (49)

∑

i∈Vk

t∗i,k = ∆k
ηk
φk

+
d(H∗

k)

vmax,k

1− φk
φk

,

where φk , 1 −∑i∈Vk

ρi

αi,k
and ηk ,

∑
i∈Vk

1
αi,k

. It can be seen that the optimal stop

times are all positive when
∑

i∈Vk

ρi

αi,k
< 1, for k = 1, · · · , n, which form the second set of

conditions for the feasibility of the optimization problem. The third set of such conditions
are also given as follows:

Pℓ,s,k

(
∆k

ηk
φk

+
d(H∗

k)

vmax,k

1− φk
φk

)
+

(
Pℓ,m,k

vmax,k
+ wk

)
d(H∗

k) ≤ Emax,k,

∆k
ηk
φk

+
d(H∗

k)

vmax,k

1

φk
≤ Tmax,k. (50)

After combining these two constraints, we then obtain the third set of feasibility conditions
in part 1 of Theorem 3.1. The maximum stability margin is also the maximum ∆k that
satisfies (50), which can be shown to be the same as ∆max,k in part 2 of Theorem 3.1.
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