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Figure 1: Given a monocular portrait video sequence of a person, we reconstruct a dynamic neural radiance field representing

a 4D facial avatar, which allows us to synthesize novel head poses as well as changes in facial expressions.

Abstract

We present dynamic neural radiance fields for model-

ing the appearance and dynamics of a human face1. Digi-

tally modeling and reconstructing a talking human is a key

building-block for a variety of applications. Especially, for

telepresence applications in AR or VR, a faithful reproduc-

tion of the appearance including novel viewpoint or head-

poses is required. In contrast to state-of-the-art approaches

that model the geometry and material properties explicitly,

or are purely image-based, we introduce an implicit rep-

resentation of the head based on scene representation net-

works. To handle the dynamics of the face, we combine our

scene representation network with a low-dimensional mor-

phable model which provides explicit control over pose and

expressions. We use volumetric rendering to generate im-

ages from this hybrid representation and demonstrate that

such a dynamic neural scene representation can be learned

from monocular input data only, without the need of a spe-

cialized capture setup. In our experiments, we show that

this learned volumetric representation allows for photore-

alistic image generation that surpasses the quality of state-

of-the-art video-based reenactment methods.

1gafniguy.github.io/4D-Facial-Avatars

1. Introduction

Reconstructing 4D models of humans and, especially,

the human face, is an ongoing research problem in the

field of computer vision and computer graphics. 4D avatars

are essential for augmented reality (AR) and virtual reality

(VR) telepresence applications as well as for video editing,

such as visual dubbing in movie productions. These ap-

plications need a faithful reconstruction of the human’s ap-

pearance, as well as the ability to change the viewpoint or

head pose (especially, in VR) and the expressions (e.g., for

visual dubbing). Representing a human head with explicit

geometry and material properties (e.g., albedo, reflectance)

is challenging; the skin has effects like subsurface scatter-

ing, the eyes are highly reflective and the hair has a com-

plex geometry with fine scale details. While the explicit

reconstruction of high quality geometry of the skin surface

in a multi-view studio setup is tractable [4, 16, 52], hair

is often approximated by retrieval and refinement of hair

styles [18, 50], which leads to an unrealistic visual repro-

duction.

To handle the material properties and complex geome-

try of a 4D facial avatar, we introduce dynamic neural ra-

diance fields. Our approach is a neural rendering method

combining classical volume rendering with a novel neural
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scene representation network to achieve novel head pose

and expression synthesis. In contrast to related work on

learned scene representations that focuses on static objects

and multi-view input data, we are able to represent the dy-

namically changing surface of a human’s face only based on

monocular camera recordings. The representation is a step-

ping stone towards reconstruction of 4D facial avatars using

commodity hardware, allowing for novel viewpoint synthe-

sis of the head in a virtual reality setting, pose changes in

videos or even facial reenactment where the expressions of

one person are transferred to another person (represented by

our scene representation network). The learned scene rep-

resentation is a volumetric representation which is key to

capturing hair, but also the mouth interior where classical

methods struggle because of missing 3D geometry. The im-

plicit representation of the geometry and appearance defines

a continuous function in space that does not suffer from dis-

cretization artifacts of voxel grids (e.g., limited resolution)

and is optimized to represent the head as good as possi-

ble w.r.t. the final re-renderings and the underlying network

architecture. In contrast to state-of-the-art facial reenact-

ment and video editing approaches [21, 39], our volumetric

approach is able to synthesize 3D-consistent content with

large head pose changes. Large head pose changes (or view

changes) are required for VR or AR applications, but can

also be used for face frontalization or to dampen the vari-

ance of motion. The semantically meaningful conditioning

used in our method also allows for user-driven edits of a

video in a post-processing scenario.

Specifically, our method is based on a short portrait

video sequence of a person. To represent the expres-

sions of the face, we leverage a low-dimensional morphable

model [7, 41]. Given the pose of the model and the ex-

pression parameters of a specific frame of a sequence that

has to be synthesized, we dispatch rays in a canonical space

where our neural scene representation network is embed-

ded. Along the rays, we perform volumetric integration of

density and color values predicted by our scene representa-

tion network that is inspired by the work of Mildenhall et

al. [28], which focuses on high quality multi-view recon-

struction of a static scene. Note that the scene representa-

tion network is not only conditioned on the sample point lo-

cations but also on the expressions of the morphable model

which allows for the dynamically changing content that has

to be stored in the neural network. During test time, this

conditioning allows us to apply novel head poses as well

as expressions to synthesize a new image. We demonstrate

that our technique is able to faithfully represent a 4D facial

avatar and show photorealistic results that surpass state-of-

the-art facial reenactment methods.

To summarize, we show that neural scene representation

networks can be used to store and represent the dynamically

changing surface of a human head in a controllable manner.

Our contributions are:

• Dynamic Neural Radiance Fields to represent 4D fa-

cial avatars based on a low dimensional morphable

model.

• An efficient end-to-end learnable approach that uses a

single camera to reconstruct such a radiance field.

2. Related Work

Our approach is a neural rendering method to represent

and generate images of a human head. It is related to recent

approaches on neural scene representation networks, as well

as neural rendering methods for human portrait video syn-

thesis and facial avatar reconstruction. In the following, we

discuss the most related literature in the two fields in detail.

Face Reconstruction based on a Morphable Model For

a summary of facial reconstruction methods, we refer to the

state-of-the-art report of Zollhöfer et al. [52]. Our method

is built upon a low-dimensional morphable model [7, 41]

which is a building block of numerous facial reconstruction

and animation approaches [14, 15, 46, 45, 40, 41, 5, 6, 21,

39, 38]. In contrast to these methods, we are not relying on

the coarse representation of the surface of the face. Some

methods [9, 23, 8, 17] also focused on corrective shapes

[8], dynamically adapting the blendshape basis [23] or ap-

plied non-rigid mesh deformation [9] to compensate for the

coarse geometry of the morphable model. In our approach,

we are not relying on a template mesh or an explicit sur-

face representation. Instead, we represent the geometry and

appearance implicitly using a deep neural network and use

volumetric rendering to generate new images.

Human Avatar Reconstruction The goal of our ap-

proach is the photorealistic reproduction of the head of a

human observed from a monocular input stream. Multiple

methods exist that reconstruct personalized face rigs based

on hand-held monocular input. Ichim et al. [20] assume a

static pose and expression to reconstruct the head via multi-

view stereo. Hu et al. [19] combine face digitization and

hair reconstruction to estimate the head geometry and ap-

pearance from a single image. Our implicit function repre-

sents the face region as well as the hair in a single formula-

tion, also recovering the volumetric effects of the hair.

Human Portrait Video Synthesis There is a wide range

of human portrait video synthesis and editing approaches.

Classical computer graphics approaches use a morphable

model reconstruction and forward rendering with optimized

textures and a texture atlas for different mouth interiors

(since the morphable model is too coarse to model the

mouth cavity) [15, 14, 41, 43, 42]. Image warping is
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Figure 2: Overview of our 4D facial avatar reconstruction pipeline. Given a portrait video and an image without the person

(background image) as input, we apply facial expression tracking using a 3D morphable model. Based on the estimated

pose and expression, we use volumetric rendering to synthesize the image of the face. The samples along the viewing rays

are input to our dynamic radiance field, which is additionally conditioned on a learnable per-frame latent code. Since the

background is static, we set the color of the last sample point of each ray to the corresponding value of the background image.

used in Averbuch-Elor et al. [3]. In contrast, the most

recent approaches are hybrids between classical rendering

and learned image synthesis. Deep Video Portraits [21] is

one of the first methods that uses rendered correspondence

maps together with an image-to-image translation network

to output photorealistic imagery. Deferred Neural Render-

ing [39, 38] extends this idea, by introducing neural feature

descriptors that are embedded on the surface of a coarse re-

constructed face mesh. Instead of this dense conditioning

input or rendered feature maps, there are also methods that

work on rendered facial landmarks [48, 10, 47]. These ap-

proaches can also be applied to single images. First Order

Motion Model [32] is a data-driven approach that decou-

ples appearance and motion in a video of a specific class

(e.g., human faces) and allows application of the motion in

a source video to a target image.

Neural Scene Representation Networks Neural scene

representation networks are building blocks of several neu-

ral rendering and neural reconstruction approaches. A sum-

mary of neural rendering approaches is given in the state-of-

the-art report of Tewari et al. [37]. Sitzmann et al. [35] in-

troduced neural scene representation networks (SRNs). The

geometry and appearance of an object is represented as a

neural network that can be sampled at points in space. A

ray marching approach is used to sample from the neural

network to render the reconstructed surface. On synthetic

data, they show the capabilities of such an implicit represen-

tation. A neural scene representation network is a compact

representation that does not suffer from limited resolution

as for example, discrete grid structures that store learnable

features, e.g., Deep Voxels [34] or Neural Volumes [26].

Mildenhall et al. [28] extend this idea to store radiance

fields in a neural network. They assume a static object and

multi-view data. A key contribution is the volumetric in-

tegration and the usage of positional encoding for higher

detailed reconstructions. Follow-up work extends this idea

by using different positional encodings [36] and in-the-wild

training data including appearance interpolation [27]. Con-

current work of Sitzmann et al. [33] proposes the usage of

sinusoidal activation functions for the scene representation

network. Neural Sparse Voxel Fields [25] employ an Octree

to cull empty space and speed up rendering. While these

methods have a focus on static objects, we are dealing with

a dynamically changing surface of a face. We use a simi-

lar volumetric integration scheme to [28] with an additional

layer for the static background. The dynamic neural scene

representation is not only conditioned on the sample posi-

tion and view direction, but also on the facial deformations.

3. Method

Our approach enables 4D reconstruction of a facial

avatar based on a single portrait video of a person (see

Fig. 2). The geometry and appearance of the human head is

represented implicitly by a neural scene representation net-

work. Specifically, the neural scene representation network

stores a dynamic neural radiance field which is used dur-

ing volumetric rendering. The dynamics of the human face,

i.e., the facial expressions, are first captured with a state-

of-the-art face tracking approach [41]. The resulting low

dimensional expression parameters of the morphable model

are used as conditioning for the neural scene representation

network. Note that the expression parameters have seman-

tic meaning allowing us to change specific expressions (see

Fig. 3) or to apply the expressions of a different recorded

person (see Fig. 7). In addition, we employ the pose param-

eters (rotation, translation) of the face tracking to transform

the rays into a canonical space that is shared by all frames.
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3.1. Dynamic Neural Radiance Fields

We represent the dynamic radiance field of a talking hu-

man head using a multi-layer perceptron (MLP) Dθ that is

embedded in a canonical space. As the dynamic radiance

field is a function of position p, view ~v and dynamics in

terms of facial expressions δ, we provide these inputs to the

MLP which outputs color as well as density values for vol-

umetric rendering:

Dθ(p, ~v, δ, γ) = (RGB, σ) (1)

Note, to compensate for errors in the facial expression and

pose estimation, we also provide a per-frame learnable la-

tent code γ to the MLP. Instead of directly inputting the

canonical position p and viewing direction ~v, we use posi-

tional encoding as introduced by Mildenhall et al. [28]. In

our experiments, we use 10 frequencies for the position p

and 4 frequencies for the viewing direction ~v.

Dynamics Conditioning A key component of the dy-

namic neural radiance fields is the conditioning on the

dynamically changing facial expressions. The facial ex-

pressions δ are represented by coefficients of a low di-

mensional delta-blendshape basis of a morphable model

(δ ∈ R
76). To estimate the per-frame expressions δi, we

use an optimization-based facial reconstruction and track-

ing pipeline [41]. Note that these expression vectors only

model the coarse geometric surface changes and do not

model changes of for example the eye orientation. Be-

sides expression parameters, we also store the rigid pose

Pi ∈ R
4×4 of the face which allows us to transform camera

space points to points in the canonical space of the head.

To compensate for missing information of the expression

vectors, we introduce learnable latent codes γi (one for each

frame). In the experiments, we are using γi ∈ R
32 and reg-

ularize them via an ℓ2 loss using weight decay (λ = 0.05).

In Fig. 4, we show that the latent code improves the over-

all sharpness of the reconstruction. Evaluating the Learned

Perceptual Image Patch Similarity (LPIPS) [49] metric for

the generated images with and without latent codes results

in 0.059 and 0.068, respectively.

3.2. Volumetric Rendering of Portrait Videos

In our experiments, we assume a static camera, and a

static background. The moving and talking human in the

training portrait video is represented with a dynamic neural

radiance field as introduced in the previous section. To ren-

der images of this implicit geometry and appearance rep-

resentation, we use volumetric rendering. We cast rays

through each individual pixel of a frame, and accumulate

the sampled density and RGB values along the rays to com-

pute the final output color. Using the tracking information

P of the morphable model, we transform the ray sample

Figure 3: Our dynamic radiance field allows for manual

editing via the expression vector δ. In the middle we show

the reconstruction of the original expression. On the left and

right we show the results of modifying the blendshape co-

efficient of the mouth opening (left −0.4, right +0.4). The

bottom row shows the corresponding normal maps com-

puted via the predicted depth. As can be seen, the dynamic

radiance field adapts not only the appearance, but also the

geometry according to the input expression.

points to the canonical space of the head model and eval-

uate the dynamic neural radiance field at these locations.

Note that this transformation matrix P gives us the control

over the head pose during test time.

We use a similar two-stage volumetric integration ap-

proach to Mildenhall et al. [28]. Specifically, we have two

instances of the dynamic neural radiance field network, a

coarse and a fine one. The densities predicted by the coarse

network are used for importance sampling of the query

points for the fine network, such that areas of high density

are sampled more. The expected color C of a camera ray

r(t) = c + t~d with camera center c, viewing direction ~d

and near znear and far bounds zfar is evaluated as:

C(r; θ, P, δ, γ) =

∫ zfar

znear

σθ (r (t)) · RGBθ

(

r (t) , ~d
)

·T (t)dt,

(2)

where RGBθ(·) and σθ(·) are computed via the neural

scene representation network Dθ at a certain point on the

ray with head pose P , expressions δ and learnable latent

code γ. T (t) is the accumulated transmittance along the ray
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Figure 4: The background image enables us to faithfully reproduce the entire image. While the dynamics are mainly condi-

tioned on the facial expressions, the learnable latent codes improve the sharpness of the image significantly. Our method also

implicitly gives access to a foreground segmentation. Note that the shown images are from the test set (latent code is taken

from the first frame of training set).

from znear to t:

T (t) = exp

(

−

∫ t

znear

σθ (r (s)) ds

)

. (3)

Note that the expected color is evaluated for both the coarse

and the fine networks (with learnable weights θcoarse and

θfine, respectively) to compute corresponding reconstruc-

tion losses at train time (see Eq. 4).

We decouple the static background and the dynamically

changing foreground by leveraging a single capture of the

background B (i.e., without the person). The last sample on

the ray r is assumed to lie on the background with a fixed

color, namely, the color of the pixel corresponding to the

ray, from the background image. Since the volumetric ren-

dering is fully differentiable, the network picks up on this

signal, and learns to predict low density values for the fore-

ground samples if the ray is passing through a background

pixel, and vice versa - for foreground pixels, i.e., pixels that

correspond to torso and head geometry, the networks predict

higher densities, effectively ignoring the background image.

This way, the network learns a foreground-background de-

composition in a self-supervised manner (see Fig. 4).

3.3. Network Architecture and Training

As mentioned above, the dynamic neural radiance field

is represented as an MLP. Specifically, we pass the posi-

tional encoding of the query points through a backbone of

8 fully-connected layers, each 256 neurons-wide, followed

by ReLu activation functions. Past the backbone, the acti-

vations are fed through a single layer to predict the density

value, as well as a 4-layer, 128 neuron-wide branch, con-

ditioned on the viewing direction, to predict the final color

value of the query point.

We optimize the network weights of both the coarse and

the fine networks based on a photometric reconstruction er-

ror metric over the training images Ii (i ∈ [1,M ]):

Ltotal =
M
∑

i=1

Li(θcoarse) + Li(θfine) (4)

with

Li(θ) =
∑

j∈pixels

∥

∥C
(

rj ; θ, Pi, δi, γi)− Ii[j]
∥

∥

2
. (5)

For each training image Ii and training iteration, we sample

a batch of 2048 viewing rays through the image pixels. We

use a bounding box of the head (given by the morphable

model) to sample the rays such that 95% of them corre-

spond to pixels within the bounding box and, thus allowing

us to reconstruct the face with a high fidelity. Stratified sam-

pling is used to sample 64 points along each ray, which are

fed into the coarse network Dθcoarse
. Based on the den-

sity distribution along the ray, we re-sample 64 points and

evaluate the color integration (see Eq. 2) using the fine net-

work Dθfine
. Our method is implemented in PyTorch [29].

Both networks and the learnable codes γi are optimized us-

ing Adam [22] (lr = 0.0005). In our experiments, we use

512× 512 images and train each model for 400k iterations.
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Figure 5: Comparison to state-of-the-art facial reenactment methods based on self-reenactment. From left to right: Deferred

Neural Rendering (DNR) [39], First Order Motion Models (FOMM) [32], Deep Video Portraits (DVP) [21], Ours and the

ground truth image. Note that DNR does not provide control over the pose parameters and only changes the facial expressions.

As can be seen, our approach faithfully reconstructs the expression and appearance of the faces, and can also represent the

geometry of the glasses including the view-dependent effects (see last row).

4. Results

Our approach allows the reconstruction of a 4D facial

avatar based on monocular video sequences (see Sec. 4.3).

In the following, we analyze our method qualitatively and

quantitatively on real data (Sec. 4.1). Specifically, we show

comparisons to state-of-the-art facial reenactment meth-

ods (Sec. 4.2) and discuss the conducted ablation studies

(Sec. 4.4). The advantages of our approach is best seen in

the supplemental video, especially, the 3D consistency of

pose changes and the faithful reproduction of appearance.

4.1. Monocular Training Data

Our method uses short monocular RGB video sequences.

We captured various human subjects with a Nikon D5300

DSLR camera at a resolution of 1920 × 1080 pixels with a

framerate of 50 frames per second. The images are cropped

to 1080×1080 and scaled to 512×512. The sequences have

a length of about 2 min (6000 frames). We hold out the last

20 seconds (1000 frames) to serve as a test sequence for

each reconstruction. The subjects were asked to engage in

normal conversation, including expressions like smiling.

4.2. Comparison to the State of the Art

From the application stand-point, our method competes

with state-of-the-art facial reenactment methods that allow

to apply pose and expression changes. Specifically, we

compare our method with Deep Video Portrait of Kim et

al. [21], Deferred Neural Rendering of Thies et al. [39]

and First-Order Motion Models of Siarohin et al. [32]. In
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Figure 6: We demonstrate the manual controllability of pose and expression using our 4D facial avatars reconstructed from

monocular video inputs. Specifically, we demonstrate 3D consistent novel head pose synthesis and expression changes (by

changing the ‘open mouth’ blendshape coefficient).

Fig. 5 we show qualitative results of the above-mentioned

and our own method in a self-reenactment scenario. As can

be seen, our method is able to reproduce the photorealistic

appearance of the subjects. In contrast to the other meth-

ods, our approach generates 3D consistent results including

view-dependent effects like the reflections on the glasses.

Especially, synthesizing new head rotations is challenging

for the baseline methods. Note that the approach of Thies

et al. [39] only controls the facial expressions and not the

pose. To quantitatively evaluate our method and the other

two approaches, we compute the mean L1-distance, Peak

Signal-to-Noise Ratio (PSNR), and Structure Similarity In-

dex (SSIM) [51], as well as the Learned Perceptual Image

Patch Similarity (LPIPS) [49], see Tab. 1.

4.3. Novel Pose and Expression Synthesis

The goal of our method is the reconstruction of a 4D fa-

cial avatar with explicit control over pose and expressions.

We show several reconstructed avatars in Fig. 6 including

synthesized images with modified facial expressions and

rigid pose. The results are best seen in the supplemental

video, which shows that our dynamic neural scene repre-

sentation can effectively store the appearance and geometry

of a talking head. In addition to manual expression and pose

edits, we demonstrate facial reenactment where we transfer

the facial expressions of one person to another, see Fig. 7.

4.4. Ablation Studies

Our method assumes a static background and receives a

background image as input. This background image helps

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FOMM [32] 0.036 23.77 0.91 0.16
DVP [21] 0.021 25.67 0.93 0.10
Ours (no BG) 0.035 23.52 0.90 0.18
Ours (no dyn.) 0.024 26.65 0.93 0.11
Ours (full) 0.019 26.85 0.95 0.06

Table 1: Quantitative evaluation of our method in compari-

son to state-of-the-art facial reenactment methods based on

self-reenactment (see. Fig. 5). Ours (no dyn.) refers to our

method without conditioning on dynamics. Ours (no BG) is

our method without background image input.

to disentangle the foreground (4D facial avatar) and the

background (see Fig. 4). The conditioning on the facial

dynamics in form of the per-frame facial expression coef-

ficients and learnable latent codes is one of the key compo-

nents of our approach. Note that during test time we always

employ the latent code from the first frame of the training

set. Besides qualitative results, we also list a quantitative

evaluation in Tab. 1. As can be seen, all components of our

approach improve the quality of the results.

While static neural radiance fields can achieve satisfac-

tory quality with as few as 100 posed images [28], our

method requires more training data. In our setting the dy-

namic radiance field is required to generalize over the space

of expression vectors. To quantify the need of a large train-

ing corpus, we conducted experiments by only training on

the first halves and quarters of the training sequences, such

that a lower variety of expressions and poses is seen during

8655



Figure 7: Our 4D facial avatars allow for facial reenactment, where the expressions of a source person are transferred to a

target actor which we represent with our dynamic neural radiance field. Note that for facial reenactment we only need to train

a model for the target actor; the expressions and pose changes from the source actor can be obtained in real-time [41].

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours (25%) 0.029 24.22 0.93 0.09
Ours (50%) 0.024 25.47 0.94 0.07
Ours (full) 0.019 26.85 0.95 0.06

Table 2: Ablation study w.r.t. training corpus size. All met-

rics significantly benefit from a larger training corpus.

training. The measured degradation in quality as we train

with less data is shown in Tab. 2.

5. Limitations

In comparison to the state-of-the-art methods, our vol-

umetric 4D representation of the head shows significantly

better reconstruction abilities both quantitatively and qual-

itatively. Nevertheless, our approach still has limitations

which we want to discuss in the following. The morphable

model we use [7, 41] does not model eye blinks and eye

movements, thus, these deformations can not explicitly be

controlled in our approach. However, eye blinks are implic-

itly correlated with other expression parameters, and conse-

quently modelled by our method. Our method is not re-

stricted to this morphable model and could also be used

with more sophisticated models that include these addi-

tional control handles.

The focus of our work is the reconstruction of the human

head; we are currently not modelling the dynamics of the

upper body. In future work, our approach can be extended

to these regions (given a consistent tracking of the torso).

6. Ethical Considerations

While the described method was developed with the

best of intentions and has the potential to positively in-

fluence the world via better content creation tools, light-

weight facial editing methods have the potential for be-

ing misused. Our method currently requires an image of

the background without the human subject, which makes it

non-trivial to apply to in-the-wild videos. Moreover, the

detection of manipulated videos is an active area of re-

search [31, 12, 1, 24, 30, 13, 11, 2, 44] and we foresee sig-

nificant improvements in this domain.

7. Conclusion

We have presented a novel method for learning and ren-

dering controllable 4D facial avatars based on dynamic neu-

ral radiance fields. Using volumetric rendering, we are able

to capture arbitrary geometry and topology such as hair,

eyeware, hats etc., which typically is not supported by mor-

phable model based methods. In contrast to other volumet-

ric approaches which require an expensive calibrated multi-

view rig, our method requires only a single view from a

fixed camera, such as a webcam. This makes our method

suitable for capturing avatars of end users at home, using

only 2 minutes of their time. The reconstructed avatars can

be rendered photorealistically under novel poses and ex-

pressions. The achieved quality beats state-of-the-art facial

reenactment methods both quantitatively and qualitatively.
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