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Abstract
In this paper, we present a dynamic non-diagonal regularization for interior point
methods. The non-diagonal aspect of this regularization is implicit, since all the off-
diagonal elements of the regularization matrices are cancelled out by those elements
present in the Newton system, which do not contribute important information in the
computation of the Newton direction. Such a regularization has multiple goals. The
obvious one is to improve the spectral properties of the Newton system solved at each
iteration of the interior point method. On the other hand, the regularization matrices
introduce sparsity to the aforementioned linear system, allowing for more efficient
factorizations. We also propose a rule for tuning the regularization dynamically based
on the properties of the problem, such that sufficiently large eigenvalues of the non-
regularized system are perturbed insignificantly. This alleviates the need of finding
specific regularization values through experimentation, which is the most common
approach in the literature. We provide perturbation bounds for the eigenvalues of
the non-regularized system matrix and then discuss the spectral properties of the
regularized matrix. Finally, we demonstrate the efficiency of the method applied to
solve standard small- and medium-scale linear and convex quadratic programming
test problems.
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1 Introduction

In this paper, we are concerned with finding the solution of linear and convex quadratic
programming problems, using an infeasible primal–dual interior point method. Such
methods are called infeasible due to the fact that they allow intermediate iterates,
produced by the algorithm, to be infeasible for the problem under consideration. They
are called primal–dual, because they operate on both the primal and the dual space.
Interior point methods (IPMs) deal with the inequality constraints of the problem
by introducing logarithmic barriers in the objective, which penalize when any of
the inequality constraints is close to being violated. At each iteration, the optimality
conditions of the barrier problems are formed and one (or a few) steps of Newton
method are applied to them. There is vast available literature on interior point methods,
and we refer the interested reader to [1] for an extended literature review.

Most implementations transform the Newton system into a symmetric indefinite
system of linear equations, which when solved determines the Newton direction. The
latter constitutes the main computational effort and challenge for IPMs. At every
iteration of the method, the system matrix as well as the right-hand side changes.
There are threemain reasons indicating why solving such a system can be challenging.
The most obvious one is that the dimension of such systems can be very large, which
makes the task of solving them expensive in terms of processing time and memory
requirements. A second important challenge, inherent in interior point methods, is
that as the algorithm approaches optimality, the systems that we have to solve become
increasingly ill-conditioned. Finally, a rank- deficient constraint matrix can result in
a singular Newton system matrix. It is well known that the latter two difficulties can
be addressed by the use of some regularization technique, at the expense of solving a
perturbed problem [2].

Such regularization techniques, embedded in the interior point framework for
solving linear and convex quadratic programming problems, have been previously
proposed in the literature. For example, in [3], a dynamic primal–dual regularization
for interior point methods was derived. The authors solve a slightly altered sym-
metric indefinite system, to which a diagonal perturbation (regularization) has been
introduced. This perturbation transforms the symmetric indefinite matrix into a quasi-
definite one. It is proved in [4] that such matrices are strongly factorizable. Hence, the
regularized system can be factorized efficiently. The authors interpreted these regular-
ization matrices as adding proximal terms to the primal and dual objective functions.
The values of these perturbations are chosen dynamically during the factorization of
the system matrix, where potentially unstable pivots are regularized stronger (using
some pre-specified “large” regularization value), while safer ones are almost not regu-
larized at all. In [5], based on this proximal point interpretation given in [3], the authors
proposed a primal–dual pair of regularized models, where the duality correspondence
arises by setting the regularization variables as proximal terms. They observed that for
specific parameter values, this primal–dual regularized model is exact, that is, it yields
an optimal solution which is also an optimal solution of the respective non-regularized
primal–dual pair. There, the authors introduced two uniform diagonal regularization
matrices whose values were tuned experimentally over a variety of problems. A sim-
ilar regularization was also used in [6]. It is worth mentioning that similar ideas have
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also been applied in IPMs suitable for general nonlinear optimization problems (see
[7,8]).

In this paper, we are taking a different approach. We observe that when an IPM
progresses and approaches optimality, significant part of the primal–dual variables
approaches zero fast and hence becomes negligible. Yet it is not straightforward how
the algorithm might exploit this feature. The proposed method attempts to do so.
The method dynamically chooses a suitable regularization for the symmetric indef-
inite system and effectively “annihilates” the effects of those parts of it, which do
not contribute important information to the computation of the Newton direction.
The proposed technique involves non-diagonal regularizationmatrices. However, their
non-diagonal terms are only implicit; they do not need to be computed because they
are immediately cancelled by other terms present in the linear system. Hence, the
effect of adding such non-diagonal regularization is making the Newton system more
sparse and therefore easier. In contrast to other previously developed approaches, this
regularization is dynamically tuned based on the problem properties. We develop an
approach which attempts to capture the needs of an arbitrary problem and regularize
its system matrix accordingly. This alleviates the problem of finding specific regu-
larization values that work well over a variety of problems. In general, the proposed
approach is very conservative and regularizes the system as little as possible, while
ensuring numerical stability.

The rest of the paper is organized as follows. In Sect. 2, we summarize our notation
and present the adopted model, based on which we define our regularization matri-
ces, firstly for linear and then for convex quadratic programming problems. For both
cases, we provide arguments indicating why the proposed dynamic tuning of the reg-
ularization matrices is expected to introduce a controlled perturbation to the problem.
In Sect. 3, we provide a spectral analysis, which shows the effect of the proposed
regularization and gives specific bounds for the eigenvalues of the regularized system
matrix. In Sect. 4, we provide the algorithmic scheme alongwith some implementation
details and numerical results, and finally, in Sect. 5 we derive our conclusions.

2 Exact Primal–Dual Regularization

2.1 Notation

Given an arbitrary symmetric square matrix Q, we denote positive semi-definiteness
(positive definiteness) by Q � 0 (Q � 0). We denote the Euclidean norm (2-norm)
as ‖ · ‖. Any other norm will be specified by a subscript. For example, the ∞-norm is
denoted as ‖·‖∞. We denote by e the column vector of ones of appropriate dimension.
Given a set of indices, say B, eB denotes the vector of ones with dimension equal to
the cardinality of B, that is, eB ∈ R

|B|. For an arbitrary matrix, say A, AB denotes the
submatrix whose columns and rows are indicated from the set of indices B. Similarly,
ABN contains rows of A that belong in B and columns of A that belong inN . Iterates
of the algorithm are denoted as wk = (xk, rk, sk, yk, zk), where k ∈ N is the iteration
counter. An optimal solution of the problem is denoted as w∗ = (x∗, r∗, s∗, y∗, z∗).
Given a vector x ∈ R

n , we denote by X ∈ R
n×n the diagonal matrix that contains x
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in its diagonal. To simplify the notation, if a matrix, say Xk , depends on the iteration
k, we will omit the subscript and state the dependence whenever it is not obvious.
When an arbitrary function, say f , depends on some parameter, say η, we denote
this relation as: fη(·). Given an arbitrary square matrix B, off(B) denotes the square
matrix that has the same off-diagonal elements as B and has zeros in its diagonal.
Similarly, diag(B) = B − off(B). The jth diagonal element of a square matrix B
will be denoted as: (B) j j . BH denotes the conjugate (Hermitian) transpose of matrix
B. We denote the smallest (largest) eigenvalue of an arbitrary matrix B, by λmin(B)

(λmax(B)). Similarly, the smallest (largest) singular value of an arbitrary matrix B is
denoted by σmin(B) (σmax(B)). Finally, the set of all eigenvalues (spectrum) of an
arbitrary matrix B is denoted as λ(B).

2.2 Problem Formulation

We consider the following primal–dual pair of convex quadratic programming prob-
lems in the standard form:

minx

(
cTx + 1

2
xTQx

)
, s.t. Ax = b, x ≥ 0, (P)

maxx,y,z

(
bTy − 1

2
xTQx

)
, s.t. − Qx + ATy + z = c, z ≥ 0, (D)

where c, x, z ∈ R
n , b, y ∈ R

m , A ∈ R
m×n , Q � 0 ∈ R

n×n . Without loss of
generality, we assume thatm ≤ n. Note that if Q = 0, (P)–(D) is a primal–dual pair of
linear programming problems. If the problems under consideration are feasible, it can
easily be verified that there exists an optimal primal–dual triple (x, y, z) satisfying the
Karush–Kuhn–Tucker (KKT) optimality conditions for this primal–dual pair (see, for
example, Prop. 2.3.4 in [9]).

Our model is based on the developments in [3,5] and [6]. More specifically, by
applying a generalized primal–dual proximal point method on (P), as in ([5,8]), one
can get the following pair of primal–dual regularized problems:

minx,r

(
cTx + 1

2
xTQx + 1

2
(r + ỹ)TRd(r + ỹ) + 1

2
(x − x̃)TRp(x − x̃)

)
(Pr )

s.t. Ax + Rdr = b, x ≥ 0,

maxx,y,z,s

(
bTy − 1

2
xTQx − 1

2
(y − ỹ)TRd(y − ỹ) − 1

2
(s + x̃)TRp(s + x̃)

)

(Dr )

s.t. − Qx − Rps + ATy + z = c, z ≥ 0,
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where s ∈ R
n , r ∈ R

m are auxiliary variables introduced from the primal–dual
application of the proximal point method and Rp � 0 ∈ R

n×n , Rd � 0 ∈ R
m×m are

the primal and dual regularization matrices, respectively, that will be specified later.
The duality correspondence follows after taking r = y − ỹ and s = x − x̃ , where ỹ
and x̃ are estimates of the dual and primal solutions y∗, x∗, respectively. Of course,
Rp = 0, Rd = 0 recovers the initial pair (P)–(D). In [5], the authors observe that this
pair of regularized problems is exact under some conditions on the estimates x̃, ỹ. In
such a case, an optimal solution of (Pr )–(Dr ) is also an optimal solution of (P)–(D).
For more information about exactness of regularization, we refer the interested reader
to [10].

In [5,7,8], models similar to (Pr )–(Dr ) are used, restricted, however, in the case
where Rp = ρ I and Rd = δ I , for some positive values δ, ρ. It is a well-known fact,
proved for the first time in [11], that these regularization schemes can be interpreted
as the primal–dual application of the standard proximal point method. However, our
model does not specify the structure of the regularization matrices Rp, Rd . The only
requirement is that these matrices are positive definite. As we commented previously,
this model can be interpreted as the application of a generalized primal–dual proximal
point method. Such methods, instead of adding the typical 2-norm in the objective
function,make use of the so-calledD-functions. In fact, one could easily verify that any
elliptic norm (defined by an arbitrary positive definite matrix) satisfies the conditions,
given in [12,13], for being a D-function. In other words, our algorithm adds an elliptic
norm in the objective, instead of the typical 2-norm. The focus of the paper, however,
prevents us from going deeper into these matters. For more about proximal point
methods, we refer the reader to [11–15], and the references therein.

2.3 The Newton System

In order to solve the problems presented in the previous subsection, using interior point
methods, we proceed by replacing the non-negativity constraints with logarithmic
barriers in the objective. In view of the previous, we obtain the following primal–dual
regularized barrier problems:

minx,r

(
cTx + 1

2
xTQx + 1

2
(r + ỹ)TRd (r + ỹ) + 1

2
(x − x̃)TRp(x − x̃) − μ

n∑
j=1

ln(x j )

)

s.t.Ax + Rdr = b, (1)

maxx,y,z,s

(
bTy − 1

2
xTQx − 1

2
(y − ỹ)TRd (y − ỹ) − 1

2
(s + x̃)TRp(s + x̃) − μ

n∑
j=1

ln(z j )

)

s.t. − Qx − Rps + ATy + z = c, (2)

in which non-negativity constraints x > 0 and z > 0 are implicit.
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Forming the Lagrangian of the primal barrier problem, we get:

Lx̃,ỹ,μ(x, y, r) = cTx + 1

2
xTQx + 1

2
(r + ỹ)TRd(r + ỹ)

+ 1

2
(x − x̃)TRp(x − x̃) − yT(Ax + Rdr − b) − μ

n∑
j=1

ln(x j ).

(3)
Now, we can form the first-order optimality conditions of the problems by taking the
gradient of (3) and equating it to zero, giving us the following block equations:

∇xLx̃,ỹ,μ(x, y, r) = c + Qx + Rp(x − x̃) − ATy − μX−1e = 0,

∇yLx̃,ỹ,μ(x, y, r) = Ax + Rdr − b = 0,

∇rLx̃,ỹ,μ(x, y, r) = Rd(r + ỹ) − Rd y = 0.

By looking at the optimality conditions of the dual barrier problem, we see that the
final two conditions are:

Rpx − Rp(s + x̃) = 0,

X Ze = μe.

We write the optimality conditions in the form of a function Fx̃,ỹ,μ(w) : R
3n+2m →

R
3n+2m , and we want to solve:

Fx̃,ỹ,μ(w) =

⎡
⎢⎢⎢⎢⎣

c + Qx + Rps − ATy − z
Rd(r + ỹ) − Rd y
Rpx − Rp(s + x̃)
Ax + Rdr − b

X Ze

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

σμe

⎤
⎥⎥⎥⎥⎦ , (4)

at each IPM iteration, where w = (x, r , s, y, z), μ > 0 is the barrier parameter
and σ ∈ ]0, 1[ is a centring parameter (which determines how fast μ is forced to
decrease). We want to forceμ → 0; since then, the solution of this system leads to the
solution of (Pr )–(Dr ). Notice that (Pr )–(Dr ) is parametrized by the estimates x̃ and
ỹ. As observed in [5], if these estimates are close enough to some optimal solution
of (P)–(D), then an optimal solution of (Pr )–(Dr ) is also an optimal solution of (P)–
(D). At the beginning of the kth iteration of the IPM, we have available the iterate

wk = (xk, rk, sk, yk, zk), the barrier parameter μk = xTk zk
n and we choose a value

for the centring parameter σk ∈ ]0, 1[. Following the developments in [3,5,7,8], for
proximal point methods, we update the estimates of x∗, y∗ as x̃ = xk, ỹ = yk . Next,
Newton method is applied to the mildly nonlinear system (4). After evaluating the
Jacobian of Fx̃,ỹ,μ(w), the Newton direction is determined at each IPM iteration by
solving a system of the following form:
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⎡
⎢⎢⎢⎢⎣

Q 0 Rp −AT −I
0 Rd 0 −Rd 0
Rp 0 −Rp 0 0
A Rd 0 0 0
Z 0 0 0 X

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δx
Δr
Δs
Δy
Δz

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

c + Qxk + Rpsk − ATyk − zk
Rd(rk + ỹ) − Rd yk
Rpxk − Rp(sk + x̃)
Axk + Rdrk − b
X Ze − σkμke

⎤
⎥⎥⎥⎥⎦ .

(5)
Notice that thematrices X , Z , Rp and Rd all depend on the iteration k of the algorithm.
Once the Newton direction Δw = (Δx,Δr ,Δs,Δy,Δz) is computed, the algorithm
chooses a step length ak ∈ ]0, 1] and sets the new iterate to wk+1 = wk + akΔw. In
order to compute the Newton direction efficiently, wewant to eliminate some variables
of (5). Since we set ỹ = yk , the second block equation of (5) gives:

RdΔr − RdΔy = −Rd(rk + yk) + Rd yk,

and if Rd � 0, we get the following relation:

Δy = rk + Δr , (6)

Similarly, by looking at the third block equation of (5) and substituting x̃ = xk , we
get:

RpΔx − RdΔs = Rp(sk + xk) − Rpxk,

and if Rp � 0, we have that:
Δx = sk + Δs. (7)

Note that we always use either Rd � 0 or Rd = 0, and similarly, either Rp � 0 or
Rp = 0. Hence, the previous two relations are either well defined or absent. Using (6)
and (7) to eliminate Δr and Δs, we can reduce (5) to the following system:

⎡
⎣−(Q + Rp) AT I

A Rd 0
Z 0 X

⎤
⎦

⎡
⎣Δx

Δy
Δz

⎤
⎦ =

⎡
⎣c + Qxk − ATyk − zk

b − Axk
σkμke − X Ze

⎤
⎦ . (8)

Next, we proceed by eliminating Δz. For that purpose, we have from the third row of
(8) that:

Δz = −X−1ZΔx − Ze + σkμk X
−1e. (9)

Substituting (9) into the first row of (8), we get the following reduced symmetric
system (so-called Augmented System):

[−(Q + Θ−1 + Rp) AT

A Rd

] [
Δx
Δy

]
=

[
c + Qxk − ATyk − σkμk X−1e

b − Axk

]
, (10)

where Θ = X Z−1. In the case of linear programming (Q = 0) or when solving
quadratic separable problems (in which case Q is diagonal), it may be beneficial to
further eliminate Δx from (10), which will end up at the so-called normal equations.
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However, one should note that this is not a good idea when it comes to general convex
quadratic programming problems, since pivoting on the (1,1) block of (10) could result
in a dense system, even in cases where both A and Q are sparse. Having said that, we
can eliminate Δx by looking at the first block equation of (10), which gives:

Δx = (Q+Θ−1+Rp)
−1ATΔy−(Q+Θ−1+Rp)

−1(c+Qxk−ATyk−σkμk X
−1e),
(11)

and by substituting (11) into the second row of (10), we get the normal equations:

[
A(Q + Θ−1 + Rp)

−1AT + Rd
]
Δy = ξ, (12)

where

ξ = b − Axk + A(Q + Θ−1 + Rp)
−1(c + Qxk − ATyk − σkμk X

−1e),

in which the system matrix is symmetric and positive definite.
The proposed model differs from the one derived in [5] in that it allows the use

of general positive definite regularization matrices. For example, if Rp, Rd are non-
diagonal matrices, then this would amount to the primal and dual application of a
generalized proximal point method that adds an elliptic norm in the objective, instead
of the typical 2-norm that is employed in standard proximal point methods. Notice
that at every iteration of the algorithm, Rp, Rd , x̃ and ỹ are updated. In other words,
(Pr )–(Dr ) represents a sequence of subproblems. At every such subproblem, we apply
a single iteration of the interior point method. How Rp and Rd are updated will be
presented in the following subsection.

2.4 The RegularizationMatrices

As IPM approaches optimality, the diagonal matrixΘ contains elements that converge
to zero and others that diverge to infinity. This is because μk → 0, and we force the
complementarity conditions to be approximately satisfied (X Ze ≈ σkμke) . As a
consequence, the matrices in (10) and (12) become extremely ill-conditioned. On top
of that, it is often the case due to modelling choices that the constraint matrix A is not
of full row rank, which makes the systemmatrices singular. It is well known, as shown
by Armand and Benoist [2], that both these problems can be addressed with the use
of regularization. The most common approach in the literature is the addition of two
diagonal regularization matrices, say Rp, Rd , whose values are tuned experimentally
over a variety of problems ([2,3,5,6]).

Roughly speaking, the goals of a regularizationmethod for IPMs are ([2,3,6–8,16]):

1. to improve the spectral properties of the matrices in (10) and (12),
2. without significantly perturbing the previous systems,
3. while preserving the sparsity of the problem and the computational efficiency of

the method.

To the best of our knowledge, most of the regularization methods in literature manage
to achieve the first and the third regularization goals, failing, however, to achieve the
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second goal with certainty. This is the case since these regularization methods are
tuned experimentally. Hence, they do not rely on the properties of the problem itself,
and as a consequence, such regularization values can only be good for some problems
and poor for others. The proposed method takes a different approach, by introducing
two non-diagonal regularization matrices Rp and Rd , which are tuned based on the
properties of the problem. Of course, one could argue that this may disturb the sparsity
and as a consequence the computational efficiency of the method; however, these non-
diagonal matrices are created implicitly. As we will show later, not only the sparsity
is preserved, but in fact it is improved.

As we already mentioned, as IPM approaches optimality, the matrix Θ contains
some very large and some very small elements. The proposed regularization exploits
this inherent feature of the method and splits the columns of the problem matrix in
two sets, say N and B such that:

∀ j ∈ N : x j → 0, z j → ẑ j > 0 ⇒ (Θ) j j = x j
z j

≈ x j z j
z2j

= O(μ)

∀ j ∈ B : x j → x̂ j > 0, z j → 0 ⇒ (Θ) j j = x j
z j

≈ x2j
x j z j

= O(μ−1),

where |N | = n1 and |B| = n2, with n1 + n2 = n. Notice that the previous splitting
captures all the columns only if the method converges to a strictly complementary
solution (that is, the limit point satisfies: x̂T ẑ = 0 and x̂ j + ẑ j > 0, ∀ j). In the
quadratic programming case, a strictly complementary solution may not exist. Hence,
there might exist some indices j ⊆ {1, . . . , n} for which: x j → 0 and z j → 0. In
such a case, it is unknown whether the value of Θ j j will be small or large. We can
assume, without loss of generality, that any such indices will be classified as elements
of B (although in practice this would depend on the value of Θ j j , as we will show
later). Of course for the case of linear programming (Q = 0), it is a well-known fact
(see, for example, [17]) that a strictly complementary solution always exists, if the
problems are feasible. Moreover, as shown in [18,19], primal–dual IPMs converge to
such an optimal solution. If a strictly complementary solution exists for the quadratic
programming case, it is shown in [20] that an infeasible primal–dual IPM which
reduces the constraints violation at the same rate asμ is reduced produces iterates that
converge to a strictly complementary solution.

In what follows, we present the construction of the regularization for the case of
linear programming, and then, we suggest an extension for convex quadratic program-
ming.

2.4.1 Linear Programming

For the case of linear programming, we employ a dual regularization, that is, in (5) we
set Rp = 0 and only use Rd � 0 to improve the spectral properties of the problem.
Given this set-up and by permuting the columns so that the first n1 of them corresponds
to indices inN while the remaining correspond to indices in B, the augmented system
in (10) takes the form:
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⎡
⎣−Θ−1

N 0 AT
N

0 −Θ−1
B AT

B
AN AB Rd

⎤
⎦

⎡
⎣ΔxN

ΔxB
Δy

⎤
⎦ =

⎡
⎣cN − AT

N yk − σkμk X
−1
N eN

cB − AT
B yk − σkμk X

−1
B eB

b − Axk

⎤
⎦ , (13)

where AN ∈ R
m×n1 and AB ∈ R

m×n2 . Pivoting on the first n1 columns of (13) gives
the partially reduced augmented system:

[
−Θ−1

B AT
B

AB ANΘN AT
N + Rd

] [
ΔxB
Δy

]

=
[

cB − AT
B yk − σkμk X

−1
B eB

b − Axk + ANΘN (cN − AT
N yk − σkμk X

−1
N eN )

]
. (14)

Since we know that ΘN → 0, we expect that the magnitude of ‖ANΘN AT
N ‖ will be

small when the method approaches optimality. Intuitively, our goal is to create a regu-
larization matrix that will implicitly absorb the off-diagonal elements of ANΘN AT

N
(promoting sparsity) and regularize the system with values having a slightly larger
magnitude to that of the elements which were absorbed. For this class of problems,
we will focus on solving the normal equations. Given (14), we can form the normal
equations by eliminating ΔxB, which gives the following system:

[
ABΘBAT

B + ANΘN AT
N + Rd

]
Δy = b − Axk + AΘ(c − ATyk − σkμk X

−1e).

We choose the following dual regularization matrix:

Rd = (
Δd − off(ANΘN AT

N )
)
, (15)

whereΔd is a diagonal matrix chosen such that Rd � 0 and diagonally dominant, that
is:

(Δd)i i >

m∑
j=1, j �=i

|(ANΘN AT
N )i j |, ∀ i = 1, . . . ,m.

For computational efficiency and numerical stability, we choose Δd = δd,k Im , with:

δd,k = (max
j

(ΘN ) j j )‖AN AT
N ‖∞. (16)

Observe that the regularization matrix given in (15) strongly depends on the properties
of the problem as well as on the iteration k of the IPM. In order to control which
elements enter the set N , at every iteration k, we enforce the following condition:

max
j

(ΘN ) j j‖AAT‖∞ ≤ regthr ,k, (17)

where regthr ,k is set to 1 at the beginning of the optimization (k = 0) and is decreased
at the same rate as μk (i.e. regthr ,k = O(μk)). Once regthr ,K becomes smaller than a
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predefined value, say ε > 0, for some large K ≥ 1, we fix it to this value (regthr ,k =
ε, ∀ k ≥ K ). The choice of ε will be specified later. Note that (17) ensures that
δd,k < regthr ,k , at every iteration. In order to show that sparsity is improved, we form
again the normal equations’ matrix using the definition of Rd to get:

AΘAT + Rd = ABΘBAT
B + diag

(
ANΘN AT

N
) + Δd .

From the previous, one can easily observe that the sparsity of the normal equations is
improved, since some off-diagonal elements of the matrix have been absorbed by the
regularization.

Since regthr ,k is not allowed to go to zero as μk → 0, we would like to know how
much we perturb the Newton system, by having it fixed to some value ε > 0, when
the method is close to optimality. In the rest of this subsection, we compute some
perturbation bounds, which depend on the value of regthr .

Motivation
Now that we have defined the regularization matrix for the case of linear pro-

gramming problems; let us provide a motivation for this choice. Firstly, note that the
proposed regularization has multiple objectives. On the one hand, we want to find
a good criterion for tuning a uniform dual regularization matrix δd,k I based on the
properties of the problem, such that the non-regularized problem matrix is not per-
turbed significantly while its spectral properties are improved. On the other hand, we
use this uniform dual regularization value as a cut-off point, for dropping the smallest
off-diagonal elements in the normal equations matrix, improving the computational
efficiency of the method. In what follows, we will provide an analysis indicating why
the uniform dual regularization that we introduce is expected not to perturb the prob-
lem significantly. Then, we will show that further dropping the off-diagonal elements
introduces a controlled perturbation.

Based on the previous, let us assume for now that Rd = δd,k I , where δd,k is defined
as in (16). For simplicity of notation, we omit the iteration subscript in δd and we let:

M =
[−Θ−1 AT

A 0

]
, E =

[
0 0
0 δd I

]
.

We want to analyse the difference in the eigenvalues of the matrices M and M + E .
For the rest of this subsection, let λi denote the ith smallest eigenvalue of M , λ̃i
the ith smallest eigenvalue of M + E and λi (t) the ith smallest eigenvalue of M +
t E , with t ∈ [0, 1]. The smallest eigenvalues of M (in the absolute value sense)
will be increased after the addition of E , and this is of course desirable, since this
was the main motivation for introducing the regularization. The following analysis
provides perturbation bounds only for eigenvalues of M that satisfy |λi | > 2‖E‖. We
will assume also that the eigenvalues that we analyse are simple (i.e. their algebraic
multiplicity is 1). The analysis can be extended to multiple eigenvalues; however, it
gets unnecessarily complicated. Such an analysis is derived in the appendix of [21].
Let us now state a lemma derived in [22].
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Lemma 2.1 Let M, E be square Hermitian matrices. Denote by λi (t) the ith smallest
eigenvalue of M + t E, and consider the eigenvector function x(t) such that: (M +
t E)x(t) = λi (t)x(t), with ‖x(t)‖ = 1, for some t ∈ [0, 1]. If λi (t) is simple, then:

∂λi (t)

∂t
= x(t)H Ex(t).

As observed in [21], if the eigenvector x(t) has small components in the positions
corresponding to the dominant elements of E , then ∂λi (t)

∂t is expected to be small. Let
us now provide the following lemma, based on the developments in [23].

Lemma 2.2 Let λi �= 0 be an eigenvalue of M and Mx = λi x , with ‖x‖ = 1.
Partitioning x = [xH1 xH2 ]H , we have:

‖x2‖ ≤ ‖A‖√
λ2i + ‖A‖2

.

Proof The proof follows exactly the developments in [23], but we provide it here for
completeness. From the second block equation of Mx = λi x , we have:

Ax1 = λi x2 ⇒ x2 = 1

λi
Ax1,

where the latter is well defined since we have assumed that λi �= 0. By taking norms
on both sides in the previous equation, we get:

‖x2‖ ≤ 1

|λi | ‖A‖‖x1‖.

But ‖x‖ = 1 ⇒ ‖x1‖ = √
1 − ‖x2‖2. Hence, we have:

‖x2‖ ≤ ‖A‖√1 − ‖x2‖2
|λi | .

By solving the previous inequality, we get:

‖x2‖ ≤ ‖A‖√
λ2i + ‖A‖2

,

which completes the proof. ��
The following lemma will be a useful tool for the analysis. We omit its trivial proof.

Lemma 2.3 Let f (x) = x√
a+x2

, where a > 0. Then, f (x) is a monotone increasing

function for x > 0.
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Let us now bound the second block of the eigenvector function x2(t) based on the
developments in [23].

Lemma 2.4 Assume that λi �= 0 is the ith smallest eigenvalue of M. Consider the
eigenvector function x(t) such that: (M + t E)x(t) = λi (t)x(t), with ‖x(t)‖ = 1,
∀ t ∈ [0, 1]. Partitioning x(t) = [x1(t)H x2(t)H ]H and assuming that |λi | > 2‖E‖,
we have that:

‖x2(t)‖ ≤ ‖A‖√
(|λi | − 2‖E‖)2 + ‖A‖2 .

Proof We omit the proof which follows from Lemma 2.3 combined with the previ-
ous developments. The interested reader can view [23], Lemma 2.8, for a detailed
derivation which can directly be applied in our context. ��

Let us now derive the following theorem which bounds the difference between the
ith smallest eigenvalues of the matrices M and M + E , respectively.

Theorem 2.1 Let λi and λ̃i be the respective ith smallest eigenvalues of M and M+ E
and define φi = ‖A‖√

(|λi |−2‖E‖)2+‖A‖2 . For every i such that |λi | > 2‖E‖, we have that:

|λi − λ̃i | ≤ ‖E‖φ2
i .

Proof From Lemma 2.1 and Lemma 2.4, it follows that:

|λi − λ̃i | = |λi (0) − λi (1)|

=
∣∣∣∣
∫ 1

0
x(t)H Ex(t)dt

∣∣∣∣
=

∣∣∣∣
∫ 1

0
x2(t)

H δd I x2(t)dt

∣∣∣∣
= δd

∫ 1

0
‖x2(t)‖2dt

≤ ‖E‖φ2
i = δdφ

2
i .

The proof is complete. ��
Note that, since φi < 1, the latter is a tighter bound than the general bound provided

byWeyl’s inequality, given that the eigenvalue under consideration is larger than 2‖E‖.
From the previous results, we can draw several useful observations. As we already
stated, the smaller the components of x2(t) are, the smaller ∂λi (t)

∂t is expected to be. But
x2(t) is bounded by φi . Hence, the smaller φi is, the more insensitive the eigenvalue
λi is to the perturbation ‖E‖ = δd . In fact, in the previous theorem we proved that the
error in the eigenvalue is bounded by ‖E‖φ2

i .
Let us now examine the nature of φi . Firstly, one can see that it depends on the norm

of the constraint matrix A, and from Lemma 2.3 we can observe that it is monotone
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increasing with respect to the norm of A. What this tells us is that the smaller the norm
of the constraint matrix A is, the more insensitive the eigenvalues of matrix M are to
the perturbation E . Of course, the latter holds only for eigenvalues that are sufficiently
larger than 2‖E‖. On the other hand, from the definition of φi , we can see that it is
beneficial to have a small ‖E‖; since then, most of the eigenvalues of M are expected
to satisfy: |λi | > 2‖E‖.

We now shift our attention to the proposed tuning of the regularization parameters.
From (17), the set of indices N is such that: max j (ΘN ) j j‖AAT‖∞ ≤ regthr . Also,
from (16), we have that δd = max j (ΘN ) j j‖AN AT

N ‖∞. By combining the previous,
we get:

‖E‖ = δd ≤ regthr‖AN AT
N ‖∞

‖AAT‖∞
.

Observe that if ‖AAT‖∞ is large, we allow few columns to enter the partition
N . In this case, φi is expected to be close to 1 for most of the eigenvalues λ(M).
On the other hand, |N | is increased if the infinity norm of AAT is small, and in
such a case, φi is expected to be small for many eigenvalues of the system matrix
M . A more sophisticated choice for the regularization value based on the derived
bounds is possible; however, the proposed regularization has two goals, that is, not
to perturb the system significantly while introducing sparsity to the problem, and
hence, the definition of δd is computationally advantageous for that. Note that taking
advantage of the previously presented bounds indicates that the sufficiently large (in
the absolute value sense) eigenvalues of the system matrix (� 2δd ) will be perturbed
almost insignificantly. If some eigenvalues of the matrix are very small, the previous
arguments break down. We will derive lower bounds for these eigenvalues in the next
section.

Having introduced the diagonal uniform regularization δd I , let us examine the
effect of further dropping the off-diagonal elements off(ANΘN AT

N ) from the normal
equations (12). For that, we define K = AΘAT + δd I and R = off(ANΘN AT

N ) and
consider the following generalized eigenvalue problem:

uTRu = λuTKu. (18)

The previous is well defined since K � 0. We will analyse the eigenvalues

of K− 1
2 RK− 1

2 , which is similar to K−1R. Now assume by contradiction that

λmax(K− 1
2 RK− 1

2 ) ≥ 1. Then from (18) and for some eigenvector u corresponding to
the maximum eigenvalue, we would have:

uTRu ≥ uTKu.

By adding uTdiag(ANΘN AT
N )u to both sides of the previous inequality, we get:

0 ≥ uT(ABΘBAT
B)u + uTdiag(ANΘN AT

N )u + uTδdu,
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which is a contradiction. Hence, λmax(K− 1
2 RK− 1

2 ) < 1. On the other hand, if we
assume by contradiction that λmin(K− 1

2 RK− 1
2 ) ≤ −1, from (18) and for an eigen-

vector u corresponding to the minimum eigenvalue, we would get:

uTRu ≤ − uTKu = −uT(AΘAT + δd I )u ≤ −δdu
Tu.

However, using (16), we get δd + R � 0; hence, −δduTu < uTRu, which contradicts

the previous inequality. Hence, λmin(K− 1
2 RK− 1

2 ) > −1. Now, one can easily observe
that:

K−1(K − R) = I − K−1R, and ρ(K−1R) < 1,

where ρ(·) is the spectral radius, and hence, the eigenvalues of K−1(K − R) are
clustered around 1. This supports the claim that further dropping the off-diagonal
elements of the part of the normal equations corresponding to indices in N , after
adding a uniform dual regularization, introduces a controlled perturbation.

2.4.2 Quadratic Programming

Unlike the case of linear programming, for the case of quadratic programming we
employ a primal–dual regularization, that is, we use both Rp � 0 and Rd � 0, as
shown in (5), to improve the spectral properties of the problem. For this case, we
modify the condition for allowing a column to enter the set N , and at each iteration
k, in place of (17), we require:

max
j

(ΘN ) j j‖AAT‖∞ ≤ regthr ,k,

max
j

(ΘN ) j j‖QQT‖∞ ≤ regthr ,k,
(19)

where regthr ,k is updated as indicated in the linear programming case (Sect. 2.4.1). As
before, by permuting the columns so that the first n1 correspond to indices inN while
the remaining ones correspond to indices in B, the augmented system in (10) takes the
form:

⎡
⎣−(QN + Θ−1

N + RpN ) −QT
BN AT

N
−QBN −(QB + Θ−1

B + RpB) AT
B

AN AB Rd

⎤
⎦

⎡
⎣ΔxN

ΔxB
Δy

⎤
⎦ =

⎡
⎣ξdN

ξdB
ξp

⎤
⎦ ,

(20)
where

ξdN = cN + (
QN QT

BN
) (

xN ,k
xB,k

)
− AT

N yk − σkμk X
−1
N eN ,

ξdB = cB + (
QBN QB

) (
xN ,k
xB,k

)
− AT

B yk − σkμk X
−1
B eB,

ξp = b − Axk,
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and the permuted matrix Q is:

Q =
[
QN QT

BN
QBN QB

]
,

with QN ∈ R
n1×n1 , QBN ∈ R

n2×n1 and QB ∈ R
n2×n2 being the respective blocks

of the matrix Q, while RpN ∈ R
n1×n1 and RpB ∈ R

n2×n2 are the only two nonzero
blocks of the block diagonal primal regularization matrix Rp. As we mentioned ear-
lier, when we solve general convex quadratic programming problems, it is dangerous
to eliminate the (1,1) block of (10) and solve the problem using (12), since the latter
system may become dense. However, in the linear programming case, our regular-
ization matrix was tuned based on the properties of the normal equations. In order
to overcome this problem, we introduce a primal regularization that can absorb the
non-diagonal elements of the (1,1) block of the permuted augmented system (20). This
allows us to safely (from the sparsity and computational point of view) pivot on this
block and perform the analysis in a similar manner as in the linear programming case.
Hence, we define:

RpN = (
ΔpN − off(QN )

)
, (21)

with
ΔpN = ‖QN ‖∞ In1, (22)

where ΔpN ∈ R
n1×n1 is a uniform diagonal matrix, which ensures that RpN � 0 and

diagonally dominant. Although ΔpN can have sizeable values, (19) ensures that the
respective elements in Θ−1

N have significantly larger values, making this perturbation
acceptable. Using (21), the (1,1) block of (20) becomes:

−(QN + Θ−1
N + RpN ) = −(Θ−1

N + DpN ),

where DpN = diag(QN )+ΔpN is a diagonal matrix. For simplicity of notation, let

Q̄N = Θ−1
N + DpN .

Pivoting on the (1,1) block of (20) results in the following partially reduced augmented
system:

[
QBN Q̄−1

N QT
BN − (QB + Θ−1

B + RpB) AT
B − QBN Q̄−1

N AT
N

AB − AN Q̄−1
N QT

BN Rd + AN Q̄−1
N AT

N

] [
ΔxB
Δy

]
=

[
ξ1

ξ2

]
,

(23)
where

ξ1 = ξdB − QBN Q̄−1
N ξdN ,

ξ2 = ξp + AN Q̄−1
N ξdN .

Using a similar reasoning as before, we will tune the matrix RpB so that sparsity is
promoted. By looking at the (1,1) block of (23), one can see that an obvious choice
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for this matrix would be:

RpB = (
ΔpB + off(QBN Q̄−1

N QT
BN )

)
, (24)

with
ΔpB = max

j
(Q̄−1

N ) j j‖QBN QT
BN ‖∞ In2 , (25)

where ΔpB ∈ R
n2×n2 is a uniform diagonal matrix, which ensures that RpB � 0 and

diagonally dominant. Finally, by looking at the (2,2) block of (23), we can define Rd

in a similar manner as in the linear programming case as:

Rd = (
Δd − off(AN Q̄−1

N AT
N )

)
, (26)

with
Δd = max

j
(Q̄−1

N ) j j‖AN AT
N ‖∞ Im, (27)

where againΔd ∈ R
m×m is a uniform diagonal matrix, which ensures that Rd � 0 and

diagonally are dominant. Note that condition (19), which defines columns qualified
to enterN , ensures that the positive elements of the diagonal matrices ΔpB, Δd will
be strictly less than regthr ,k , at every iteration k of the algorithm.

Motivation
As in the linear programming case, let us provide the motivation for the previously

presented regularization scheme. We will derive some useful bounds that extend those
provided in the motivation paragraph for the linear programming regularization. All
the bounds stated here are direct applications of the results obtained in [23] and for
simplicity are given without proofs. Let:

M =
[−Q − Θ−1 AT

A 0

]
, E =

[
Δp 0
0 δd Im

]
,

and denote by λi and λ̃i the ith smallest eigenvalues of M and M + E , respec-
tively. Note that Δp is a permuted n × n diagonal matrix, comprised of the two
uniform primal regularization matrices δpN In1 , δpB In2 , with n1 + n2 = n. Let
ζi = minμ∈λ(−Q−Θ−1) |λi − μ|, where λi ∈ λ(M), λi /∈ λ(−Q − Θ−1) and λi �= 0.
Let also Mx = λi x , with ‖x‖ = 1. Partitioning x = [xH1 xH2 ]H , it can be proved as
before that:

‖x1‖ ≤ ‖A‖√
ζ 2
i + ‖A‖2

, ‖x2‖ ≤ ‖A‖√
λ2i + ‖A‖2

.

A counterpart of Lemma 2.4 for this case follows from [23] and states that if |λi | >

δd + ‖E‖, then, ∀ t ∈ [0, 1]:

‖x2(t)‖ ≤ ‖A‖√
(|λi | − δd − ‖E‖)2 + ‖A‖2 = φi .
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Similarly, if ζi > ‖Δp‖ + ‖E‖, then ∀ t ∈ [0, 1] we have:

‖x1(t)‖ ≤ ‖A‖√
(ζi − ‖Δp‖ − ‖E‖)2 + ‖A‖2

= ϕi ,

where x(t) = [x1(t)H x2(t)H ]H solves the problem (M + t E)x(t) = λi (t)x(t), for
some t ∈ [0, 1]. For a detailed derivation of the previous results, the interested reader
can look at [23], Lemmas 2.8, 2.9. Finally, the counterpart of Theorem 2.1 for this
case states that for each i such that: |λi | > δd +‖E‖ and ζi > ‖Δp‖+‖E‖, we have:

|λi − λ̃i | ≤ ‖Δp‖ϕ2
i + δdφ

2
i .

These bounds are slightly less intuitive than the ones provided for the linear pro-
gramming case; however, similar arguments to those used in the linear programming
case can be employed here, supporting the claim that the uniform regularization thatwe
introduce does not perturb the sufficiently large (in the absolute value sense) eigenval-
ues of the non-regularized system significantly. Themain reasonwhywe provide these
bounds is for completeness. We could proceed by showing, as in the linear program-
ming case, that further dropping off(QN ), off(QBN Q̄−1

N QT
BN ) andoff(AN Q̄−1

N AT
N )

(as the proposed non-diagonal regularization suggests) alters the eigenvalues of the
diagonally regularized system in a controlled way, but for ease of presentation we omit
this for a future study.

Rank-Deficient Matrices and the Value of ε
Notice that both in the linear and in the quadratic programming cases, during some

iterations of the IPM, no columns will satisfy the respective conditions for enteringN .
In order to ensure that rank deficiency will not get in the way of the proposed method,
at every such iteration k, we apply a uniform dual regularization Rd = regthr ,k Im ,
where regthr ,k is updated as stated in Sect. 2.4.1. In the quadratic programming case,
we also include a uniform primal regularization Rp = regthr ,k In . We expect that
sufficiently large (in the absolute value sense) eigenvalues (� 2 · regthr ,k) of the
system are perturbed insignificantly by using such a uniform regularization. Once at
least one column enters N , we drop this uniform regularization and start using the
regularization matrices presented in this paper.

Notice that regthr is not allowed to decrease more than a pre-specified value ε > 0.
We set this to: ε = max{ 0.1·tol‖A‖2 , 10−13}, where tol is the error tolerance for successful
termination of the algorithm and is usually set to the values 10−6 or 10−8. This value
is based on the bounds derived in the motivation paragraphs presented both for the
linear and for the quadratic programming cases, so that εφ2

i is small.

3 Spectral Analysis

This section focuses on analysing the spectral properties of the regularized systems
provided in the previous section.As before, the analysis is split into linear and quadratic
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programming, respectively. For each of these cases, we will provide the spectral prop-
erties of the respective augmented and partially reduced augmented system, showing
the effectiveness of the proposed regularization method.

3.1 Linear Programming

For linear programming problems, we employ only dual regularization, that is, we set
Rp = 0 and use only Rd � 0. In Sect. 2.4.1, it was noted that Δd is chosen such that
Rd � 0 and diagonally dominant. This is very easy to see, by looking at the definition
of (16) combined with (15). Since Rd is diagonally dominant, we are able to invoke
the Gershgorin Circle Theorem, which states that if:

ri =
m∑

j=1, j �=i

|(ANΘN AT
N )i j |,

then any eigenvalue of Rd is positive and lies in one of the following discs:

{λ : |λ − δd | ≤ ri },

where δd is defined in (16), i = 1, . . . ,m. This yields: 0 < λi ≤ δd + ri , ∀ i =
1, . . . ,m, where λi represents the ith eigenvalue of Rd . On the other hand, by construc-
tion, we know that δd ≥ ri +min j :(AN ΘN AT

N ) j j>0((ANΘN AT
N ) j j ), ∀ i = 1, . . . ,m

and hence,

min
j :(AN ΘN AT

N ) j j>0
((ANΘN AT

N ) j j ) ≤ λi ≤ δd + ri < 2δd , ∀ i = 1, . . . ,m. (28)

Let us now analyse the spectral properties of the matrix in (13). For that we provide
the following theorem, which gives bounds for the eigenvalues of the system. The
proof is based on the developments in [24] and [25].

Theorem 3.1 For all (x, z) > 0 and Rd as defined in (15), the coefficient matrix of
(13) has exactly n negative and m positive eigenvalues. Order and denote them as:

μ−n ≤ μ−n+1 ≤ · · · μ−1 < 0 < μ1 ≤ · · · μm .

These eigenvalues satisfy the following bounds:

μ−1 < −min
j

(Θ−1) j j ,

μ−n ≥ 1

2

((
λmin(Rd ) − max

j
(Θ−1) j j

) − [
(max

j
(Θ−1) j j + λmin(Rd ))2 + 4(σmax(A))2

] 1
2

)
,

μm ≤ 1

2

(
2δd + (

4δ2d + 4(σmax(A))2
) 1
2

)
,

μ1 ≥ 1

2

(
(λmin(Rd ) − max

j
(Θ−1) j j ) + [

(max
j

(Θ−1) j j + λmin(Rd ))2 + 4(σmin(A))2
] 1
2

)
.
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In case rank(A) < m, the eigenspace of the eigenvalues originating only from Rd is
{0} × Null(AT) and there are m − rank(A) such eigenvalues.

Proof Firstly, fromSylvester’s lawof inertiawe know that sinceΘ and AΘAT+Rd are
positive definite, the regularized augmented system matrix of (13) possesses precisely
n negative andm positive eigenvalues. Ifμ is an eigenvalue of the linear systemmatrix
of (13), then there are vectors u ∈ R

n and p ∈ R
m that cannot both be zero, using

which the eigenvalue problem can be written in the following form:

−Θ−1u + AT p = μu,

Au + Rd p = μp.
(29)

As observed in [5], if rank(A) < m, there are some eigenvalues of the matrix in (13)
that satisfy: Rd p = μp. The associated eigenspace is {0} × Null(AT).

If μ < 0, then u �= 0 since otherwise p = 0 because Rd � 0. On the other hand, if
μ > 0, then p �= 0 since otherwise u = 0 because Θ−1 � 0. Taking the inner product
of the first equation of (29) with u and the second equation with p and subtracting the
former from the latter give:

uTΘ−1u + pTRd p = −μuTu + μpT p.

Using the fact that Θ−1 � 0, along with Rd � 0, and assuming that μ < 0 (i.e.
u �= 0):

(min
j

(Θ−1) j j + μ)uTu ≤ μpT p,

where the inequality follows because the left-hand side is as small as possible and
we dropped the positive term pTRd p. But since μ < 0 in this case, we know that
−min j (Θ

−1) j j > μ = μ−1. Furthermore, ifμ < 0, then we know that Rd −μI � 0.
Hence, it is invertible and we can solve the second equation of (29) with respect to p,
substitute the result in the first equation and take the inner product with u to get:

p = −(Rd − μI )−1Au,

−uTΘ−1u − uTAT(Rd − μI )−1Au = μuTu.

Hence,

−max
j

(Θ−1) j j − (σmax(A))2(λmin(Rd) − μ)−1 ≤ μ,

where we observed that the left-hand side has negative terms, took the most negative
possible values for these terms and divided by uTu. Note that for the second term of
the left-hand side, we used the fact that for two positive definite matrices A, B, we
have that λmin(A + B) ≥ λmin(A) + λmin(B). Solving the previous inequality with
respect to μ (and using the roots of the second-order equation), we get that:
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μ−n ≥ 1

2

((
λmin(Rd ) − max

j
(Θ−1) j j

) − [
(max

j
(Θ−1) j j + λmin(Rd ))2 + 4(σmax(A))2

] 1
2

)
.

Now, for the case where μ > 0 (where we know that p �= 0), we solve the first
equation of (29) with respect to u, substitute the result in the second one and take the
inner product with p, to get:

u = 1

μ

(
1

μ
Θ−1 + I

)−1

AT p,

1

μ
pTA

(
1

μ
Θ−1 + I

)−1

AT p + pTRd p = μpT p.

Observe that λmax((
1
μ
Θ−1 + I )−1) ≤ 1. Given that all the terms on the left-hand

side are positive, we can take upper bounds for every term, multiply everything by μ

(since μ > 0) and divide both sides by pT p. This gives us the following second-order
inequality with respect to μ:

μ2 − λmax(Rd)μ − (σmax(A))2 ≤ 0.

Solving the previous quadratic inequality gives:

μm ≤ 1

2

(
2δd + (

4δ2d + 4(σmax(A))2
) 1
2

)
,

where we used the rightmost upper bound given in (28). Working similarly using the
same equation but slightly altered, that is:

u = (Θ−1 + μI )−1AT p,

pTA(Θ−1 + μI )−1AT p + pTRd p = μpT p,

and by taking lower bounds on each term of the left-hand side and rearranging them,
we get the following inequality:

μ2 + (max
j

(Θ−1) j j − λmin(Rd))μ − (σmin(A)2 + max
j

(Θ−1) j jλmin(Rd)) ≥ 0.

Solving the previous gives us the last bound:

μ1 ≥ 1

2

(
(λmin(Rd ) − max

j
(Θ−1) j j ) + [

(max
j

(Θ−1) j j + λmin(Rd ))2 + 4(σmin(A))2
] 1
2

)
,

which completes the proof. ��
Below we provide an analogous theorem applied to the matrix of (14). Again, we

use the definition of Rd that is given in (15). With this in mind, we know that the (2,2)
block of (14) is comprised of two diagonal matrices, i.e.:
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D∗ = diag(ANΘN AT
N ) + Δd ,

where Δd is defined in (16). The proof is similar to that of the previous theorem, and
hence, it is not provided here.

Theorem 3.2 For all (x, z) > 0 and Rd as defined in (15), the coefficient matrix of
(14) has exactly n2 negative and m positive eigenvalues. Order and denote them as:

μ̄−n2 ≤ μ̄−n2+1 ≤ · · · μ̄−1 < 0 < μ̄1 ≤ · · · μ̄m .

These eigenvalues satisfy the following bounds:

μ̄−1 < −min
j

(Θ−1
B ) j j ,

μ̄−n2 ≥ 1

2

((
min
i

D∗
i i − max

j
(Θ−1

B ) j j
) − [

(max
j

(Θ−1
B ) j j + (min

i
D∗
i i ))

2 + 4(σmax(AB))2
] 1
2

)
,

μ̄m ≤ 1

2

(
max
i

D∗
i i + (

(max
i

D∗
i i )

2 + 4(σmax(AB))2
) 1
2

)
,

μ̄1 ≥ 1

2

(
(min

i
D∗
i i − max

j
(Θ−1

B ) j j ) + [
(max

j
(Θ−1

B ) j j + min
i

D∗
i i )

2 + 4(σmin(AB))2
] 1
2

)
.

In case rank(AB) < m, the eigenspace of the eigenvalues originating only from D∗
is {0} × Null(AT

B) and there are m − rank(AB) such eigenvalues.

Now we can compare the bounds given in Theorems 3.1 and 3.2 and observe
clear advantages of using the partially reduced augmented system (14) over the
full augmented system (13). Firstly, one can easily note that −min j (Θ

−1
B ) j j =

−min j (Θ
−1) j j ; hence, the bound for the largest negative eigenvalue is identical for

both systems. However, there are two main differences:

1. We have that max j (Θ
−1
B ) j j ≤ max j (Θ

−1) j j (and usually max j (Θ
−1
B ) j j �

max j (Θ
−1) j j ). As a consequence, the bound on the most negative eigenvalue

of (13) will be larger (in the absolute value sense) than the bound on the respective
eigenvalue of (14).

2. Our guaranteed lower bound for the minimum eigenvalue of Rd is smaller than
the respective lower bound for the minimum eigenvalue of D∗. In fact,

min
i

D∗
i i ≥ δd ,

λmin(Rd) ≥ min
j :(AN ΘN AT

N ) j j>0
((ANΘN AT

N ) j j ),

where δd is defined in (16) and the second lower bound is given in (28). By
construction, the first bound is better. As a consequence, the smallest positive
eigenvalue of (14) is guaranteed to be at least as large as δd .
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3.2 Quadratic Programming

For quadratic programming problems, we employ a primal–dual regularization. In
subsection 2.4.2, it was noted that Δd is chosen such that Rd � 0 and diagonally
dominant, while ΔpB is chosen such that RpB � 0 and diagonally dominant. This
can be seen by looking at (27) combined with (26) and (25) combined with (24),
respectively. Similarly, positive definiteness and diagonal dominance of RpN follows
immediately by construction, i.e. by looking at equations (21) and (22). For notational
convenience, we define:

Q̄N = Θ−1
N + diag(QN ) + ΔpN .

– For Rd , we are able to invoke the Gershgorin circle theorem as in the linear
programming case stating that if:

ri =
m∑

j=1, j �=i

|(AN Q̄−1
N AT

N )i j |,

then any eigenvalue of Rd is positive and lies in one of the following discs:

{λ : |λ − δd | ≤ ri },

where δd = max j (Q̄
−1
N ) j j‖AN AT

N ‖∞, i = 1, . . . ,m. This yields: 0 < λi ≤
δd + ri , ∀ i = 1, . . . ,m, where λi is the ith eigenvalue of Rd . On the other hand,
by construction we know that δd ≥ ri + min j :(AN Q̄−1

N AT
N ) j j>0((AN Q̄−1

N AT
N ) j j ),

∀ i = 1, . . . ,m, and hence,

min
j :(AN Q̄−1

N AT
N ) j j>0

((AN Q̄−1
N AT

N ) j j ) ≤ λi ≤ δd + ri < 2δd . (30)

– For RpB, we apply the same theorem; however, in this case we have:

ri =
n2∑

j=1, j �=i

|(QBN Q̄−1
N QT

BN )i j |,

and any eigenvalue of RpB is positive and lies in one of the following discs:

{λ : |λ − δpB | ≤ ri },

where δpB = max j (Q̄
−1
N ) j j‖QBN QT

BN ‖∞, i = 1, . . . , n2. As before, we know
that:

min
j :(QBN Q̄−1

N QT
BN ) j j>0

((QBN Q̄−1
N QT

BN ) j j ) ≤ λi ≤ δpB + ri < 2δpB, ∀ i = 1, . . . , n2 = |B|,
(31)

where λi is the ith eigenvalue of RpB.
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– Finally, we can work similarly to examine the spectral properties of RpN . Again
by letting:

ri =
n1∑

j=1, j �=i

(QN )i j ,

any eigenvalue of RpN is positive and lies in one of the following discs:

{λ : |λ − δpN | ≤ ri },

where δpN = ‖QN ‖∞, i = 1, . . . , n1. This yields: 0 < λi ≤ δpN + ri , ∀ i =
1, . . . , n1, where λi is the ith eigenvalue of RpN . But since QN � 0 as a principal
minor of Q � 0, we know that if a diagonal element of QN is zero, then its
respective column and row are also zero. Hence, this implies tighter final bounds,
that is:

min
j :(QN ) j j>0

((QN ) j j ) < λi ≤ δpN + ri < 2δpN , ∀ i = 1, . . . , n1 = |N |. (32)

Let us now analyse the spectral properties of (20). For that, we provide the following
theorem, which is the extension of Theorem 3.1 for the QP case. The proof is almost
identical, and hence, it is not provided here. For notational convenience, let:

H = Q + Θ−1 + Rp.

Theorem 3.3 For all (x, z) > 0 and Rd , RpB, RpN as defined in (26), (24) and
(21), respectively, the coefficient matrix of (20) has exactly n negative and m positive
eigenvalues. Order and denote them as:

μ−n ≤ μ−n+1 ≤ · · · μ−1 < 0 < μ1 ≤ · · · μm .

These eigenvalues satisfy the following bounds:

μ−1 < −λmin(H),

μ−n ≥ 1

2

((
λmin(Rd) − λmax(H)

) − [
(λmax(H) + λmin(Rd))

2 + 4(σmax(A))2
] 1
2

)
,

μm ≤ 1

2

(
2δd + (

4δ2d + 4(σmax(A))2
) 1
2

)
,

μ1 ≥ 1

2

(
(λmin(Rd) − λmax(H)) + [

(λmax(H) + λmin(Rd))
2 + 4(σmin(A))2

] 1
2

)
.

In case rank(A) < m, the eigenspace of the eigenvalues originating only from Rd is
{0} × Null(AT) and there are m − rank(A) such eigenvalues.
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Below we provide a similar theorem, applied to (23). For that, we will use
Rd , RpB, RpN as defined in Sect. 2.4.2 as well as the respective eigenvalue bounds
given in (30), (31) and (32). Using the definitions of the regularization matrices, we
know that the matrix in the (1,1) block of (23) takes the form:

H̄ = (QB + Θ−1
B + ΔpB − diag(QBN Q̄−1

N QT
BN )),

while the (2,2) block of (23) becomes:

D∗ = diag(AN Q̄−1
N AT

N ) + Δd .

Theorem 3.4 For all (x, z) > 0 and Rd , RpB, RpN as defined in (26), (24) and
(21), respectively, the coefficient matrix of (23) has exactly n2 negative and m positive
eigenvalues. Order and denote them as:

μ̄−n2 ≤ μ̄−n+1 ≤ · · · μ̄−1 < 0 < μ̄1 ≤ · · · μ̄m .

These eigenvalues satisfy the following bounds:

μ̄−1 < −λmin(H̄),

μ̄−n2 ≥ 1

2

((
min
j

(D∗) j j − λmax(H̄)
)

− [
(λmax(H̄) + min

j
(D∗) j j )2 + 4(σmax(AB − AN Q̄−1

N QT
BN ))2

] 1
2

)
,

μ̄m ≤ 1

2

(
max

j
(D∗) j j + (

max
j

(D∗)2j j + 4(σmax(AB − AN Q̄−1
N QT

BN ))2
) 1
2

)
,

μ̄1 ≥ 1

2

(
(min

j
(D∗) j j − λmax(H̄)) +

+ [
(λmax(H̄) + min

j
(D∗) j j )2 + 4(σmin(AB − AN Q̄−1

N QT
BN ))2

] 1
2

)
.

In case rank(AB−AN Q̄−1
N QT

BN ) < m, the eigenspace of the eigenvalues originating

only from D∗ is {0} × Null(AT
B − QBN Q̄−1

N AT
N ) and there are m − rank(AB −

AN Q̄−1
N QT

BN ) such eigenvalues.

Let us compare the bounds given in Theorems 3.3 and 3.4 to observe once again the
advantages of using the partially reduced augmented system (23) over the full aug-
mented system (20). There are three significant differences in the eigenvalue bounds
of these two systems:

1. For the bound on the largest negative eigenvalue of the two systems, we know
that:

λmin(H) ≥ min
j

(Θ−1) j j + λmin(Rp),
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where

λmin(Rp) ≥ min

{
min

j :(QBN Q̄−1
N QT

BN ) j j>0
((QBN Q̄−1

N QT
BN ) j j ), min

j :(QN ) j j>0
((QN ) j j )

}
,

from (31) and (32), respectively. However, since min j (Θ
−1
B ) j j � min j (Θ

−1
N ) j j

we can conclude that:

λmin(H) ≥ min
j

(Θ−1
B ) j j + λmin(Rp),

while

λmin(H̄) ≥ min
j

(Θ−1
B ) j j + max

j
(Q̄−1

N ) j j‖QBN QT
BN ‖∞ − max

j
(QBN Q̄−1

N QT
BN ) j j ,

where we used (25) as the definition of ΔpB. We observe that the difference:

max
j

(Q̄−1
N ) j j‖QBN QT

BN ‖∞ − max
j

(QBN Q̄−1
N QT

BN ) j j

increases asmore elements enter the setN .On the other hand,λmin(Rp) is expected
to decrease at every iteration of the interior point method. Hence, the bound on
μ̄−1 is expected to be better than that on μ−1, as more elements enter the partition
N .

2. For the bound on the most negative eigenvalue of the two systems, we know that:

λmax(H) ≤ λmax(Q) + max
j

(Θ−1) j j + λmax(Rp),

where λmax(Rp) ≤ 2max{δpN , δpB}. However, since max j (Θ
−1
N ) j j ≥ max j

(Θ−1
B ) j j , we observe that:

λmax(H) ≤ λmax(Q) + max
j

(Θ−1
N ) j j + λmax(Rp),

where we used the definition of ΔpN given in (22). On the other hand,

λmax(H̄) ≤ λmax(QB) + max
j

(Θ−1
B ) j j + (ΔpB)i i , ∀ i ∈ {1, . . . , n}.

where, from (25), we know that (ΔpB)i i = max j (Q̄
−1
N ) j j‖QBN QT

BN ‖∞, ∀ i ∈
{1, . . . , n}. Clearly the bound on λmax(H̄) is significantly smaller than that on
λmax(H), since it is usually the case that max j (Θ

−1
N ) j j � max j (Θ

−1
B ) j j , while

λmax(Rp) > max j (Q̄
−1
N ) j j‖QBN QT

BN ‖∞. Hence, the most negative eigenvalue
of (23) is expected to have a significantly smaller magnitude than that of (20).
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3. As in the LP case, our guaranteed lower bound for the minimum eigenvalue of Rd

is smaller than the respective lower bound for the minimum eigenvalue of D∗. In
fact,

min
i

D∗
i i ≥ δd

λmin(Rd) ≥ min
j :(AN Q̄−1

N AT
N ) j j>0

((AN Q̄−1
N AT

N ) j j ),

where we use δd as defined in (27), while the last inequality follows from (30).
By construction, the first bound is better. As a consequence, the smallest positive
eigenvalue of (23) is guaranteed to be at least as large as δd .

4 Implementation and Numerical Results

4.1 The Algorithmic Framework

At this point, we are providing a generic algorithm (IPM-NDR), summarizing the
infeasible primal–dual IPM with non-diagonal regularization. The algorithm solves
the Newton system arising from the optimality conditions of (1)–(2), at each iteration,
using a direct method. Note that this is just a general outline and does not contain the
actual details of the implemented method. Implementation details will be presented
in the next subsection. Note that in the algorithm, we make the distinction between
linear and quadratic programming problems, by using the logical variables LP and
QP, respectively.

4.2 Implementation Details

We implemented the algorithm in MATLAB. Our implementation solves linear and
convex quadratic programming problems in the standard form. However, all the free
variables are treated as variables bounded by some box constraints.We set some initial
bounds,

l f = −102 ≤ x f ≤ 102 = u f ,

for all the free variables. If the method pushes some of these variables to take values
outside of this box, then the respective bounds are increased to give space for variables
to increase their values. Note that this heuristic causes that extra iterations are needed
to converge for a few problems; since every time the box constraints are changed, the
method loses primal feasibility.

Regularization
We set regthr ,0 = 1, and we decrease it at the same rate as μk decreases, until it

becomes smaller than ε = max
{ tol·10−1

‖A‖22
, 10−13

}
. Then, it takes this value and stays

constant for the rest of the optimization process. As before, tol is the error tolerance
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Algorithm IPM-NDR Infeasible primal–dual IPM with non-diagonal regularization
Input: A, Q, b, c, tol, maxit
Parameters: 0 < σmin ≤ σmax (bounds for the centring parameter), ε =
max

{ tol·10−1

‖A‖22
, 10−13}.

Initial point: Choose a well-centred w0 = (x0, y0, r0, s0, z0) with x0, z0 ≥ 0, μ0 = xT0 z0
n ,

k = 0, regthr ,0 = 1.

res0p = b − Ax0, res0d = c − AT y0 − z0 + Qx0.
while (k < maxit) do

if ((‖reskp‖ < tol) ∧ (‖reskd‖ < tol) ∧ (μk < tol)) then
Declare convergence and return the optimal solution.
return (xk , yk , zk).

else
regthr ,k = max{O(μk), ε}.
if (N = ∅) then

Rd = regthr ,k Im .
if (QP) then

Rp = regthr ,k In .
end if

else
if (LP) then

Rd from (15) and (16), Rp = 0.
else if (QP) then

Rd from (26), (27) and Rp from (21), (22), (24), (25).
end if

end if

Choose σk ∈ [σmin, σmax].
if (LP) then

Compute Δwk = (Δxk , Δyk , Δrk , Δzk) by solving (12) and the substitutions.
(sk = 0, Δs = 0).

else if (QP) then
ComputeΔwk = (Δxk ,Δyk , Δrk , Δsk ,Δzk) by solving (23) and the substitutions.

end if

amax
x = minΔxi<0

{
1, − xi

Δxi

}
, amax

z = minΔzi<0

{
1,− zi

Δzi

}
.

xk(a) = xk + τamax
x Δx, rk(a) = rk + τamax

x Δr .
zk(a) = zk +τamax

z Δz, yk(a) = yk +τamax
z Δy, sk(a) = sk +τamax

z Δs, τ ∈ ]0, 1[.
μk(a) = xk(a)T zk (a)

n .
k = k + 1.

end if
end while
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specified by the user. At every iteration, we enable columns to enter the set N only
if: max j∈N (Θ) j j max

{‖AAT‖∞, ‖QQT‖∞
} ≤ regthr ,k . This ensures that (Δd)i i ,

as defined in (16) and (27) for linear and convex quadratic problems, respectively, is
smaller than regthr ,k,∀i ∈ {1, . . . ,m}, ∀ k ≥ 0. The latter also holds for (ΔpB)i i as
in (25) ,∀i ∈ {1, . . . , n2}, which is only defined for quadratic programming problems.
Of course, for linear programming problemswe have Rp = 0. Note that during the first
iterations of the method,N is usually empty. In order to avoid instability, we include a
uniform dual regularization Rd = regthr ,k Im . For the quadratic programming case, we
also include a uniform primal regularization, that is: Rp = regthr ,k In . This uniform
regularization is dropped when N is non-empty. As an extra safeguard, when the
factorization of the system fails, we increase regthr by a factor of 10 and repeat the
factorization. If this process is repeated for 6 consecutive times, we stop the method.
All other implementation details concerning the regularization follow from Sect. 2.

Newton Step Computation
For general convex quadratic problems, the Newton direction is calculated from

system (23), after computing its symmetric LDLT decomposition, where L is a lower
triangular matrix and D is diagonal. For that, we use the build-inMATLAB symmetric
decomposition (i.e. ldl). We know that such a decomposition always exists, with D
diagonal, for the aforementioned system, since after introducing the regularization,
the matrix of (23) is guaranteed to be quasi-definite, a class of matrices known to
be strongly factorizable, [4]. For that reason, we change the default pivot threshold
of ldl to 10−14. We use such a small pivot threshold in order to avoid any 2 × 2
pivots during the factorization routine. For linear programming problems, we solve the
system (12) (with Q = 0), using the build-in Cholesky decomposition of MATLAB
(i.e. chol). Δx is then recovered from (11). In the quadratic programming case, Δs
is recovered from (7). In both cases, Δz is recovered from (9) and Δr from (6).

Starting Point
We have already mentioned that the method is infeasible, and hence, the starting

point does not need to be primal and dual feasible. The only requirement is that the
initial values of the variables x, z are strictly positive. We use a starting point that
was proposed in [26]. Here we will only state it for completeness. To construct this
point, we try to solve the pair of problems (P), (D), but we ignore the non-negativity
constraints. Such relaxed problems have closed form solutions:

x̃ = AT(AAT)−1b, ỹ = (AAT)−1A(c + Qx̃), z̃ = c − AT ỹ + Qx̃ . (33)

Then, in order to guarantee positivity and sufficient magnitude of x, z, we compute
the expressions δx = max(−1.5min{x̃i }, 0) and δz = max(−1.5min{z̃i }, 0) and we
obtain:

δ̃x = δx + 0.5
(x̃ + δx e)T(z̃ + δze)∑n

i=1(z̃i + δz)
, (34)

δ̃z = δz + 0.5
(x̃ + δxe)T(z̃ + δze)∑n

i=1(x̃i + δx )
, (35)
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where e is the vector of ones of appropriate dimension. Finally, we define the starting
point by setting:

r0 = 0, s0 = 0, y0 = ỹ, z0i = z̃i + δ̃z, x0i = x̃i + δ̃x , i = 1, . . . , n. (36)

Centring Parameter
As minimum and maximum centring parameters, we fix σmin = 0.05 and σmax =

0.95. In the first iteration, we use σ0 = 0.5. Then, at each iteration k, in order to
determine the centring parameter σk , we perform the following operations:

σk = max{(1 − ak−1
x )5, (1 − ak−1

z )5},

where ak−1
x , ak−1

z are the step lengths in directions Δx, Δz of the previous iteration,
respectively. Then, we assign:

σk = min{σk, σmax},

and finally

σk = max{σk, σmin}.

The latter is a heuristic which performs well in infeasible IPM implementations.

Step Length Computation
In order to calculate the step length, we apply the fraction to the boundary rule, that

is, we compute the largest step lengths to the boundary of the non-negative orthant,
i.e.:

amax
x = minΔxi<0

{
1,− xi

Δxi

}
, amax

z = minΔzi<0

{
1,− zi

Δzi

}
, (37)

and we set:
ax = τamax

x , az = τamax
z , (38)

where τ ∈ ]0, 1[ is set to τ = 0.995. The constant τ acts as a safeguard against
bad directions. Taking a full step towards a direction can potentially push the iterates
of the algorithm close to the boundary. This in turn can significantly slow down the
convergence of the method. The primal variables x, r are updated using the step length
ax while the dual variables y, s, z are updated using the step length az .

Termination Criteria
Finally, the algorithm is terminated either if the number of maximum iterations

specified by the user is reached or when all the following three conditions are satisfied:

‖c − ATy + Qx − z‖
‖c‖ + 1

≤ tol,

‖b − Ax‖
‖b‖ + 1

≤ tol,
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and

μ ≤ tol,

where tol is the tolerance specified by the user.

4.3 Numerical Results

We have made a particular effort to keep the implementation as simple as possible,
so that the regularization effects can easily be seen and analysed. For that reason, we
applied scaling only to problems which required it to converge and this was needed
only for 5 out of the 218 problems solved. On the other hand, no predictor-corrector
technique was included. We tested our method on problems coming from the Netlib
collection [27] as well as on a set of convex quadratic programming problems given
in [28]. We present the numerical results, firstly for linear programming problems
and then for quadratic programming ones. In order to demonstrate the effects of the
proposed regularization method, we will compare it with an interior point method that
uses a uniform regularization. This uniform regularization scheme can be interpreted
as the application of a standard proximal point method, in contrast to the proposed
method, which can be interpreted as the application of a generalized proximal point
method. The experiments were conducted on a PC with a 2.2 GHz Intel Core i5 pro-
cessor (dual core) and 4GB RAM, run under Linux operating system. The MATLAB
version used was R2018a.

Linear Programming Problems
As we have already stated, for linear programming problems we use only dual

regularization, that is, we set Rp = 0 and s = 0 in (Pr )–(Dr ). For that reason, we
will compare our method with an algorithm that uses a uniform dual regularization,
Rd = regthr ,k Im, ∀k ≥ 0, where regthr ,k is updated as indicated in the previously
presented Regularization paragraph. IfN = ∅, the two methods are exactly the same.
Hence, the difference between themethods ariseswhen some columns of the constraint
matrix have entered the set N . The tolerance used in the experiments for the linear
programming problems was tol = 10−6. We will not use a smaller tolerance because
our method does not have primal regularization. As a consequence, if some elements
of ΘB become very large, this can create numerical instability if there is no primal
regularization to keep such entries manageable in terms of machine precision. As an
extra safeguard, when the factorization fails, we increase the uniform regularization
value by a factor of 10 until the factorization is completed successfully. Finally, we set
the maximum iterations of the method to be maxit = 200. If this number is reached,
the algorithm stops, indicating that the optimal solution was not found. To conclude,
we use:

tol = 10−6, maxit = 200.

The statistics of runs of the proposed IPM with non-diagonal regularization and of
the previously mentioned IPM with uniform regularization, over the Netlib test set,
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are collected in Table1. Notice that Table1 contains only a subset of the 96 problems
of the Netlib collection. All problems for which the set N stayed empty throughout
the whole optimization process have been excluded. In this case, the two methods are
completely equivalent.

Table 1 Netlib collection

Name Non-diagonal Reg. Uniform Reg.

Iter. ttotal (s) Stat. Iter. ttotal (s) Stat.

ADLITTLE 23 5.189100e−02 opt 23 2.186500e−02 opt

AFIRO 10 1.149000e−02 opt 10 7.599000e−03 opt

AGG 33 6.976600e−02 opt 31 8.973400e−02 opt

AGG2 35 1.187540e−01 opt 35 1.185300e−01 opt

AGG3 31 1.046800e−01 opt 31 1.106120e−01 opt

BEACONFD 13 8.038000e−03 opt 13 9.213000e−03 opt

BNL1 43 2.571860e−01 opt 43 2.555120e−01 opt

CAPRI 29 1.000590e−01 opt 28 1.170850e−01 opt

CZPROB 43 2.985060e−01 opt 48 3.398990e−01 opt

D2Q06C 54 1.984321e+00 opt 54 2.050860e+00 opt

DEGEN2 21 1.527010e−01 opt 21 1.503810e−01 opt

DFL001 84 1.069954e+01 opt 82 1.278976e+01 opt

FFFFF800 49 2.383090e−01 opt 49 2.245300e−01 opt

FINNIS 32 9.045000e−02 opt 32 6.704100e−02 opt

FIT2D 42 2.229528e+00 opt 42 2.303429e+00 opt

FORPLAN 31 1.041280e−01 opt 31 1.285160e−01 opt

GANGES 26 7.910500e−02 opt 26 7.961900e−02 opt

GFRD-PNC 37 5.083300e−02 opt 37 6.297500e−02 opt

GREENBEA 69 1.467105e+00 opt 69 1.715615e+00 opt

GREENBEB 68 1.467883e+00 opt 68 1.487645e+00 opt

GROW15 21 9.174400e−02 opt 21 9.294100e−02 opt

GROW22 22 1.397460e−01 opt 22 1.345540e−01 opt

GROW7 20 4.463700e−02 opt 20 4.709500e−02 opt

MAROS 34 1.894710e−01 opt 34 1.933730e−01 opt

MODSZK1 30 1.236590e−01 opt 30 1.177030e−01 opt

NESM 52 6.727080e−01 opt 53 7.009060e−01 opt

PEROLD 78 1.023070e+00 opt 83 1.346218e+00 opt
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Table 1 continued

Name Non-diagonal Reg. Uniform Reg.

Iter. ttotal (s) Stat. Iter. ttotal (s) Stat.

PILOT.JA 98 2.484631e+00 opt 149 5.730954e+00 opt

PILOT.WE 84 5.628290e−01 opt 80 6.386240e−01 opt

QAP12 34 5.324705e+00 opt 32 5.794378e+00 opt

QAP15 37 3.105651e+01 opt 39 4.094642e+01 opt

QAP8 19 2.675480e−01 opt 20 3.163920e−01 opt

SC50A 12 5.564000e−03 opt 12 7.275000e−03 opt

SCAGR25 30 4.775800e−02 opt 30 4.343100e−02 opt

SCAGR7 31 2.389600e−02 opt 34 4.341000e−02 opt

SCORPION 32 2.650000e−02 opt 36 3.096300e−02 opt

SCSD1 19 2.114700e−02 opt 21 4.742600e−02 opt

SCSD6 68 9.546700e−02 opt 73 8.867700e−02 opt

SCSD8 35 7.679500e−02 opt 83 1.762570e−01 opt

SEBA 17 7.285000e−03 opt 19 9.740000e−03 opt

SHELL 40 1.353860e−01 opt 40 1.891540e−01 opt

SHIP04L 26 1.208970e−01 opt 32 2.571370e−01 opt

SHIP04S 30 9.137400e−02 opt 26 9.265600e−02 opt

SHIP08L 31 2.447510e−01 opt 33 2.590480e−01 opt

SHIP08S 32 1.126960e−01 opt 30 1.044440e−01 opt

SHIP12L 34 4.511480e−01 opt 34 3.488350e−01 opt

SHIP12S 33 1.340110e−01 opt 33 1.306230e−01 opt

SIERRA 32 3.101600e−01 opt 33 3.564710e−01 opt

VTP.BASE 26 1.852400e−02 opt 26 1.572000e−02 opt

WOOD1P 34 1.002611e+00 opt 33 1.406915e+00 opt

Both IPM with non-diagonal regularization and IPM with uniform regularization
solved all 96 problems of the Netlib collection. The former did so in 146,6 s and a
total of 3322 IPM iterations. The latter needed 165,7 s and a total of 3442 iterations. In
other words, the IPM using the proposed regularization solved the whole set in 11.5%
less time, requiring 3% less iterations. The computational benefits of the non-diagonal
regularization become obvious in the larger instances of the Netlib collection. See, for
example, problems DFL001, QAP15 in Table1.

We also include Table2, in which the factorization times are compared when using
non-diagonal and uniform regularization, respectively, over the last four iterations of
problems DFL001 and GREENBEA. The size of the respective constraint matrices
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Table 2 Sparsity introduced from the non-diagonal regularization (linear programming)

Name m n Non-diagonal Reg. Uniform Reg.

Iter. |N | tfact (s) Iter. tfact (s)

DFL001 9785 15,477 81 4089 0.0508 79 0.0952

82 5709 0.0295 80 0.0972

83 6247 0.0258 81 0.0979

84 7280 0.0166 82 0.0977

GREENBEA 3770 5973 66 2512 0.0033 66 0.0107

67 2536 0.0029 67 0.0106

68 1210 0.0080 68 0.0111

69 2647 0.0026 69 0.0113

also includes columns which were added to transform the problems to the standard
form. Extra information, concerning the cardinality of the partition N , the iteration
count as well as the time needed to compute the Cholesky factorization of the system
matrix at the respective iteration, is collected in Table2.

Analysing the results reported in Tables 1 and 2, one can observe that while the
proposed non-diagonal regularization matrix does not affect the convergence of the
method, it can accelerate the factorization significantly through the sparsity that it
introduces in the systemmatrix.Notice that for bothDFL001 andGREENBEA, almost
half of their columns lie in the partition N and this does not prevent the algorithm
from converging.

Finally, in order to present the importance of regularization, as well as the over-
all comparison of the two different regularization schemes, we also include Fig. 1,
which contains the performance profiles, over the whole Netlib set, of three different
methods. The green triangles correspond to the IPM with non-diagonal regulariza-
tion. The red stars correspond to the IPM with uniform regularization, and finally, the
blue crosses correspond to an IPM without regularization. In Fig. 1a, we present the
performance profiles with respect to the total time to convergence, while in Fig. 1b
the performance profiles with respect to the total number of iterations. The horizontal
axis (in logarithmic scale) represents the performance ratio with respect to the best
performance achieved by one of the three methods for each problem. For example, 2
in the horizontal axis is interpreted as: “what percentage of problems was solved by
each method, in at most 2 times the best achieved time for each problem”. The vertical
axis shows the percentage of problems solved by each method for different values of
the performance ratio. Efficiency is measured by the rate at which each of the lines
increases, as the ratio increases. Robustness is measured by the maximum percentage
achieved by each of the methods. For more information about performance profiles,
we refer the reader to [29], where this benchmarking scheme was proposed.

By looking at Fig. 1, one can observe the importance of regularization in terms of
robustness of the method. The IPM scheme that does not employ any regularization
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(a) Performance profile with respect to time (b) Performance profile with respect to iterations

Fig. 1 Performance profiles over the Netlib test set

fails to solve 18.75% of the problems in the Netlib collection. On the other hand, the
IPMwith non-diagonal regularization ismore efficient in terms of time to convergence,
when compared to the other two methods. Notice that this is not the case for the IPM
using uniform regularization, which is less efficient than the other two methods for
70% of the problems. As expected, the IPM that does not use regularization converges
in less iterations for most of the problems that it successfully solves. This is expected,
since in the regularized schemes, we are perturbing the Newton system. Obviously,
this perturbation is benign, in the sense that it allows us to significantly improve the
robustness of the method.

Convex Quadratic Programming Problems
For this class of problems,we employ a primal–dual dynamic regularization.Hence,

we will compare our method with an algorithm that uses a uniform primal–dual reg-
ularization. Such a method adds two uniform diagonal matrices Rp = regthr ,k I and
Rd = regthr ,k I to the (1,1) and (2,2) blocks of the augmented system, respectively.
This scheme can be interpreted as the primal and dual application of the standard
proximal point method, in contrast to the proposed regularization scheme, which is
the primal and dual application of a generalized proximal point method. As an extra
safeguard, when the factorization fails, we increase the uniform regularization value
by a factor of 10 until the factorization is completed successfully. The tolerance used
in the experiments for this class of problems was tol = 10−8. As in the linear pro-
gramming case, we set the maximum iterations of the method to be maxit = 200. To
conclude, we use:

tol = 10−8, maxit = 200.

For this problem set, the algorithm did not employ any scaling in the problemmatrices.
The computational results, obtained with the proposed non-diagonally regularized
IPM and with the previously mentioned uniformly regularized IPM, over the Maros
andMészáros repository of convex quadratic programming problems, are presented in
Table3. As before, Table3 contains only a subset of the 122 problems of the collection.
All problems for which the set N stayed empty throughout the whole optimization
process have been excluded.
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Table 3 Maros–Mészáros repository of convex quadratic problems

Name Non-diagonal Reg. Uniform Reg.

Iter. ttotal (s) Stat. Iter. ttotal (s) Stat.

AUG2D 23 6.061128e+00 opt 23 5.894982e+00 opt

AUG2DCQP 20 1.709764e+00 opt 20 1.552568e+00 opt

AUG2DQP 23 1.790057e+00 opt 23 1.789244e+00 opt

AUG3D 24 5.630410e−01 opt 24 5.587120e−01 opt

AUG3DCQP 14 1.478520e−01 opt 14 1.444330e−01 opt

AUG3DQP 19 2.092870e−01 opt 19 1.823560e−01 opt

CVXQP1 57 1.021041e+02 opt 57 1.052619e+02 opt

CVXQP2 36 3.016804e+01 opt 36 3.127249e+01 opt

CVXQP2 26 2.486000e−02 opt 27 3.391610e−01 opt

CVXQP3 38 1.289052e+02 opt 38 1.335597e+02 opt

CVXQP3 36 6.324500e−01 opt 36 6.770390e−01 opt

DTOC3 51 4.833583e+00 opt 51 4.825231e+00 opt

GENHS28 24 1.257300e−02 opt 24 1.168300e−02 opt

GOULDQP3 18 9.434200e−02 opt 32 1.012600e−01 opt

HS118 21 1.024400e−02 opt 21 1.006200e−02 opt

HS268 33 2.154400e−02 opt 33 2.258500e−02 opt

HUES-MOD 41 2.463455e+00 opt 41 2.511943e+00 opt

HUESTIS 47 2.757462e+00 opt 46 3.387538e+00 opt

KSIP 19 1.412779e+00 opt 19 2.117894e+00 opt

LISWET1 23 2.675218e+00 opt 23 2.810544e+00 opt

LISWET10 48 4.722692e+00 opt 48 5.033838e+00 opt

LISWET11 41 4.221731e+00 opt 41 4.392309e+00 opt

LISWET12 79 7.336671e+00 opt 79 7.665449e+00 opt

LISWET2 26 2.961113e+00 opt 26 3.077866e+00 opt

LISWET5 38 3.931599e+00 opt 38 4.055212e+00 opt

LISWET7 34 3.599977e+00 opt 34 3.757427e+00 opt

LISWET8 88 8.331742e+00 opt 86 8.234124e+00 opt

LISWET9 92 8.660267e+00 opt 92 8.667601e+00 opt

LOTSCHD 16 7.799000e−03 opt 16 5.648000e−03 opt

MOSARQP1 18 1.203620e−01 opt 18 1.127110e−01 opt

MOSARQP2 19 9.990200e−02 opt 19 9.517100e−02 opt
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Table 3 continued

Name Non-diagonal Reg. Uniform Reg.

Iter. ttotal (s) Stat. Iter. ttotal (s) Stat.

POWELL20 34 3.942514e+00 opt 34 4.004035e+00 opt

25FV47 50 5.708470e+00 opt 50 6.315691e+00 opt

ADLITTLE 26 2.163400e−02 opt 26 2.271800e−02 opt

AFIRO 23 1.025900e−02 opt 23 1.471700e−02 opt

BANDM 34 9.784200e−02 opt 34 1.229650e−01 opt

BEACONFD 26 6.674200e−02 opt 26 9.206800e−02 opt

BORE3D 35 1.082910e−01 opt 35 7.955600e−02 opt

BRANDY 32 1.072950e−01 opt 32 7.607900e−02 opt

CAPRI 83 2.571410e−01 opt 82 2.757540e−01 opt

ETAMACRO 49 4.680490e−01 opt 49 4.650360e−01 opt

FFFFF800 55 4.667720e−01 opt 55 4.816020e−01 opt

FORPLAN 65 2.766850e−01 opt 65 2.764550e−01 opt

GFRD-PNC 50 1.540650e−01 opt 50 1.561170e−01 opt

ISRAEL 46 1.318150e−01 opt 46 1.452930e−01 opt

QPCBLEND 31 2.477900e−02 opt 33 2.679200e−02 opt

QPCBOEI1 37 1.778260e−01 opt 37 1.845410e−01 opt

QPCBOEI2 38 6.798500e−02 opt 38 7.008600e−02 opt

QPCSTAIR 50 2.324790e−01 opt 50 2.253200e−01 opt

SC205 25 2.619200e−02 opt 25 2.825100e−02 opt

SCAGR25 34 6.203900e−02 opt 34 6.464000e−02 opt

SCAGR7 32 2.657700e−02 opt 32 4.613000e−02 opt

SCFXM1 40 1.220160e−01 opt 40 1.408360e−01 opt

SCFXM2 49 2.765340e−01 opt 49 2.945260e−01 opt

SCFXM3 50 4.010390e−01 opt 50 4.176580e−01 opt

SCORPION 45 8.277000e−02 opt 47 9.129200e−02 opt

SCRS8 47 1.590580e−01 opt 47 1.773890e−01 opt

SCSD1 23 5.059900e−02 opt 22 4.881200e−02 opt

SCSD6 74 2.744840e−01 opt 67 2.572550e−01 opt

SCSD8 21 1.417630e−01 opt 21 1.454910e−01 opt
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Table 3 continued

Name Non-diagonal Reg. Uniform Reg.

Iter. ttotal (s) Stat. Iter. ttotal (s) Stat.

SCTAP1 32 5.994600e−02 opt 32 6.404600e−02 opt

SEBA 40 3.843170e−01 opt 40 4.018590e−01 opt

SHARE2B 41 4.095400e−02 opt 41 4.198200e−02 opt

SHELL 55 2.496066e+00 opt 55 2.906110e+00 opt

SHIP04L 25 1.382760e−01 opt 25 1.331710e−01 opt

SHIP04S 25 9.612000e−02 opt 25 9.150700e−02 opt

SHIP08L 28 1.215146e+00 opt 28 1.374338e+00 opt

SHIP08S 27 3.556720e−01 opt 27 3.986100e−01 opt

SHIP12L 32 2.166390e+00 opt 33 2.766354e+00 opt

SHIP12S 34 5.151170e−01 opt 34 5.692160e−01 opt

STAIR 32 1.749250e−01 opt 32 2.151530e−01 opt

STANDATA 27 1.789160e−01 opt 27 1.660020e−01 opt

STCQP1 23 2.111884e+00 opt 23 2.761944e+00 opt

STCQP2 24 2.103470e+00 opt 24 2.445700e+00 opt

In contrast to the linear programming case, the results collected in Table3 do not
demonstrate any significant advantage in terms of sparsity of linear systems achievable
by the new regularization technique. This is a consequence of the fact that the problems
under consideration are of small to medium size, while the overhead of setting up
the partially reduced augmented system (23) is time-consuming in MATLAB, where
manipulating a permuted matrix is costly, due to MATLAB’s default mechanism to
store matrices by columns. Nevertheless, both IPM with non-diagonal regularization
and IPM with uniform regularization solved all 122 problems. The former required
386,1 s and a total of 4162 IPM iterations. The latter required 400,2 s and a total of
4170 iterations. In other words, the non-diagonal scheme required 3% less time and a
similar number of iterations, as compared to the uniform scheme, for this test set.

As before, in order to illustrate the effect of the non-diagonal regularization in
terms of factorization performance, we provide Table4, in which the factorization
times obtained when using non-diagonal and uniform regularization, respectively,
are compared, over the last four iterations of problems LISWET1, FORPLAN and
SHELL. The size of the constraint matrix in each case also includes columns which
were added to transform the problem to the standard form. Information concerning
the cardinality of the partition N , the iteration count as well as the time needed to
compute the LDLT factorization of the system matrix at the respective iteration is
gathered in Table4.
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Table 4 Sparsity introduced from the non-diagonal regularization (quadratic programming)

Name m n Non-diagonal Reg. Uniform Reg.

Iter. |N | tfact (s) Iter. tfact (s)

LISWET1 20,002 30,004 20 9670 0.0574 19 0.0747

21 9815 0.0601 21 0.0692

22 9935 0.0632 22 0.0787

23 9984 0.0593 23 0.0715

FORPLAN 186 517 62 199 0.0013 62 0.0036

63 199 0.0018 63 0.0034

64 199 0.0013 64 0.0034

65 199 0.0016 65 0.0033

SHELL 903 2144 52 563 0.0035 52 0.0112

53 565 0.0034 53 0.0121

54 565 0.0033 54 0.0109

55 721 0.0033 55 0.0119

(a) Performance profile with respect to time (b) Performance profile with respect to iterations

Fig. 2 Performance profiles over the Maros–Mészáros test set

The examples presented in Table4 confirm the previous observations drawn from
the linear programming examples. In particular, we can observe the benefits of the
proposed non-diagonal regularization, in terms of factorization performance. On the
other hand, the convergence of the method does not seem to be affected when big part
of the columns of the constraint matrix lie in partition N .

Following the linear programming case, we include Fig. 2, which contains the per-
formance profiles, over the whole Maros–Mészáros repository of convex quadratic
programming problems, of three methods: the proposed IPM with non-diagonal regu-
larization, the IPM with uniform regularization (which was previously presented) and
the same IPM but without regularization. In Fig. 2a, a comparison of the total time to
convergence is presented, while Fig. 2b contains the comparison of the total number
of iterations.
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By looking at Fig. 2, we can observe that as in the linear programming case, reg-
ularization seems crucial for the robustness of the method. In other words, one can
observe that the IPMwithout regularization fails to solve 8.4% of the problems of this
test set. However, in contrast to the linear programming case, the non-regularized IPM
ismore efficient than the other twomethods formost of the problems that it solves. This
indicates that the problems in this test set are very sensitive to perturbations. The two
regularization schemes seem competitive both in terms of efficiency and robustness.
In fact, the non-diagonal regularization scheme is slightly more efficient; however,
the difference is almost negligible. We should mention here that the proposed tuning
of the non-diagonal regularization is quite conservative. Hence, we would expect that
one could improve the efficiency of such a method at the expense of its robustness.

5 Conclusions

In this paper, we derive a dynamic non-diagonal regularization scheme suitable for
interior point methods. The proposed scheme is automatically tuned based on the
properties of the problem, such that sufficiently large eigenvalues of theNewton system
are perturbed insignificantly. The presence of non-diagonal terms in the regularization
matrices allows us to introduce more sparsity in the linear system, solved to determine
the Newton direction at each iteration of the interior point method. The regularization
matrices can be computed expeditiously, enabling more efficient factorizations of the
system matrix. The method has been implemented, and the computational results
demonstrate its efficiency. The results also support the claim that the proposed rule,
for tuning the regularization matrices based on the properties of the problem, produces
a regularization which perturbs the system almost insignificantly while maintaining
numerical stability. An extension of this regularization, to interior point methods that
solve theNewton systemusing an iterative scheme, seemsnatural andwill be addressed
in a future work.
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