
Dynamic, Non-Linear Cache Architecture for
Power-Sensitive Mobile Processors

Garo Bournoutian
University of California, San Diego

9500 Gilman Dr. #0404
La Jolla, CA 92093-0404
garo@cs.ucsd.edu

Alex Orailoglu
University of California, San Diego

9500 Gilman Dr. #0404
La Jolla, CA 92093-0404
alex@cs.ucsd.edu

ABSTRACT

Today, mobile smartphones are expected to be able to run
the same complex, algorithm-heavy, memory-intensive appli-
cations that were originally designed and coded for general-
purpose processors. All the while, it is also expected that
these mobile processors be power-conscientious as well as of
minimal area impact. These devices pose unique usage de-
mands of ultra-portability, but also demand an always-on,
continuous data access paradigm. As a result, this dichotomy
of continuous execution versus long battery life poses a dif-
ficult challenge. This paper explores a novel approach to
mitigating mobile processor power consumption, with a non-
linear degradation in execution speed. The concept relies on
using dynamic application memory behavior to intelligently
target adjustments in the cache to significantly reduce overall
processor power, taking into account both the dynamic and
leakage power footprint of the cache subsystem. The simula-
tion results show a significant reduction in power consump-
tion of approximately 16% to 19%, while only incurring a
nominal increase in execution time and area.

Categories and Subject Descriptors

B.8.0 [Performance and Reliability]: General;
C.1.3 [Processor Architectures]: Other Architecture
Styles—cellular/mobile architecture;
C.3 [Special-Purpose and Application-Based

Systems]: real-time and embedded systems

General Terms

Design, Performance

Keywords

mobile processors, low-power cache design, dynamic, power-
sensitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-905-3/10/10 ...$10.00.

1. INTRODUCTION
The prevalence and versatility of mobile processors has

grown significantly over the last few years. At the current
rate, mobile processors are becoming increasingly ubiqui-
tous throughout our society, resulting in a diverse range of
applications that will be expected to run on these devices.
Even today, mobile processors are required to be able to
run algorithmically-complex, memory-intensive applications
comparable to applications originally designed and coded for
general-purpose processors. Furthermore, mobile processors
are becoming increasingly complex in order to respond to
this more diverse application base. Many mobile proces-
sors have begun to include features such as multi-level data
caches, complex branch prediction, and now even multi-core
architectures, such as the Qualcomm Snapdragon and ARM
Cortex-A9.

It is important to emphasize the unique usage model em-
bodied by mobile processors. These devices are expected to
be always-on, with continuous data access for phone calls,
texts, e-mails, internet browsing, news, music, video, TV,
and games. Furthermore, these devices need to be ultra-
portable, being carried unobtrusively on a person and re-
quiring extremely infrequent power access to recharge. In
addition, due to their small form factor, these devices often
have reduced storage capacity and instead rely on remote
data streaming.

With the constraints embodied by mobile processors, one
typically is concerned with high performance, power effi-
ciency, better execution determinism, and minimized area.
Unfortunately, these characteristics are often adversarial,
and focusing on improving one often results in worsening
the others. For example, in order to increase performance,
one adds a more complex cache hierarchy to exploit data lo-
cality, but introduces larger power consumption, more data
access time indeterminism, and increased area. However,
if an application is highly regular and contains an abun-
dance of both spatial and temporal data locality, then the
advantages in performance greatly outweigh the drawbacks.
On the other hand, as these applications become more com-
plex and irregular, they are increasingly prone to thrashing.
For example, video codecs, which are increasingly being in-
cluded in wireless devices like mobile phones, utilize large
data buffers and significantly suffer from cache thrashing
[1].

In particular, in mobile phone systems, where power and
area efficiency are paramount, smaller, less-associative caches
are typically chosen. Earlier researchers realized that these
caches are more predisposed to thrashing, and proposed so-

187

Figure 1: Example of Cache Thrashing Reductions

lutions such as the victim cache [2] or dynamically-associative
caches [3] to improve cache hit rates, as shown in Figure 1.
While these approaches can mitigate cache thrashing and re-
sult in improved execution speed and some dynamic power
reduction, the aggressive, all-day usage model of mobile pro-
cessors demands much larger reductions in overall processor
power in order to satisfy the desired longevity in these de-
vices. Furthermore, static leakage power is becoming in-
creasingly more predominant as feature size continues to be
reduced, and can be as much as 30-40% of the total power
consumed by the processor [4]. Since caches typically ac-
count for 30-60% of the total processor area and 20-50% of
the processor’s power consumption, they are an ideal candi-
date for improvement to help reduce overall processor power.

In this paper, we propose a novel approach to deal with
the unique constraints of mobile processors. While normally
the processor operates in a baseline configuration, wherein
the battery life may be muted in order to deliver full exe-
cution speed and responsiveness, a user may, on the other
hand, desire to sacrifice a small amount of that execution
speed in order to prolong the overall life of the mobile de-
vice. The key to our approach is that this sacrifice of speed
be non-linearly related to the amount of power saved, allow-
ing large gains in power savings without significantly dis-
rupting execution performance. In particular, we found the
L2 (and optional L3) cache exhibited unbalanced access pat-
terns, wherein large portions of the cache may be unused at
a given time, while other portions may be more heavily used
and subject to thrashing. By responding dynamically to the
application’s run-time behavior, we can intelligently make
modifications to the cache to appreciably reduce static power
while minimally affecting miss rates and associated dynamic
power consumption. We show the implementation of this ar-
chitecture and provide experimental data taken over a gen-
eral sample of complex, real-world applications to show the
benefits of such an approach. The simulation results show
significant improvement in overall processor power consump-
tion of approximately 16% to 19%, while incurring a minimal
increase in execution time and area.

2. RELATED WORK
In the last five years, the industrial mobile smartphone

processor space has seen enormous expansion. Processors
provided by companies such as ARM, Samsung, and Qual-

comm have become increasingly more powerful and complex,
and are used in a wide variety of industrial applications. For
example, current smartphone technology often incorporates
a mixture of ARM9, ARM11, and ARM Cortex embedded
processors, along with a number of sophisticated special-
ized DSP processors, such as Qualcomm’s QDSP6. These
mobile phones are expected to handle a wide variety of pur-
poses, from remote data communication to high-definition
audio/video processing, and even live multi-player gaming.
These target applications are becoming increasingly more
complex and memory-intensive, and numerous techniques
have been proposed to address the memory access challenges
involved. Unfortunately, embedded mobile processors are
often more highly constrained than general-purpose proces-
sors, and require extra care to minimize power consumption
in order to extend device life.

Common structural techniques rely on segmenting the
word- or bit-lines in order to reduce latency and dynamic
power. Subbanking [5] divides the data arrays into smaller
sub-groups, and only the “bank” that contains the desired
data is accessed, avoiding wasted bit-line pre-charging dis-
sipation. The Multiple-Divided Module (MDM) Cache [6]
consists of small, stand-alone cache modules. Only the re-
quired cache module is accessed, reducing latency and dy-
namic power. Unfortunately, these techniques do not ad-
dress the significantly increasing static leakage power.

Phased Caches [7] first access the tag and then the data
arrays. Only on a hit is the data way accessed, resulting in
less data way access energy at the expense of longer access
time. Similar to the aforementioned structural techniques,
leakage power is not addressed, and in fact often becomes
worse due to the increase in access time.

Filter Caches [8] are able to reduce both dynamic and
static power consumption by effectively shrinking the sizes
of the L1 and L2 caches, but suffer from a significant de-
crease in performance. This large amount of performance
degradation is typically unacceptable in modern mobile pro-
cessors.

Similarly, on-demand Selective Cache Ways [9], which dy-
namically shut down parts of the cache according to appli-
cation demand, suffer from sharp performance degradation
when aggressively applied. Similarly, Speculative Way Ac-
tivation [10, 11] attempts to make a prediction of the way
where the required data may be located. If the prediction
is correct, the cache access latency and dynamic power con-
sumption become similar to that of a direct-mapped cache
equivalent. If the prediction is incorrect, the cache is ac-
cessed a second time to retrieve the desired data. Unfor-
tunately, this results in some additional latency, as the pre-
dicted way must be generated before data address generation
can occur, and there is still the significant amount of static
leakage power that is not addressed.

There are also several techniques that specifically attempt
to target leakage power within caches. The Gated-Vdd Tech-
nique [12] allows SRAM cells to be turned off by gating
the supply voltage away from the cell, effectively removing
leakage but also losing all the state within that cell. The
Data Retention Gated-Ground (DRG) Cache [13] reduces
the leakage power significantly, while still retaining the data
within the memory cells while in standby mode. Unfortu-
nately, there is also a significant increase to the word-line
delay of 60% or higher depending on the feature-size. Simi-
larly, the Drowsy Cache [14] provides a low-power “drowsy”

188

Figure 2: L2 Cache Access and Miss Rate Distibution for gcc

mode, where data is retained but not readable, and a nor-
mal mode. Leakage power is significantly reduced when in
drowsy mode, but there is a cost and delay to switching
between drowsy and normal mode. Since the cache is pri-
marily present to mitigate the performance implications of
long memory latencies, it is important to avoid causing sig-
nificant degradation in performance just to recuperate leak-
age power. There is an important balance that must occur,
where the combined dynamic and leakage power are reduced,
while not significantly degrading performance (since having
a longer run-time will ultimately lead to still more dynamic
and leakage power).

3. MOTIVATION
A typical data-processing algorithm consists of data ele-

ments (usually part of an array or matrix) being manipu-
lated within some looping construct. These data elements
each effectively map to a predetermined row in the data
cache. Unfortunately, different data elements may map to
the same row due to the inherent design of caches. In this
case, the data elements are said to be in “conflict”. This is
typically not a large concern if the conflicting data elements
are accessed in disjoint algorithmic hot-spots, but if they
happen to exist within the same hot-spot, each time one is
brought into the cache, the other will be evicted, and this
thrashing will continue for the entire hot-spot.

Given complex and data-intensive applications, the prob-
ability of multiple cache lines being active within a hot-spot,
as well as the probability of those cache lines mapping to the
same cache set, increases dramatically. As mentioned, much
prior work has already gone into minimizing and avoiding
cache conflicts and thrashing in order to improve overall per-
formance and reduce dynamic power usage within the cache
subsystem.

While we may encounter cache conflicts and thrashing in
certain areas within the cache, the rest of the cache may
have ample capacity or remain idle for large periods of time.
As mentioned, static leakage power within these caches is
also becoming increasingly prohibitive. In particular, the

larger secondary (L2) and tertiary (L3) caches contribute
the majority of the leakage power compared to the primary
(L1) cache. One would like to eliminate as much leakage
power as possible, without significantly degrading the nor-
mal performance of the memory subsystem. Fortunately,
the L2 and L3 caches exhibit unbalanced access patterns,
since most memory accesses are serviced by the L1 cache.
Thus, typically only a sporadic number of memory accesses
cascade into the L2 and L3 caches. Because of this obser-
vation, much of the L2 and L3 caches are idle for extended
periods of time. We can take advantage of this inactivity
and temporarily shut down those idle cache sets in order to
eliminate the associated leakage power. As the application
progresses, the locations within the cache that are active or
idle may change, and thus the architecture must also take
this into account.

To illustrate this observation, Figure 2 provides a sorted
distribution of L2 cache accesses per cache set for the gcc
benchmark. As one can see, the number of times a given
cache set is accessed varies across a large range. Some cache
sets are heavily accessed, while some are very rarely ac-
cessed. Furthermore, the figure also provides the miss rate
contribution for each cache set. One important correlation
is that those cache sets that are rarely accessed also con-
tribute the least to the aggregate miss rate. Furthermore,
one can observe that few peaks within the miss rate series
that exceed 0.005% occur in the most actively accessed por-
tions of the cache. These peaks are most likely caused by
conflicts and thrashing.

The goal of this paper is the dynamic identification of
those cache sets that are highly utilized and prone to thrash-
ing, as well as those cache sets that are rarely utilized and
are contributing needlessly to leakage power, and to adjust
the cache accordingly to help conserve power while also pre-
serving, or even improving, performance.

4. IMPLEMENTATION
The proposed solution enables two complementary types

of behavior to occur per cache set: expansion and contrac-

189

Figure 3: High-Level Cache Implementation

tion. Each cache set will be annotated with a small number
of additional bits to keep track of the new state informa-
tion. Figure 3 provides a high-level view of the architectural
additions. In particular, a small shift register is added to
each cache set, and will be used to measure the access fre-
quency of that set. Upon accessing the cache set, the Fre-
quency Shift Register (FSR) is left shifted and fed a least-
significant-bit (LSB) value of 1. Upon the decay signal, de-
termined by a clock divider, the FSR is right shifted and
fed a most-significant-bit (MSB) value of 0. In this manner,
the FSR will saturate with all 1’s if highly accessed, satu-
rate with all 0’s if rarely accessed, or otherwise possess the
property of having a continuous run of 1’s of some length
L starting from the LSB. This structuring of the FSR will
minimize bit-flipping transitions (avoiding needless dynamic
power consumption), and will greatly reduce the complexity
of comparing the value in the FSR with a given threshold
value. Additionally, the FSR values are initialized to all 0’s
upon reset or flush.

The architecture also has four global threshold registers:
Te on (Expansion On), Te off (Expansion Off), Tc off (Con-
traction Off), and Tc on (Contraction On). These threshold
registers are the same size as the FSR’s, and will contain a
single 1 in a specific bit position to indicate its threshold.
Thus, the comparison of a threshold with the FSR is simply
a combinational AND fed into an OR-reduction (i.e. if any
bit is a 1, then the result is 1, else 0). If the FSR has met
or exceeded a given threshold, it can quickly and efficiently
be detected, and the cache can then make the appropriate
changes to either enable or disable expansion or contraction,
based on the particular threshold value(s) met.

Figure 4 provides the basic state diagram of this cache
behavior. The threshold registers are constrained in the fol-
lowing manner, in order to avoid ambiguity and deadlock:

Te on > Te off ≥ Tc off > Tc on

Thus, the minimum size of the threshold registers (and also
the FSR) is 3-bits, and we will denote this size with N .

To implement this dynamic, non-linear cache architecture,
one will need three extra bits for every cache set (one for
the Expand Bit, one for the MRU Bit, and one additional
tag bit to differentiate values from primary versus secondary
locations). Furthermore, there is the addition of the N -bits
used for the FSR on each cache set, and the N -bits for the
four threshold registers. Since we use an 8-bit FSR (N = 8)
and have 1024 sets in our implementation, this results in

Figure 4: Cache Behavior State Diagram

an additional 1412-bytes (≈1.38KB) added to our L2 cache;
evidently, a negligible amount of storage compared to the
actual cache size of 256KB.

The details of both the expansion and contraction mech-
anisms are described in detail in the following sections.

4.1 Expansion Mechanism
This mechanism allows for the expansion of a particular

cache set into a second cache set, similar to the architecture
described in [3]. The rationale for this expansion is that the
cache set in question is being heavily utilized in a temporally
short period of time, and thus may be prone to thrashing.
This is detected by the current set’s FSR meeting the Te on

threshold, which causes the Expand Bit to be turned on. On
a cache miss, if this bit is enabled, a secondary set within the
same cache is accessed on the next cycle, similar to a pseudo-
associative cache, as shown in Figure 3. This secondary set is
determined by a fixed mapping function based on the cache
size. We investigated using an LFSR (linear feedback shift
register) mapping function, as well as a basic MSB toggling
function. For the LFSR approach, we chose to decompose
the cache into two disjoint maximal loops1. For the MSB
approach, we simply XOR the MSB of the index into the
cache. The benefit of the LFSR approach is that the cycle
length can be quite large, avoiding the situation that occurs
in the basic MSB approach where the primary set maps to
the secondary set and vice versa (i.e. a cycle length of 2). On
the other hand, the MSB approach is economical in terms
of power and area, as only a single logic gate is required.

If the data is found within the secondary set, one effec-
tively has a cache hit, but with a one cycle penalty. If after
looking into the secondary set, the data is still not located,
a full cache miss occurs and the next memory device in the
hierarchy (L3 or main memory) is accessed with the asso-
ciated cycle penalties. The key principle is that we only
enable the secondary lookup on a per-set basis, as always
enabling this secondary lookup is wasteful and can lead to
worse performance when cache sets are lightly used.

Thus, we effectively can double the size of the given set
without needing to double the hardware. This works in prin-
ciple due to the typical locality of caches. Since our com-
plement set is chosen to be bidirectionally distant from the
current set, the probability of both the primary and comple-
ment set being active at the same temporal moment in an
application is quite small. We need not worry that by using
the complement set we may pollute a currently active set in
our cache. Later in the program’s progression, if the com-
plement set is then used, it will function normally and evict
the older data from the prior expansion out of its space.

1This allowed us to avoid the all-zero state within our LFSR
which constitutes one of the maximal loops.

190

Additionally, there is an MRU Bit on each of the sets
within the cache. This bit is enabled whenever a cache hit
occurs on the secondary cache set; it is disabled when a cache
hit occurs on the primary set. The MRU Bit is also used on
subsequent cache lookups to determine whether to initially
do a lookup on the primary cache set or the secondary cache
set, effectively encoding a most-recently-used paradigm. If
the last hit occurred in the secondary set, the next access
has a higher probability to also occur in the secondary set,
and vice versa.

In addition, we implemented our caches to use an LRU
replacement policy. When a set has its Expand Bit on, the
LRU set (primary or secondary) is used in the event a re-
placement is necessary. Furthermore, for associative caches,
after determining which set to use, the normal LRU rules
for which way to use within that set apply. This set-wise
LRU is inherently supported by the MRU Bit, since there
are only two possible locations.

It is important to note that once a set has its Expand Bit
enabled, it remains enabled until the set’s FSR falls below
the Te off threshold. Furthermore, this expansion need not
be symmetrical in the MSB approach. Even though set-A
may have its Expand Bit turned on and be utilizing set-
A and its complement set-B, set-B can still be acting as a
normal non-expanded set. Only if primary accesses to set-B
also trigger the expansion threshold will set-B ’s Expand Bit
also be enabled to allow expansion into set-A.

4.2 Contraction Mechanism
The contraction mechanism allows for the gating of idle

cache sets, helping to eliminate any associated leakage power.
The rationale for this contraction is that the cache set in
question is being rarely utilized over a temporal period, and
thus can safely be turned off. This is detected by the current
set’s FSR falling below the Tc on threshold, which causes the
Gate Bit to be turned on. As mentioned earlier, a decay
signal, determined by a clock divider, is used to periodically
lower the FSR. If no accesses occur on that set, over time the
decay signal will continue to lower the FSR value. On the
other hand, if accesses begin to occur, they will help raise
the FSR value to counteract the decay. The Gate Bit is the
same bit as the MRU Bit, but when the cache set is not “ex-
panded”, it is instead interpreted as gating the cache set and
forcing all references to be redirected to the secondary set.
This can safely be done, since expansion and contraction are
mutually exclusive states. The secondary set is calculated
in the same fashion as in the expansion state, using either
the LFSR or MSB approach described earlier.

Thus, we effectively shrink the size of the given set dur-
ing times of infrequent use, helping eliminate leakage power.
When a cache set has the Gate Bit enabled, the supply volt-
age is cut off from the memory cells, in a similar fashion to
[12]. As shown in Figure 5, any references to the gated pri-
mary set will be redirected to the secondary set. Since these
locations are rarely used, it is statistically acceptable to not
retain data that may currently be live within the given cache
set. If the data is indeed needed at a future time, the typical
cache miss penalty will be incurred. Given this, there is ef-
fectively a trade-off between aggressively gating sets and the
associated negative impact with regard to performance and
power resulting from having to query the next level struc-
ture in the memory hierarchy. Appropriate values for the
Tc on and Tc off thresholds will help balance this trade-off.

Figure 5: Example Gated Primary Set Redirecting

Queries to Secondary Location

If a gated cache set begins to be accessed more frequently
and its FSR meets the Tc off threshold, then the Gate Bit
will be disabled and the set will no longer be gated. Ad-
ditionally, if a set enters into the expansion mode, it will
force the complement set to exit contraction mode. Fur-
thermore, if a set is in contraction mode, the complement
set will not be allowed to enter contraction mode as well, to
avoid deadlock.

While gating a single cache set does help reduce some leak-
age power, the accumulation of a large number of sets being
gated is where we begin to see tangible results. As described
earlier, cache accesses within the L2 and L3 caches are quite
sporadic and unevenly distributed. As will be shown in the
experimental results section, there are quite a number of
times during execution where many of the cache sets can
safely be gated-off without significantly impacting perfor-
mance.

5. EXPERIMENTAL RESULTS
In order to assess the benefit from this proposed architec-

tural design, we utilized the SimpleScalar toolset [15]. We
chose a representative mobile smartphone system configu-
ration, having 32KB L1 data and instruction caches (1024-
set, direct-mapped with a 32-byte line size), and a 256KB
L2 cache (1024-set, 4-way set-associative with a 64-byte line
size). Additionally, we chose an 8-bit Frequency Shift Regis-
ter (FSR). This processor model utilized a typical in-order
simulation engine, with dedicated L1 caches for data and
instruction memory, backed by a unified L2 cache.

In addition to the baseline, non-modified cache architec-
ture, we provide results for three different configuration lev-
els, each increasingly more aggressive with respect to power
conservation: Config 0, Config 1, Config 2. The associated
threshold values for each configuration are available below
in Table 1.

Threshold Config 0 Config 1 Config 2

Te_on 00010000 01000000 10000000
Te_off 00001000 00010000 01000000
Tc_off 00000010 00001000 00010000
Tc_on 00000001 00000010 00000100

Table 1: Threshold Values for Experimental Config-

urations

191

Baseline Config 0 Config 1 Config 2
Benchmark Accesses Miss Rate Miss Rate Improvement Miss Rate Improvement Miss Rate Improvement

bzip2 4.29e9 0.1699 0.1393 18.01% 0.1698 0.06% 0.1710 -0.65%
crafty 3.42e9 0.0038 0.0034 10.53% 0.0039 -2.63% 0.0040 -5.26%
crc32 4.26e7 0.1750 0.1473 15.83% 0.1752 -0.11% 0.1797 -2.69%
fft 2.48e7 0.1007 0.0891 11.52% 0.1013 -0.60% 0.1049 -4.17%
gcc 1.72e8 0.0244 0.0197 19.26% 0.0249 -2.05% 0.0252 -3.28%
gsm 6.00e7 0.1222 0.1015 16.94% 0.1225 -0.25% 0.1231 -0.74%
gzip 3.65e9 0.0147 0.0126 14.29% 0.0148 -0.68% 0.0150 -2.04%

h264dec 6.69e8 0.0973 0.0878 9.76% 0.0977 -0.41% 0.0991 -1.85%
mpeg4enc 4.24e8 0.0917 0.0798 12.98% 0.0924 -0.76% 0.0946 -3.16%
parser 7.65e8 0.0814 0.0694 14.74% 0.0817 -0.37% 0.0822 -0.98%
twolf 1.10e9 0.1148 0.1065 7.23% 0.1147 0.09% 0.1148 -0.01%
vpr 6.92e8 0.1425 0.1177 17.40% 0.1425 0.01% 0.1439 -0.98%

Table 2: L2 Cache Miss Rates

Twelve representative benchmark applications from the
SPEC CPU2000 suite [16], the MediaBench video suite [17],
and the MiBench telecomm suite [18] are used: bzip2 - com-
pression program; crafty - high-performance chess playing
application; crc32 - 32-bit CRC framing checksum; fft - dis-
crete fast Fourier transform program; gcc - C compiler; gsm
- telecomm speech transcoder compression program; gzip -
LZ77 compression program; h264dec - H.264 video decoder;
mpeg4enc - MPEG-4 video encoder; parser - word processing
application; twolf - CAD place-and-route simulation; and
vpr - FPGA place-and-routing.

Table 2 provides the miss rate comparison among the var-
ious configurations using the MSB mapping function for the
Expansion and Contraction mechanisms. As one can see,
Config 0, which is least aggressive in terms of power reduc-
tion and instead is inclined to enable expansion more often,
results in notable improvements to L2 miss rate. Thus, were
power conservation not a critical issue, one could run in Con-
fig 0 and achieve a performance increase. On the other hand,
Config 2, which is most aggressive in terms of power reduc-
tion, does result in a tangible increase to miss rates. Figure
6 graphically shows the miss rate comparisons across the
benchmarks and various configurations. The average miss
rates for the baseline, Config 0, Config 1, and Config 2 are

Figure 6: L2 Cache Miss Rates

9.49%, 8.12%, 9.51%, and 9.64%, respectively. As one can
see, Config 1 and Config 2 do result in slightly larger miss
rates of approximately 0.2% and 1.6%, respectively, relative
to the baseline.

As mentioned earlier, in addition to the straightforward
MSB-toggling mapping function, we also investigated using
an LFSR (linear feedback shift register) approach. Whereas
the MSB approach is constrained to a cycle length of 2 (i.e.
primary set maps to the secondary set, and vice versa), the
benefit of an LFSR mapping function is that the cycle length
can grow to be quite large. We were interested to see if in-
creasing the cycle length using an LFSR would result in
a noticeable improvement to the resulting cache miss rates
compared to the simple MSB approach. Table 3 provides
miss rate improvements over MSB when using an LFSR
with a cycle length of 512 (i.e. two disjoint loops within
our 1024-set cache). As one can see, the improvements are
extremely miniscule, being less than a thousandth of a sin-
gle percent, and in some instances even worse than the MSB
approach. Given this and the associated overhead in hard-
ware complexity and area to implement an LFSR mapping
function, the MSB approach appears to be more efficient.
Thus, we use the MSB mapping function for the remainder
of our calculations.

Luckily, the increases we saw in L2 cache miss rates for
the more aggressive configurations are attenuated across the

Benchmark Config 0 Config 1 Config 2

bzip2 7.18e-4% 6.48e-4% 1.33e-5%
crafty 5.88e-4% 2.56e-4% 5.76e-5%
crc32 1.36e-3% 2.85e-4% 6.14e-4%
fft 1.13e-5% 3.95e-4% 3.84e-5%
gcc -1.02e-5% -2.71e-5% 1.29e-5%
gsm 5.91e-4% 8.01e-4% 9.67e-5%
gzip -9.29e-5% 2.05e-4% -1.99e-4%

h264dec 7.43e-5% 9.92e-5% 4.97e-5%
mpeg4enc 4.49e-5% 7.23e-4% 3.11e-4%
parser 1.09e-4% 1.87e-4% 9.75e-5%
twolf -6.16e-4% 7.73e-5% 4.71e-5%
vpr 6.63e-5% 5.91e-5% -7.38e-4%

Table 3: Miss Rate Improvement Using LFSR In-

stead of MSB

192

Figure 7: Global Application Execution Time Im-

pact

entire application execution time. Since L2 accesses are typ-
ically orders of magnitude less than the cycle count for the
entire application, modest increases in L2 miss rates should
not devastate our run-time performance. Figure 7 shows
the impact of the various configurations on the overall execu-
tion run-time. As one can see, the more performance-centric
Config 0 is able to consistently reduce execution time. On
the other hand, the more power-conscientious configurations
(Config 1 and Config 2) do have slight increases in execu-
tion time. Yet, even the worst benchmark (crc32) had a
run-time increase of less than 0.05%, and the average across
all benchmarks was around 0.01%.

With regard to power efficiency, our primary ambition for
these mobile smartphones, we were able to observe excel-
lent results. Since we only use a nominal amount of ad-
ditional hardware, the impact of the proposed technique is
quite minimal. Overall, the structures proposed account for
only 1412-bytes (≈1.38KB) of additional storage elements,
along with some necessary routing signals and muxing.

We used CACTI [19] and eCACTI [20] to estimate both
the dynamic and static power consumption for our caches,
assuming a 65nm feature size and leakage temperature of
85◦C. Furthermore, we take into account the additional power
incurred while doing secondary L2 cache look-ups (on those

Benchmark Config 0 Config 1 Config 2

bzip2 8.65% 9.53% 22.82%
crafty 6.78% 18.75% 19.46%
crc32 10.92% 10.58% 11.40%
fft 9.60% 14.98% 17.66%
gcc 7.95% 16.18% 17.25%
gsm 14.05% 16.69% 17.01%
gzip 8.94% 26.90% 29.16%

h264dec 8.40% 17.88% 19.71%
mpeg4enc 9.67% 21.08% 22.60%
parser 7.49% 17.59% 19.19%
twolf 8.18% 16.29% 17.31%
vpr 9.81% 6.76% 12.64%

Table 4: Total Cache Power Improvement

Figure 8: Total Cache Power Improvement

“expanded” cache sets), as well as the power associated with
L2 cache misses and the additional logic proposed by our ar-
chitecture. Using this information, we are able to determine
the approximate total cache subsystem power consumption
across the entire run-time for each of the aforementioned
benchmarks.

Table 4 shows the percentage of power improvement at-
tained by the three configurations for the complete execution
of each benchmark, and a graphical representation is shown
in Figure 8. As one can see, we consistently achieve signif-
icant reductions in the overall power utilization across all
benchmarks. On average, Config 0, Config 1, and Config 2
provide reductions of 9.21%, 16.10%, and 18.85%, respec-
tively. The highest reduction in power occurred in the gzip
benchmark, with Config 2 (our more aggressive power con-
figuration) garnering a 29.16% decrease!

As one can see, there is definitely a non-linear trade-off to
the various levels of aggressiveness delineated by our three
configurations. With each successively more zealous con-
figuration, we lost only a marginal amount of performance,
while gaining substantial overall power reductions. Obvi-
ously, there is a limit, where if enough cache sets are gated,
the performance will quickly degrade to a point where power
consumption is also severely impacted (due to having to ac-
cess subsequent, larger memory structures and extending
the overall run-time). The key is to balance the gating of
inactive cache sets, while enabling those more highly-used
sets to be able to store their information.

6. TIMING CONSIDERATIONS
An important aspect of cache architecture design is the

timing delay involved with cache hits. The cache subsys-
tem is typically on the critical path and there is often very
little timing slack to allow for additional complex logic cal-
culations in the sequential access path. For example, it
would be impractical to do two sequential cache lookups
in a single cycle. Instead, in order to achieve the behavior
described earlier for the expansion mechanism, the pseudo-
associative secondary lookup would require an additional cy-
cle. In essence, this secondary access behaves like an initial
cache miss, stalling the pipeline for one cycle to re-access
the cache again in another location.

193

The updating of a cache set’s Frequency Shift Register
(FSR), Expand Bit, and MRU/Gate Bit all occur in parallel
to a cache access and do not impact the critical path. These
modifications will be completed within the current access
cycle, and will then impact cache behavior on future accesses
to that given cache set.

The only impact to the critical path of our cache design is
the accessing of the MRU/Gate Bit to determine whether to
access the primary or secondary cache location. Given the
MSB toggling mapping function we utilized, the overhead is
effectively just an additional one-bit XOR gate on the most-
significant bit of the cache index, mollifying any concerns of
possible timing violations.

7. FUTURE EXTENSIONS
While the architecture presented in this paper assumed

fixed, pre-defined threshold values, it should be noted that
an application-specific approach can also be taken. One
could have the compiler statically analyze a given applica-
tion and determine the ideal (or near-ideal) threshold values
for that particular application. The compiler can then em-
bed this information within the application binary, and upon
the operating system loading that application into the pro-
cessor, the loader can convey these values to the underlying
microarchitecture. In this manner, the threshold values do
not need to remain static for the processor, but rather can
dynamically change on a per-application basis. This would
enable a more fine-grained capability for matching the cache
behavior with a given application, and may yield even fur-
ther power and performance benefits.

8. CONCLUSIONS
As shown, caches contribute a significant amount of the

overall processor power budget, both in terms of dynamic
and leakage power. Although much work has gone into mit-
igating cache power consumption, mobile processors still suf-
fer from large caches that are necessary to bridge the growing
memory latency gap. Mobile cellular processors, being far
more constrained in terms of power consumption and area
constraints, embody a unique usage model that demands
continuous access while having a limited battery life. Ultra-
low-power architectural solutions are required to help meet
these consumer demands.

We have presented a novel architecture for significantly re-
ducing overall cache power consumption in high-performance
mobile processors. The achievement of these goals has been
confirmed by extensive experimental results. By using vary-
ing configurations, a notable increase in cache hit rates can
be achieved when plugged-in or fully-charged, while a signifi-
cant decrease in power usage can be achieved when the user
switches the device into low-power mode. This has been
demonstrated by using a representative set of simulation
benchmarks, and three example configurations. The pro-
posed technique has significant implications for mobile pro-
cessors, especially high-performance, power-sensitive devices
such as smartphones, as it significantly reduces power con-
sumption while minimally degrading run-time performance.

As embedded mobile processors continue to spread and
become ubiquitous, it is essential to maintain high perfor-
mance, low power, and small size. The proposed architec-
ture fulfills these requirements and enables mobile processors
to continue to mature and be able to handle exceedingly
complex and aggressive applications.

9. REFERENCES
[1] Li Lee, Srikanth Kannan, and Jose Fridman. MPEG4 video

codec on a wireless handset baseband system. In Proc.
Workshop Media and Signal Processors for Embedded
Systems and SoCs, 2004.

[2] Norman P. Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-associative cache
and prefetch buffers. SIGARCH Computer Architecture News,
pages 364–373, 1990.

[3] Garo Bournoutian and Alex Orailoglu. Miss reduction in
embedded processors through dynamic, power-friendly cache
design. In DAC ’08: Proc. 45th Annual Conference on Design
Automation, pages 304–309, New York, NY, 2008.

[4] Semiconductor Industry Association. International Technology
Roadmap for Semiconductors, 2009. http://www.itrs.net/.

[5] Kanad Ghose and Milind B. Kamble. Reducing power in
superscalar processor caches using subbanking, multiple line
buffers and bit-line segmentation. In ISLPED ’99: Proc. 1999
International Symposium on Low Power Electronics and
Design, pages 70–75, New York, NY, 1999.

[6] Uming Ko, Poras T. Balsara, and Ashwini K. Nanda. Energy
optimization of multi-level processor cache architectures. In
ISLPED ’95: Proc. 1995 International Symposium on Low
Power Electronics and Design, pages 45–49, New York, NY,
1995.

[7] Atsushi Hasegawa, Ikuya Kawasaki, Kouji Yamada, Shinichi
Yoshioka, Shumpei Kawasaki, and Prasenjit Biswas. SH3: High
code density, low power. IEEE Micro, 15(6):11–19, 1995.

[8] Johnson Kin, Munish Gupta, and William H. Mangione-Smith.
The filter cache: an energy efficient memory structure. In
MICRO 30: Proc. 30th Annual International Symposium on
Microarchitecture, pages 184–193, Washington, DC, 1997.

[9] David H. Albonesi. Selective cache ways: on-demand cache
resource allocation. In MICRO 32: Proc. 32nd Annual
International Symposium on Microarchitecture, pages
248–259, Washington, DC, 1999.

[10] Brad Calder, Dirk Grunwald, and Joel Emer. Predictive
sequential associative cache. In HPCA ’96: Proc. 2nd
Symposium on High-Performance Computer Architecture,
pages 244–253, Washington, DC, 1996.

[11] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami.
Way-predicting set-associative cache for high performance and
low energy consumption. In ISLPED ’99: Proc. 1999
International Symposium on Low Power Electronics and
Design, pages 273–275, New York, NY, 1999.

[12] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy,
and T. N. Vijaykumar. Gated-Vdd: a circuit technique to
reduce leakage in deep-submicron cache memories. In ISLPED
’00: Proc. 2000 International Symposium on Low Power
Electronics and Design, pages 90–95, New York, NY, 2000.

[13] Amit Agarwal, Hai Li, and Kaushik Roy. DRG-cache: a data
retention gated-ground cache for low power. In DAC ’02: Proc.
39th Annual Conference on Design Automation, pages
473–478, New York, NY, 2002.

[14] Krisztián Flautner, Nam Sung Kim, Steve Martin, David
Blaauw, and Trevor Mudge. Drowsy caches: simple techniques
for reducing leakage power. SIGARCH Computer Architecture
News, 30(2):148–157, 2002.

[15] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An
infrastructure for computer system modeling. Computer, pages
59–67, 2002.

[16] SPEC CPU2000 Benchmarks. http://www.spec.org/cpu/.

[17] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. MediaBench: a tool for evaluating and
synthesizing multimedia and communicatons systems. In
MICRO 30: Proc. 30th Annual International Symposium on
Microarchitecture, pages 330–335, Washington, DC, 1997.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In WWC ’01: Proc.
International Workshop on Workload Characterization, pages
3–14, Washington, DC, 2001.

[19] Steven J. E. Wilton and Norman P. Jouppi. CACTI: An
enhanced cache access and cycle time model. IEEE Journal on
Solid-State Circuits, 31(5):677–688, 1996.

[20] Mahesh Mamidipaka and Nikil Dutt. eCACTI: An enhanced
power estimation model for on-chip caches. University of
California, Irvine Center for Embedded Computer Systems
Technical Report TR-04-28, 2004.

194

