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Abstract

Air pollution poses a major problem in modern cities, as it has a significant effect in poor

quality of life of the general population. Many recent studies link excess levels of major

air pollutants with health-related incidents, in particular respiratory-related diseases. This

introduces the need for city pollution on-line monitoring to enable quick identification

of deviations from “normal” pollution levels, and providing useful information to public

authorities for public protection. This article considers dynamic monitoring of pollution data

(output of multivariate processes) using Kalman filters and multivariate statistical process

control techniques. A state space model is used to define the in-control process dynam-

ics, involving trend and seasonality. Distribution-free monitoring of the residuals of that

model is proposed, based on binomial-type and generalised binomial-type statistics as well

as on rank statistics. We discuss the general problem of detecting a change in pollutant

levels that affects either the entire city (globally) or specific sub-areas (locally). The pro-

posed methodology is illustrated using data, consisting of ozone, nitrogen oxides and sulfur

dioxide collected over the air-quality monitoring network of Athens.
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1 Introduction

In recent years, Statistical Process Control (SPC) has been proposed in environmental

related monitoring problems (Pan and Chen 2008; Paroissin et al. 2016). Such problems typ-

ically involve processes in the presence of autocorrelation, and relevant SPC techniques used

in conjunction with appropriate time-series models (Pan and Chen 2008; Triantafyllopou-

los and Bersimis 2016). Over the recent years there has been a significant development of

non-parametric monitoring methodology in SPC, as evidenced in Chakraborti et al. (2004),

Qiu and Li (2011), Qiu (2018) and in references therein. Distribution-free statistical proce-

dures for process-monitoring are favoured to parametric-based methods, as they relax the

distributional assumption of the observed data. However, such non-parametric procedures

usually focus on univariate i.i.d. processes. As it is well known in non-industrial processes

several variables are often observed and exhibit significant autocorrelation, i.e. the observed

process is a multivariate time series. Examples of such process include, but are not limited

to, environmental and financial processes.

Air pollution consists of the introduction of chemicals, particulate matter and biological

materials into the atmosphere, causing severe damage to the environment (Christodoulakis

et al. 2017). The major air pollutants are the sulfur dioxide (SO2), the nitric oxide (NO), also

known as nitrogen monoxide, the nitrogen dioxide (NO2), the carbon monoxide (CO) and

the ozone (O3). Recent research related to air pollution is focused on public health (Jiang

et al. 2016; Raaschou-Nielsen et al. 2016). In the last twenty years, many epidemiologi-

cal and medical studies, by showing the relation of air pollution to a series of serious and

many times emergency health problems, have concluded that public health (especially in

urban areas and large cities) is threatened (Mudway and Kelly 2000; Atkinson et al. 2001).

As a result a continually monitoring mechanism is needed, to monitor jointly the levels of

all major pollutants in a city, taking into account the contribution of climate related vari-

ables. This need is stressed by the United States Environmental Protection Agency, which

launched in 2009 the Environmental Tracking Network in order to monitor air-quality in

many locations in the United States. Furthermore, this mechanism should be able, to account

for local (temporal) differences or even spatial variations of the levels of all major pollu-

tants, realising in such a way an evidence-based monitoring system. The value of such a

monitoring system lies in its capability of giving early alarms before high levels of pollu-

tion are realised and thus having a predictive nature. Multivariate statistical process (MSPC)

methods is an ideal vehicle, in order to develop and implement such an automatic monitor-

ing system. Over the last decade MSPC methods have become very popular for monitoring

multivariate processes, see e.g. the review of Bersimis et al. (2007).

In this article we develop a statistical framework for automatic monitoring of air-

pollution levels, which enable real-time detection of aberrant pollution and issuing warn-

ings, in order to permit the Environmental Public Administration to activate safeguarding

mechanisms early in time. We propose a dynamic linear model (Prado and West 2010; Petris

et al. 2010) that defines the “normal” or “expected” evolution of the process and devia-

tions from this is measured using residuals. An unusual positive residual indicates aberrant

pollution levels beyond the expected, taking into account climate changes,as we are inter-

ested in pollution which exceeds the expected levels, extreme negative residuals do not

count as aberrant. We then propose distribution-free monitoring of such residuals, based

on generalised binomial-type statistics as well as on rank statistics. The novelty of the pro-

posed methodology is the real-time (at daily frequency) automatic monitoring of pollution

levels and the detection of sudden shifts, which are linked to respiratory conditions and
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deaths (Rosenlund et al. 2008; O’Neill and Ebi 2009; Jiang et al. 2016). Indeed, there is

an established link between such sudden shifts of pollution, which are not captured by the

recommended thresholds issued by the environmental agencies and are based on long-term

pollution dynamics rather than short-term temporal variation, which is considered in this

paper.

The rest of the paper is organised as follows. Section 2 describes the data and provides

some related background. Section 3 discusses the proposed methodology, consisting of

inference of a multivariate time series model as well as of monitoring procedures applied to

the residuals of that model. The framework proposed in this paper is applied in the available

real data in Section 4. Finally, in Section 5, some concluding comments are given, while

technical arguments are included in the Appendix.

2 Data Description

Athens is a city of almost 4 million people (census of March 2001) located in an oblong

basin of approximately 450 km2 area. It is surrounded by mountains and the Saronic Gulf.

The data consists of 2922 mean measurements recorded in daily frequency, from January 1,

2001 to December 31, 2008 in Athens, using the air-quality monitoring network (AQMN)

of the city, consisting of 17 active stations (locations) placed in urban and peri-urban sites

around the city. In this study we used 13 out of the 17 active stations of Athens AQMN

(4 stations were not active during the study period, depicted in Fig. 1 by the unnumbered

squares). Each station consists of a number of sensors, dedicated to the acquisition of the

main pollutants: carbon monoxide CO, nitrogen oxides NO and NO2, sulfur dioxide SO2,

and ozone O3.

Figure 2 plots daily mean measurements of O3, NO2 and NO, for Stations 4 and 10

(this numbering refers to the map of Fig. 1). We observe that O3 and NO exhibit annual

seasonality with slight linear trend, while NO2 has a more irregular variation, with negligible

seasonality and no trend. There does not seem to be different effects of the dynamics of each

of the three variables between the two stations. In addition to the above measurements, the

stations record daily meteorological information, such as temperature, humidity and wind

speed.

The original data are high frequency values, however, we use daily averages calculated

over 24 hours in order to limit micro-spatial, micro-temporal sampling uncertainties as well

as measurement error. In each day the collected data consist of hourly measurements from

midday 12:00 until midday 12:00 hours of the next day; these measurements are averaged

to produce a single measurement for each day. Daily averaging reinforces also the general

hypothesis of symmetry of the data in hand (which will be assumed later). For the stations

used in the analysis, missing data at a given site and time have been estimated by using stan-

dard imputation methods, basically obtained as weighted averages of neighbouring available

data, so that to keep the annual seasonality in the original data; for a review of imputation

methods in air quality data see Junninen et al. (2004).

3 Monitoring

Let y
(i)
j,t denote the daily mean measurement of the j th climate variable (j = 1, 2, . . . , pi) at

time t = 1, 2, . . . , N and location i = 1, 2, . . . , L. Then, at a given location i, we work with
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Fig. 1 Local map of Athens and its surrounding areas; highlighted are the active 17 stations (numbered

stations are used in this study)

the pi-dimensional time series {y(i)
t }, defined as the column vector of y

(i)
j,t measurements,

or y
(i)
t = (y

(i)
1,t , y

(i)
2,t , . . . , y

(i)
pi ,t

)⊤, where ⊤ denotes transposition, while for all L locations

we work with a r =
∑L

i=1 pi-dimensional time series {yt , t = 1, 2, . . . , N}, defined as

the vector yt = ((y
(1)
t )⊤, (y

(2)
t )⊤, . . . , (y

(L)
t )⊤)⊤, for t = 1, 2, . . . , N . The r-dimensional

vector yt , which contains the original measurements for all locations, forms a multivariate

time series, which is autocorrelated and cross-correlated (contains a part of spatial effect

for correlations between station variables). The proposed framework combines the use of

time series forecasting, multivariate SPC and non-parametric methods for monitoring and

early diagnosing beyond the expected air pollution levels. In particular, the following two

analysis components are highlighted:

• Process modelling. We set-up a time series model which describes the “normal” long

term behaviour of the time series yt . This is achieved at Phase I by using historical data

as well as by allowing for some small temporal variation during Phase II (implementing

a self-adaptive time series model).
• Process monitoring. We establish a real-time monitoring procedure on the residual

vector et of the time series model by defining appropriate control procedures for iden-

tifying (i) an overall “aberrant” behaviour of the time series yt , (ii) an “aberrant”

behaviour of the time series yt in one or more neighbouring locations, and (iii) an
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Fig. 2 Time series of O3, NO2 and NO for two stations (Station 4, left panel of plots and Station 10, right

panel); see also Fig. 1 for the location of these stations in the map of Athens

“aberrant” behaviour of the time series yt in specific components related to a certain

air-quality variable.

3.1 Process Modelling

We consider a state space multivariate model for describing the temporal data variation in

Phase I. In the sequel we discuss this model specification as well as inference. Let �t be a

time-varying d × r unobserved state matrix (for some positive integer d and r =
∑L

i=1 pi

mentioned above), which drives the dynamics of yt in the following state space model

yt = �⊤
t Ft + ǫt . (1)

The state matrix �t is assumed to follow a Markov process, i.e. �t = H�t−1 + ζt , where

ζt is an innovation matrix with zero mean matrix and left covariance matrix Zt and right

covariance matrix �, written as ζt ∼ (0, Zt , �). The innovation term ǫt is assumed to have

zero mean and covariance matrix �, written as ǫt ∼ (0, �). It is noted that with vec(·) the
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column staking operator of a matrix, the covariance matrix of vec(ζt ) is � ⊗ Zt , where ⊗
denotes the Kronecker product of two matrices. Hence the covariance matrix of vec(ζt ) is

proportional to the observation covariance matrix �. This is commonly adopted in matrix-

variate dynamic models when we wish to estimate �; see Triantafyllopoulos (2008) and

Petris et al. (2010). According to Petris et al. (2010) there is no loss of generality specify-

ing such a covariance structure for ζt , because the covariance matrix Zt will compensate

any discrepancies of � between ζt and ǫt . Furthermore, the innovation terms ǫt and ζt are

assumed to be individually and mutually independent as well as independent of the initial

state �0. It is also assumed that the system is initialized at state �0, with �0 ∼ (m0, P0, �),

for some known matrix mean m0 and covariance matrix P0.

In the above model specification, the distributions of ǫt , ζt and �0 are left unspecified;

only means and variances of these quantities are specified. Based on this partial specifica-

tion of ǫt and ζt , the likelihood function is not available, however, approximate Bayesian

inference is achieved by Bayes linear methods, which approximate the posterior means

and variances by minimising the expected posterior risk (Petris et al. 2010). The compo-

nents of the vector yt are likely to have the same distribution, albeit not a prespecified

distribution such as the multivariate Gaussian distribution. Our study benefits by relaxing

the distribution assumption and allowing a wider class of distributions, such as approxi-

mate Gaussian and Student t distributions; for a related discussion the reader is referred to

Triantafyllopoulos and Harrison (2008).

Conditionally on the availability of model components Ft , H, � and Zt , we can use the

celebrated Kalman filter, in order to obtain estimates of the state matrix and for forecasting.

For the estimation of the covariance matrix �, we adopt the procedure of Triantafyllopou-

los (2007), while the rest of the components are specified by the user (see Section 4.1).

This procedure enables us to compute the standardized residuals et , which are used in the

monitoring stage of Section 3.2), and exhibit the following properties:

(a) they are serially independent, i.e. ei is independent of ej , for i �= j ;

(b) for a fixed t , et = (e1,t , e2,t , . . . , er,t )
⊤ is a cross-independent random vector, i.e. ej,t

is independent of ek,t , for any j �= k;

(c) ] their distribution is approximately symmetric, since the limiting distribution of the

residual vectors is Gaussian.

3.2 Process Monitoring

In this section the monitoring problem in Phase II is considered. The monitoring procedures,

for the pi air quality measurements as well as for the L distinct data recording stations,

which are developed in this section, are based on the residual vectors et , and on assumptions

(a)–(c) of the previous section. The main idea is that if we assume that the sequence of the

vectors yt , is fitted well in an appropriate time series model (like the one presented in the

previous section), describing the usual in-control state of the process, the residual vectors et ,

hold information about the deviation from “normal” pollution level (expected levels or in-

control state of the process) to the actual values of the measurement vectors yt . In that way,

large positive values for the components of et , are implying deviation from the expected, or

“normal”, while small absolute values are implying a bond to the expected.

In the sequel three monitoring procedures are discussed, each of which aiming at the

monitoring of the overall area, as well as for identifying a possible cluster of sub-areas

or a specific air quality variable that exhibit aberrant behaviour. We propose bino-

mial/generalised binomial type statistics and rank-based statistics in order to monitor the
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entire area under surveillance, a sub-section of that area (sub-area) of interest, or a particular

set of variables of interest.

The binomial-type statistics deployed in each of the above three procedures use the vector

st , with elements si,t , defined as

si,t =
{

1, ei,t ≥ 0

0, ei,t < 0
,

for t = 1, 2, . . . N and i = 1, 2, . . . , r . Basically, this construction dichotomises the individ-

ual residuals ei,t , into two classes: one for positive residuals, which correspond to potentially

high levels of pollution, and the other with negative residuals, which correspond to low lev-

els of pollution. In the sequel we propose particular binomial-based tests, exploiting the

above dichotomy.

3.2.1 Overall Monitoring of the Area Under Surveillance

For the overall control of the area of interest we may use the statistic TB,1 which represents

the number of the components e
(i)
k,t , k = 1, 2, . . . , pi; t = 1, 2, . . . , N; i = 1, 2, . . . , L of

et , t = 1, 2, . . . , N that are greater than zero. Specifically, statistic TB,1 is defined as

TB,1 =
∑

i,k

si,k, k = 1, 2, . . . , p; i = 1, 2, . . . , L for some t = 1, 2, . . . , N

This statistic is based on the idea that if the process is in-control (which means that for all

t , the vector yt is fitted well in the appropriate time series model) the components e
(i)
k,t of et

must be randomly distributed above and below 0 (point of symmetry of the distribution). In

contrast, if the vector et contains an extreme number of either positive or negative values we

have evidence of a systematic out-of-control condition in most of the variables of interest

and as well as in the whole area under inspection. This statistic under the null hypothesis

that the process is in-control follows a binomial distribution with probability of success

equal to 0.5 and a number of trials equal to the length of st (r =
∑L

i=1 pi).

Statistic TB,1 is suitable for the overall control, since it is not sensitive to random or

occasional outliers, as the summation in TB,1 is responsible of issuing out-of-control signals

only in the case that enough components of et , t = 1, 2, . . . , N being systematically posi-

tive. We remark that since the procedure is based on the number of positive components of

et , t = 1, 2, . . . , N it is independent of the ordering of the components e
(i)
k,t of et .

For implementation purposes and effective application, we propose to use the normal

approximation to the binomial distribution (since r is large enough, here 54), and thus we

define the statistic T ′
B,1 = (2TB,1 − r)/

√
r , which follows the standard normal distribution

N(0, 1). Using this statistic, a classical rule is to issue an alarm when the observed value of

T ′
B,1 is larger than a one sided 3 sigma control limit (UCL = 3).

In general, we can implement additional control procedures, in order to improve the

ability of T ′
B,1 to be responsive and to adapt quickly to changes, but keeping the procedure

as simple as possible. Such a procedure can be implemented by applying multiple limits,

for the positive values of T ′
B,1. We adopt three zones, each of which correspond to different

statistical control decisions, i.e.

• Interval I1 = (−∞, 1] of negative values of T ′
B,1 or insignificant deviation, with

probability Pr(T ′
B,1 ∈ I1) = 0.841345 (p1).

• Interval I2 = (1, 3] of positive values of T ′
B,1 with low deviation, with probability

Pr(T ′
B,1 ∈ I2) = 0.157305 (p2).
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• Interval I3 = (3,+∞) of positive values of T ′
B,1 with high deviation), with probability

Pr(T ′
B,1 ∈ I3) = 0.001350 (p3).

Using these three zones, we can perform control at a weekly basis, or at another chosen

period of time. Thus, for each week, we can track air pollution levels.

We propose that an alarm should be signalled, if either of the following rules apply:

• Rule 1: a plotted value in interval I3 (the appearance of an extreme value, with

probability 0.001350).
• Rule 2: 4 are plotted in interval I2 in the last week (increasing trend for high deviation

observations, with probability 0.000365). This is the probability to observe a partic-

ular event of the rule 4/7, e.g. I2, I2, I1, I1, I2, I1, I2, or 0, 1573054 × 0, 8413453 =
0, 000365; there are 35 such events, with total probability 0.012763227.

Rule 2 can be modified, depending on the sampling frequency, e.g. if data are collected

every 6 hours, then Rule 2 could be amended to 3 out of 4 observations of TB,1. The study

of such rule can be carried out in a similar way as that of 4 out of 7 procedure of Rule 2,

which is studied in Appendix A, using the Markov chain embedding technique; for a related

discussion of Markov chain embedding methodology the reader is referred to Balakrishnan

and Koutras (2002). The mean and the standard deviation of the run length (RL) distribution

are 147.22 and 143.29, respectively. This is in agreement with Frisen (2008), who states

that, considering annual data, the usual ARL of the control procedures is set in the inter-

val 120-240 containing the one third and the half of the year. We note that instead of using

a Shewhart-type control chart supplemented with runs rules, a CUSUM or EWMA control

chart may be proposed as an alternative. However, the choice of Shewhart type control chart

and specifically the choice of a Shewhart control chart based only on the signs of the resid-

uals, while supplemented with runs rules, is somehow straightforward. In particular, three

key advantages are pointed out: (a) this procedure is easy to implement, which is necessary

since the proposed framework is aimed at monitoring pollution and should be accessible

to environmental scientists; (b) it is very robust to outliers (even conservative), which is

critical since the nature of the application demands a very low level of false signals (just

consider the case of a monitoring system providing a large number of false announcements

of a hypothesised problem); and (c) this procedure is easily interpretable by the practitioner

(see e.g. Koutras et al. 2007).

(ii) Monitoring Statistics Based on Ranks For the overall control of the area of interest

we may use the statistic TR,1 which represents the sum of the ranks of the positive values

ei,t , R+(eit ), of the vector et . In that way, we define a Wilcoxon-type monitoring statistic

which is

TR,1 =
∑

R+(|eit |), t = 1, 2, . . . ; i = 1, 2, . . . , r

where R+(·) represents the rank of an element. This statistic is approximated by normal dis-

tribution for fairly large values of r (see Gibbons and Chakraborti 2010) using the following

standardisation

T ′
R,1 =

∑

R+(|eit |) − n(n + 1)/4
√

n(n + 1)(2n + 1)/24
, t = 1, 2, . . . ; i = 1, 2, . . . , r

Under the hypothesis that the process is under control we may calculate the appropriate 3

sigma control limit (here UCL = 3, for α ≈ 0.00135).
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3.2.2 Sub-area Control

(i) Binomial and Generalised Binomial TypeMonitoring Statistics As already mentioned,

the control of the whole area is not sufficient since many times the problem discussed

appears in a small number of sub-areas (in general in a subset of sub-areas). Thus, the con-

trol chart proposed above, is inappropriate since it cannot detect clustering of sub-areas

having extreme values. For example, this control procedure treats the same the case of a

number of random components of et being positive and the case that any such number

of positive components of et being observed at the same or nearby areas. Thus, we need

an appropriate procedure that identifies clusters of extreme cases in the sequence of e
(i)
k,t ,

k = 1, 2, . . . , pi; t = 1, 2, . . . , N; i = 1, 2, . . . , L. For this reason the elements of et are

ordered according to their spatial neighbouring. The ordering of the components of et , can

be roughly succeeded using the matrix of distances of the recording stations and one of the

available techniques of multivariate ordering such as the minimal spanning tree. In other

words, the components eit are ordered according to their smallest distance (areas which are

classified by the minimal spanning tree as “close” place their corresponding residuals one

after the other).

In this case, we may use a runs-based statistic, say TB,2, similar to the one introduced by

Antzoulakos et al. (2003), defined as

TB,2 =
r

∑

i=wp

Ui,

where wp is a constant positive integer depending on p (usually wp is set to be slightly

smaller than p) and

Ui =
{

wp + j, if si−wp−j+1 = si−wp−j+2 = · · · = si = 1, si−wp−j = si+1 = 0

0, otherwise
,

for the r components of st and s0 = sr+1 = 0 by convention. This statistic is the sum of

the run-lengths of length wp and more. If this statistic takes large values, this means that

there are some sub-areas that experience high levels of pollution to all or to the majority of

their variables. On the contrary if TB,2 takes small values then the 1s are randomly assigned

to the vector, which means that no specific area has a major problem. The TB,2 sums the

lengths of runs each having at least length wp or more wp. We do not count the number of

runs of a specific length or the number of runs of length above a threshold. Instead, we sum

the lengths of runs of length wp or more which enables the identification of clusters within

a single sub-area or between two consecutive sub-areas. This is useful since, due to spatial

correlation of neighbouring areas, pollution levels are expected to attain similar exposure.

According to Antzoulakos et al. (2003), the performance of this statistic as a randomness

test is shown to be significantly more powerful than competitors when the type I error

must be kept low, e.g. α = 0.01, which is exactly our case. The control chart based on

this statistic has also only an upper control limit since the clustering of areas with extreme

values, naturally drives the TB,2 statistic to high values. The control limit for the chart based

on the distribution of TB,2, is calculated using the formula

gr (x) = gr−1(x) +
1

2
gr−1(x − 1) −

1

2
gr−2(x − 1) −

1

2wp+1
{gr−wp−1(x)

−gr−wp−1(x − wp)} −
1

2wp+2
{gr−wp−2(x − wp)

−gr−wp−2(x − 1)}, (2)
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for x ≥ 0, n ≥ wp + 2, which is the result of appropriately adopting Theorem 3.2 provided

by Antzoulakos et al. (2003). Table 1 shows upper control limits (UCL) for two values of α

and for k = 4, 5, 6, 7.

For r < wp +2 the initial conditions of the same theorem can be explored appropriately.

In this case the ARL of this control chart can be easily calculated using the geometric

distribution with probability of success α. We note that the control chart based on TB,2 may

be used independently of the control chart based on TB,1. This means that the control chart

based on TB,2 is not supplementary to the control chart based on TB,1, since it can be used

without using necessarily the TB,1 control chart. However, it should be noted that TB,1 and

TB,2 are not independent.

(ii) Control Statistics Based on Ranks As we already mentioned the control of the whole

area is not sufficient since many times the problem appears in only one or two sub areas (in

general in a subset of subareas). Using the residual vector et we may use the ranks of the

components of the vector et and test if one or more areas have extreme values. For example,

we may find that in one area the sum of the ranks is too high while in another area the sum

of the ranks is too low. Using this idea, we can define a Kruskall-Wallis type control statistic

(e.g. Gibbons and Chakraborti 2010) which is given by

TR,2 =
12

r(r + 1)

L
∑

i=1

R(ei,t )
2

pi

− 3(r + 1), t = 1, 2, . . .

where R(·) represents the sum of the ranks of the residuals related to the corresponding

location. This statistic is approximated by a Chi-Square distribution with L − 1 degrees of

freedom for fairly large values of r .

3.2.3 Variable Control

(i) Binomial and Generalised Binomial Type Statistics Reordering the components of et

in such a way that the same air quality variable from all the recording stations are placed

together in blocks using the following format for

et = (e1,t , e2,t , e3,t , e4,t , e5,t
︸ ︷︷ ︸

Air-Quality Variable 1

, e6,t , e7,t , e8,t , e9,t , e10,t
︸ ︷︷ ︸

Air-Quality Variable 2

, . . . , er,t )
⊤,

we can immediately define a control procedure which aims in identifying if a specific air

quality characteristic is out-of-control in all of the areas.

Specifically, we establish a similar procedure to that of sub-area monitoring, based on

TB,3, defined as

TB,3 =
r

∑

i=wL

Ui,

Table 1 Upper control limits for

TB,2 for significance levels α and

k = 4, 5, 6, 7

k UCL α k UCL α

4 23 0.01 4 28 0.001

5 19 0.01 5 25 0.001

6 16 0.01 6 22 0.001

7 15 0.01 7 20 0.001
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where wL is a constant (similar to wp described in the previous section) and

Ui =
{

wL + j, if si−wL−j+1 = si−wL−j+2 = · · · = si = 1, si−wL−j = si+1 = 0

0, otherwise
,

for the r components of st and s0 = sr+1 = 0 by convention. If the number of occurrences

is high, then we assume that certain variables have an aberrant behaviour. The control chart

based on this statistic has only an upper control limit since the same variable in many areas

has extreme values, naturally drives the TB,3 statistic to high values.

(ii) Control Statistics Based on Ranks Regrouping the components of et in such a way

that the same air quality variable from all the recording stations are placed together and

establishing a similar in nature to the rule of Section 3.2.2(ii), we develop immediately a

control procedure which aims in identifying if a specific air quality characteristic is out of

control.

3.2.4 Joint Effects of the Control Procedure Based on the Binomial-Type Statistics

In this section we study some of the joint effects of the performance of the control proce-

dures described above. We start by looking at the probability that TB,2 (sub-area control) or

TB,3 (variable control) give an out of control signal, provided that TB,1 has signalled an out

of control point. In Appendix B we show that the joint tail probability of {TB,2 > c2} and

{TB,1 > c1} is

Pr(TB,2 > c2, TB,1 > c1) =
n

∑

i=c1+1

n
∑

j=c2+1

(
n

n − i

)−1 n−i+1
∑

ℓ=0

ℓ
∑

i1=0

ℓ−i1∑

j1=0

×
i1∑

j2=0

(−1)ℓ+i1+j1−j2

(
n − i + 1

ℓ

)(
ℓ

i1

)(
ℓ − i1

j1

)

×
(

i1

j2

)(
ℓ + a − 1

a

)(
n − i + b

b

)(
n

i

)

0.5n, (3)

where a = j − i1 + j2 − wp(j1 + j2) and b = i − wpℓ − i1 − a, for some constants c1 and

c2. Therefore, the conditional probability of {TB,2 > c2} given {TB,1 > c1} is provided by

the definition of the conditional distribution

Pr(TB,2 > c2 | TB,1 > c1) =
Pr(TB,2 > c2, TB,1 > c1)

Pr(TB,1 > c1)
.

Equation 3 provides the probability that both TB,1 and TB,2 or TB,1 and TB,3 signal an out-

of-control point, while appropriate use of the conditional distribution can help us to control

the overall probability of type I error (i.e. falsely declare the process as out-of-control while

the process is actually in-control).

If the process is in-control and TB,1 does not provide a signal it is hoped that the proba-

bility of TB,2 or TB,3 not signalling (since the process is assumed to be in control) should be

high. For specified values of k and UCL, Table 2 shows the probability the statistic TB,2 not

to issue an out-of-control signal, provided that TB,1 failed to issue a signal. We observe that

under the null hypothesis (in-control state) TB,2 has small probability to wrongly issue an

out of control signal. Table 3 gives the probability that TB,2 or TB,3 signal an out-of-control

point, given that TB,1 has signalled an out-of-control point. We remark that as the observed

value of TB,1 increases, the probability that TB,2 or TB,3 issue and out-of-control signal is
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Table 2 Probability of TB,2 or

TB,3 not signalling, given the

process is in control and TB,1 did

not signal

k UCL Pr(TB,2 < UCL | TB,1 < 39)

4 28 0.800

5 25 0.898

6 22 0.876

7 20 0.933

increased too. As large probability of TB,2, TB,3 implies large observed value of TB,2, TB,3,

it follows that TB,1 and TB,2, TB,3 exhibit positive correlation.

Below is a summary of the proposed process modelling and monitoring procedures,

which are put into practice in Section 4.

Summary of monitoring procedure

1. Phase I (process fitting). Set Phase I length and prior settings of Section 3.1

Fit the state space model (1) using the Kalman filter and the method of Section 3.1.

For each time t , obtain the standardised residuals et .

2. Phase I (process testing). Test whether assumptions (a)–(c) of Section 3.1 are satis-

fied. Make sure model (1) is a true representation of the process in Phase I. Optimise

the hyperparameters of the model, such as the discount factor δ. If assumptions

(a)–(c) not satisfied modify the model.

3. Phase II (process monitoring). Continue to fit model (1) using the optimised param-

eters from Phase I. Obtain sequentially standardised residuals et , for each t in Phase

II. Chart using binomial-type statistics or rank-based statistics, for the three specific

cases:

• Overall area control. Use the statistics TB,1 or Rt,1 of Section 3.2.1.

• Sub-area control. Use the statistics TB,2 or Rt,2 of Section 3.2.2.

• Variable control. Use the statistics TB,3 or Rt,3 of Section 3.2.3.

Table 3 Probability of TB,2 or

TB,3 signalling, given that TB,1

has signalled an out of control

point. Shown are the probabilities

P(x) = Pr(TB,2 > x | TB,1), for

k = 4, 5, 6, 7

TB,1 T ′
B,1 k = 4 k = 5 k = 6 k = 7

P(28) P(25) P(22) P(20)

38 2.99 0.200 0.102 0.124 0.067

39 3.27 0.352 0.190 0.206 0.117

40 3.54 0.541 0.320 0.322 0.192

41 3.81 0.730 0.487 0.466 0.298

42 4.08 0.877 0.667 0.625 0.433

43 4.35 0.960 0.825 0.776 0.588

44 4.63 0.992 0.931 0.893 0.743

45 4.90 0.999 0.982 0.963 0.871

46 5.17 1.000 0.997 0.992 0.954

47 5.44 1.000 1.000 0.999 0.990

48 5.72 1.000 1.000 1.000 0.999

≥49 5.99 1.000 1.000 1.000 1.000
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4 Illustration: Air Pollution Data

4.1 Modelling

In this section we consider the pollution data described in Section 2. In the first stage we use

a state space model for modelling the temporal data variation in the time period January 1,

2001 to 4 December 2008 (Phase I); this corresponds to 2895 observations in Phase I. The

proposed model is a time-varying regression model which comprises trend and seasonal

components in order to take into account temporal variation. Specifically, three covariates

(humidity, temperature and wind speed), denoted by x1,t , x2,t , x3,t , respectively, enter in the

time series model of yt as time-varying regressor variables, with corresponding regression

parameters following a random walk evolution. The state space model adopted for yt is

yt = R1,t + R2,t + R3,t + Tt + St + ǫt = �⊤
t Ft + ǫt , (4)

so that yt comprises three dynamic regression components Ri,t = �⊤
i,txi,t , a trend com-

ponent Tt = �⊤
4 [1, 0]⊤, a seasonal component St = �⊤

5 [1, 0, 1, 0, 1, 0, 1, 0, 1, 0]⊤ and

a random innovation term ǫt , where �⊤
t = [�⊤

1,t ,�
⊤
2,t , �

⊤
3,t , �

⊤
4,t , �

⊤
5,t ]. The state matrix

and the rest of the state space model is as defined in Section 3.1. A weakly informative

prior setting is adopted whereby P0 = 1000I (nearly zero precision P−1
0 ≈ O) and m0 = 0.

The observation covariance matrix � is estimated as discussed in Section 3.1, while Zt is

specified using a single discount factor δ (Petris et al. 2010).

It is noted that model (4) is implied by adopting the following setting

Ft =
[

x1,t , x2,t , x3,t , 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
]T

,

H = block diag [I, J1, J2(φ), J2(2φ), J2(3φ), J2(4φ), J2(5φ)] ,

where “block diag” indicates a block diagonal matrix with components I for the identity

matrix, J1 for a Jordan block with a unit eigenvalue, responsible for the trend variation, and

J2(φ) for the harmonic component, responsible for the seasonal variation, i.e.

J1 =
[

1 1

0 1

]

and J2(φ) =
[

cos φ sin φ

− sin φ cos φ

]

.

The above state space model is known as a reduced form trend-seasonal model (Petris et al.

2010), for the seasonal variation of which, a reduced form state space representation of the

full Fourier expansion is used. For this data the cycle is c = 365 (daily data with annual

seasonality) with frequency φ = 2π/c; here for computational efficiency, we use only the

first 5 harmonics out of a total of (c − 1)/2 = 182, hence the reduced form.

Assumptions (a)-(c) of Section 3.1 were validated in Phase I, after the first 100 obser-

vations were considered as training data and excluded from the tests. Assumptions (a)-(b)

were validated by performing standard white noise tests (Petris et al. 2010). The symme-

try of the residuals (assumption (c)) was established by first grouping positive and negative

residuals and then performing a Kolmogorov-Smirnov test to ensure the two groups have the

same distribution. The p-value of the test was 0.1979 and so assumption (c) was validated.

We used a standard Chi-square test applied on the residuals to assess the goodness of fit

(Prado and West 2010; Petris et al. 2010). We concluded there was overwhelming evidence

in favour of the model fit, with the corresponding p-value being almost equal to 1.
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4.2 Monitoring

Considering Phase I analysis, in the period 11 April 2001 to 4 December 2008 (the first 100

observations are used as attaining set), we report on Rules 1 and 2, described above; Fig. 3

gives the Phase I control chart for the last 60 days of Phase I (6 October 2008 to 4 December

2008). Considering the entire Phase I period, there are 3 points beyond the 3σ control limit

(Rule 1) while 3.9 were expected. Additionally, by applying the second rule (Rule 2), 15

more signals are given by the proposed control chart. In total 18 signals were found in Phase

I, while 19 were expected, hence it is consistent with the in-control ARL = 147. One of the

signals corresponds to clusters of time where the deviation from the model is consistent. As

this analysis reveals, the period in which the deviation from the model is consistently large,

corresponds to a period that the measurements are systematically quite large in relation

to expected pollution levels, but still not beyond the limits set by environmental agencies.

In this period, as the study revealed, an extreme heat wave hit Athens, Greece’s capital.

Figure 4, shows the original values of NO2 (from a single station) together with estimated

levels (averages) over the period of 10 October 2007 to 29 January 2008. The period of 4

days (time points 2546–2549), which is identified by the control chart based on T1 statistic,

corresponds to a period of very high values of NO2 (the most extreme in a period of about

4 months); these 4 points are highlighted in Fig. 4.

In Fig. 5 the Phase II control chart based on TB,1 statistic for overall control is given.

As Phase II, we consider the time period 5 December 2008 to 31 December 2008 (27

days/observations). Employing the model from Phase I, with the optimal value of δ = 0.3,

we apply the adaptive estimation of the state space model, for the data in Phase II. That is,

Phase I control chart

Days

T
1

2840 2850 2860 2870 2880 2890

-4
-2

0
2

4

Fig. 3 Control chart for overall monitoring in Phase I. Shown are values of TB,1 statistic in Phase I for the

last 2 months of Phase I (6 October 2008 to 4 December 2008)
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Pollution values and estimated level

Time

N
O

2

2480 2500 2520 2540 2560 2580

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Fig. 4 Original data of NO2 together with estimated levels in the period 10 October 2007 to 29 January 2008

at each time t we apply the Kalman filter and the related time series algorithm described

above, in order to obtain sequentially residuals, which measure deviations from the normal

process.

We observe that no value of TB,1 exceeds the 3 control limit and so there is no signal

issued under Rule 1. Considering Rule 2 (4 or more values of TB,1 exceeding 1 in last week)

we observe that within the first 10 days in Phase II (5–14 December 2008) there are four

days in a window of less than or equal to 7 with TB,1 exceeding 1 (observations of 9, 10, 11

and 14 December 2008). Thus, following Rule 2, on 14 December there is a signal issued

(indicated by red point in Fig. 5), which highlights a sequence of large pollution levels, in

this time interval. This suggests that in this week, large deviations from normal (average)

pollution were present. This conclusion is supported by the data itself, since in that period

a high pollution peak is present to most of the variables.

Proceeding to sub-area control, we need to rearrange the residual vector et according

to station proximity. This is achieved by considering the ordering of a minimal spanning

tree (MST), implemented in R using the package vegan. Exploring the MST in relation

to the map (Fig. 1) we note that stations 3, 4, 13 are close enough in the map and this is

depicted in the MST; stations 5, 9 are also close enough and the MST agrees, and so forth.

Thus, we conclude that the output of the MST is consistent with the map. Comparisons (not

shown here) of MST with hierarchical agglomerative clustering resulted in the same sensor

grouping.
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Phase II control chart for overall control

Days

T
1

5 10 15 20 25 30

-2
-1

0
1

2
3

Fig. 5 Control chart for overall monitoring. Shown are values of TB,1 statistic in Phase II (5 December to 31

December 2008)

For t = 2901 (corresponding to the date 10 December 2008) the residuals are ordered as

e2901 = [1.40,−0.47, 0.77, 0.19, 1.06, 0.04, 0.26,−0.82, 0.35, 1.22, 0.75,−0.53,

−0.13, 0.66, 0.05, 0.93, 0.22,−1.39,−0.41,−0.32, 0.56, 0.51, 0.38,−2.13,

−2.35,−0.21, 1.27, 0.74, 0.15, 0.59, 0.15, 1.99,−1.09, 0.47, 1.64, 0.92,

0.69,−0.67, 0.17, 0.51, 0.11, 0.24,−0.80, 0.56, 1.32,−1.20,−0.61, 0.33,

0.77,−0.19, 0.87,−0.61,−0.06, 0.01]⊤.

Thus according to the definition of si,t in the previous section, the following sequence of

vector with binary variables is obtained:

s2901 = [1, 0, 1, 1, 1, 1, 1
︸ ︷︷ ︸

5

, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1
︸ ︷︷ ︸

4

, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1
︸ ︷︷ ︸

6

,

0, 1, 1, 1, 1
︸ ︷︷ ︸

4

, 0, 1, 1, 1, 1
︸ ︷︷ ︸

4

, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1]⊤.

For example we observe that since e1,t = 1.40 ≥ 0, we have s1,t = 1; likewise as e2,t =
−0.47 < 0, we have s2,t = 0 and so forth. TB,2 gives a signal if a large number of runs of

length at least 4 are observed; in the above st such consecutive units are indicated. Thus,
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for this point of time (10 December 2008), there is an out of control signal issued, since

TB,2 = 23. The control chart, applies this control procedure for each time t in Phase II and

it is shown in Fig. 6. We observe that on 10 December a signal is issued, as having high

levels of pollution when sub-area ordering is taken into account. A careful study of the data

in this period reveals that stations in the centre of Athens recorded high values across the

pollutants.

In order to explore the performance of TB,2 as opposed that of TB,1, we observe that

the points t = 2900 and t = 2921 (corresponding to 9 December and 30 December 2008,

respectively) yield the same value of TB,1, i.e. TB,1 = 34 (T ′
B,1 = 2), while TB,2 give

respective values of 18 and 8. Thus, while the number of extreme values is the same for

both points (same value of TB,1, with same number of units in st vector), the values of

TB,2 have a notable difference (more than 100%), which could possibly translate to differ-

ent control decisions (out-of-control and in-control). This simple example shows that the

related correlation of TB,1 and TB,2 (both depend on the number of variables p), is not

dominant, with regards to respective control decisions. Furthermore, TB,2 describes a local

control procedure (defined by the station proximity), while TB,1 describes a global control

procedure.

Finally, we obtain a new ordering of et , according to the common air-variables, for each

station. For example, the first 13 elements of et correspond to the values at time t of O3, for

Phase II control chart for sub-area control

Days

T
2

5 10 15 20 25 30

0
5

1
0

1
5

2
0

Fig. 6 Control chart for sub-area monitoring. Shown are values of TB,2 statistic in Phase II (5 December to

31 December 2008)
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each of the 13 stations. Based on this construction, a similar vector of binary variables st is

obtained, i.e.

s2901 = [1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,

1, 1, 1, 1, 1
︸ ︷︷ ︸

5

, 0, 1, 0, 1, 1, 1, 1, 1
︸ ︷︷ ︸

5

, 0, 0, 0, 1, 1, 1, 1, 1, 1
︸ ︷︷ ︸

6

]⊤.

Here we can see the difference between st of sub-area control and variable control. The

control is similar as in TB,2, but here we use wL = 5, i.e. 5 or more consecutive units

account for a signal at time t . The control chart using procedure TB,3 is depicted in Fig. 7.

We observe that dates 10, 14 and 30-31 December give out of control signals. We note that

using the TB,3 statistic we may sum runs of excess length that belong to consecutive blocks

of variables.

The choice of wp and wL in the statistics TB,2 and TB,3, respectively, is indicative. As

suggested in Antzoulakos et al. (2003), it is usual practice to use lower values of these

parameters (3 or 4), since we do not expect all variables to be positive in an area with high

pollution levels.

Having discussed the binomial-type monitoring statistics it is noted that the application of

rank statistics had a similar performance in both phases. However, their performance appear

to be slightly deteriorated in the case of Athens considered in this paper. In particular, this is

observed when comparing the performance of TB,2 based control chart with the one that is

Phase II control chart for variable control

Days

T
3

5 10 15 20 25 30

0
5

1
0

1
5

2
0

Fig. 7 Control chart for variable monitoring. Shown are values of TB,3 statistic in Phase II (5 December to

31 December 2008)
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based on Kruskall-Wallis test statistic (TR,2). This is due to the deterioration of the Kruskal-

Wallis type statistic as the number of the different areas increases. The rules based on TB,1

supplemented with runs appeared to be better even from standard CUSUM-type procedure.

For this reason we propose that for large number of variables and sub-areas the binomial

and the generalised binomial control procedures are preferred than the rules based on ranks.

4.3 Discussion

By comparing the three Phase II control charts (overall control, sub-area control and variable

control) we see that on the period 10-14 December all charts indicate high levels of pollu-

tion, although the overall control occurs a delay by only detecting this abnormal behaviour

on the 14 December, while TB,3 chart is faster. The overall control does not signal any other

aberrant behaviour (the same is true for TB,2), while the variable control issues a further

signal on 30 December. It appears that when TB,1 signals an out-of-control point, this is the

result either or both of out-of-control signals in TB,2 or/and TB,3. To expand on this point,

TB,1 fails to issue a signal on 10 December, while TB,2 and TB,3 captures this on 10 Decem-

ber. Thus, TB,2 and TB,3 signal locally the out-of-control signal, which then becomes global

and it is captured by TB,1 later on 14 December. On 30 December TB,3 issues a clear out-

of-control signal, while TB,1 shows some tendency towards a signal, but it is not clearly

issued. It seems that this implies that a local concentration of high pollution levels tends to

increase the global pollution levels. Since the values of TB,2 are far from the limits for 30

December, it appears that the problem is captured well and on-time by TB,3 which means

that the problem is associated with clustering of high values to specific pollutants.

In conclusion in the period 10-14 December there is a certain deviation from the expected

pollution levels. This deviation starts by a local problem (which is clearly captured with an

out-of-control signals by TB,2) and becomes a global problem as some pollution levels are

systematically high (TB,3 gives two out-of-control signals in these 5 consecutive dates). In

the last two time points (30 and 31 December) TB,3 gives a clear out-of-control signal. As

the analysis revealed, in Phase I we identified periods of time with extreme deviations from

expected while in Phase II the proposed monitoring scheme captured extreme pollution

deviation, both locally and globally.

5 Conclusions

This paper develops a unified framework for monitoring the mean effects of several air-

pollution variables, over a network of stations. This framework combines (a) the use of time

series modelling, for the temporal description of mean pollution levels and estimation of

cross-correlation of pollution variables, and (b) multivariate control chart methods, for the

detection of deviations from the expected pollution levels. We develop a multivariate sta-

tistical process control approach, which allows the monitoring of the pollution levels in the

overall area and in sub-areas, determined by rules of neighbouring similarity. Air-pollution

data from the city of Athens are used to put in practice the proposed monitoring approach.

The application to Athens data reveals that the proposed methodology can provide

remarkable evidence about the source of the pollutant temporal variation. In particular, it

is able to identify whether temporal exceedance come from a specific station (location) or

it is attributed to a specific pollutant. It is able to identify short periods of large variations

that are related to excess numbers of hospital admissions even when the formal thresholds

(issued by the environmental protection agencies) are not exceeded.
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This paper makes a contribution on multivariate SPC for non-industrial processes, which

is currently in demand (see relevant discussion in the introduction), and is an area which is

likely to receive even more attention in the near future.
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Appendix A: Derivation of the Run Length Distribution of the Control
Chart Using Rules 1 and 2 Based on TB,1

The ARL calculation will be performed using the Markov embedding technique. According

to this technique a discrete random variable, say W , defined on a sequence of multi-state

trials may be described by a Markov chain {Vt , t = 0, 1, 2, . . .} defined on a finite state

space � = {α1, α2, . . . , αs}. If we let αs be the absorbing state, the cumulative distribution

of a random variable W is given by

Pr(W ≤ n) = Pr(Vn = αs) = π
⊤
0 �

nes,

where π
⊤
0 = {Pr(V0 = α1), Pr(V0 = α2), . . . , Pr(V0 = αs)} is the vector of initial prob-

abilities of the Markov chain, � = [Pr(Vt = αj | Vt−1 = αi)]s×s is the transition

probability matrix and finally, e⊤
s = (0, 0, . . . , 0, 1)1×s ∈ R

s . Using the above procedure,

the probability distribution of W may be computed (Balakrishnan et al. 2009).

A suitable state space for Vt is � = �1 ∩ {αs}, where

�1 = {(i0, i1, i2, i3) : i0 = 0, 1, 2, 3, i1 = 2, 3, 4, 5, i2 = 1, 2, 3, 4,

i3 = 0, 1, 2, 3 and i1 > i2 > i3}.

The number of states in � are
(

7
4

)

+ 1, while the four coordinates may be interpreted as

follows:

• i0 records the number of points fall into interval I2 in a window of length 7 (at most) as

the process evolves in time, and
• i1, i2 and i3 specify the positions of the last three points fall into interval I2 in the

window of length 7 (at most) as the process evolves in time.

Finally, the non-vanishing transition probabilities associated with the transition probability

matrix are

• Pr(Vt = (i0 + 1, i1 + 1, i2 + 1, i3 + 1) | Vt−1 = (i0, i1, i2, i3)) = p2, i0 = 0, 1, 2,

i1 = 1, 2, 3, i2 = 0, 1, 2, i3 = 0, 1;
• Pr(Vt = αs | Vt−1 = (i0, i1, i2, i3)) = p2 + p3, i0 = 3, i1 = 1, 2, 3, i2 = 0, 1, 2,

i3 = 0, 1;
• Pr(Vt = αs | Vt−1 = (i0, i1, i2, i3)) = p3, i0 = 0, 1, 2, i1 = 1, 2, 3, i2 = 0, 1, 2,

i3 = 0, 1; and
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• Pr(Vt = (i1 − 2, i2 + 1, i3 + 1, 0) | Vt−1 = (i0, i1, i2, i3)) = p1, i0 = 0, 1, 2, 3,

i1 = 2, 3, 4, 5, i2 = 1, 2, 3, 4, i3 = 0, 1, 2, 3,

respectively. Taking into account that αs is the absorbing state, the transition matrix � may

be written in the following block-form

� =
[

�
∗ h

0T 1

]

, (5)

where h = 1 − �
∗1 and �

∗ is the matrix � after removing the last column and the last row

while 0, 1, are (s − 1) × 1 column vectors of zeros and ones, respectively.

Using the partition of � (5), we deduce the cumulative probability function of W as

follows:

Pr(W = n) = π
⊤
1 (�∗)n−1h, (6)

where π1 is a (s − 1) × 1 column vector that contains all entries of the initial probability

vector π0 except the last one. Using Eq. 6 we may obtain the following expression for the

probability generating function of the random variable W

G(z) = zπ1(I − z�∗)−1h.

More details on the development of these formulae may be found in Balakrishnan

et al. (2009). Replacing appropriately in the last formulae and performing the necessary

calculations we take the following recursive scheme for the probability function

f (n) = p1f (n − 1) + p2
1p2f (n − 3) + p3

1p
2
2f (n − 5) + p4

1p
2
2f (n − 6)

+5p4
1p

3
2f (n − 7) + p5

1p
3
2f (n − 8) − 3p6

1p
4
2f (n − 10) − p8

1p
5
2f (n − 13)

−10p8
1p

6
2f (n − 14) − 5p9

1p
6
2f (n − 15) − p10

1 p6
2f (n − 16)

+3p10
1 p7

2f (n − 17) − p11
1 p7

2f (n − 18) + 6p11
1 p8

2f (n − 19)

+10p12
1 p9

2f (n − 21) + 3p13
1 p9

2f (n − 22) − p14
1 p10

2 f (n − 24)

−4p15
1 p11

2 f (n − 26) − 5p16
1 p12

2 f (n − 28) + p19
1 p14

2 f (n − 33)

+p20
1 p15

2 f (n − 35),

where n > 35. This scheme is by far faster than Eq. 6, since there is no need to compute high

powers of �
∗. For n ≤ 35, the corresponding probabilities may be calculated by exploiting

appropriately G(z), or using Eq. 6.
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Appendix B: Derivation of the Joint Probability of TB,1 and TB,2/TB,3

We have

Pr(TB,2 > c2, TB,1 > c1) = Pr(TB,2 > c2 ∩ {TB,1 = c1 + 1 ∪ TB,1 = c1 + 1 · · ·
∪TB,1 = c1 + n})

=
n

∑

i=c1+1

Pr(TB,2 > c2, TB,1 = c1 + i)

=
n

∑

i=c1+1

Pr(TB,2 = c2 + 1 ∪ {TB,2 = c2 + 2 · · ·

∪TB,2 = c2 + n − k, TB,1 = c1 + i})

=
n

∑

i=c1+1

n
∑

j=c2+1

Pr(TB,2 = j, TB,1 = i)

=
n

∑

i=c1+1

n
∑

j=c2+1

Pr(TB,2 = j | TB,1 = i)Pr(TB,1 = i). (7)

From Theorem 4.2 from Antzoulakos et al. (2003) we have

Pr(TB,2 = j | TB,1 = i) =
(

n

n − i

)−1 n−i+1
∑

ℓ=0

ℓ
∑

i1=0

ℓ−i1∑

j1=0

i1∑

j2=0

(−1)ℓ+i1+j1−j2

×
(

n − i + 1

ℓ

)(
ℓ

i1

)(
ℓ − i1

j1

)(
i1

j2

)(
ℓ + a − 1

a

)

×
(

n − i + b

b

)

,

where a = j − i1 + j2 − wp(j1 + j2) and b = i − wpℓ − i1 − a, while Pr(TB,1 = i)

is provided by the binomial distribution with probability of success 0.5. Substituting these

into Eq. 7 provides the required formula (3).
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