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Dynamic nonlinear screening of slow ions in an electron gas
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We have used the ensemble Kohn-Sham method with the local-density approximation to determine self-
consistently the dynamic screening cloud around an impurity moving adiabatically through a uniform electron
gas with velocity below the Fermi velocity. The asymmetry of the induced field and electronic density caused
by the impurity motion is fully taken into account. We discuss the forward-backward asymmetry for the case
of bare positive and negative charges as well as for hydrogen atoms. We show that the stopping power of the
electron gas varies linearly with the projectile velocity up to velocities close to the Fermi velocity. We study
the asymmetry of the bound states, its contribution to the stopping power and the evolution of the binding
energy as a function of projectile velocity. Finally, we give a complete derivation of the low energy behavior
of the stopping power and the generalization of the Friedel sum rule and oscillations for the case of moving
impurities.@S0163-1829~99!03104-5#
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I. INTRODUCTION

The dynamic screening of charges moving through
electron gas is a complex theoretical problem that has b
used for years to model the interaction of ions with co
densed matter at various degrees of approximation. Since
early works of Fermi and Teller,1 Bohm and Pines,2

Lindhard,3 Neufeld and Ritchie4 in the 50’s, most studies
have been restricted to the linear response regime within
random-phase approximation.5 At this level of approxima-
tion the response of the electronic system to an external
turbation is treated self-consistently and includes both p
mon ~collective! and electron-hole pair~single particle!
excitations. However, results obtained within this framewo
are only quantitatively accurate as long asZ/v!1, whereZ
is the ion charge andv the relative velocity of the collision
between the moving ion and the target electrons~it is essen-
tially the ion velocity for fast ions and the mean electr
velocity for slow ions!. In practice, this restricts the applica
bility of linear theory to small charges, fast ions or materi
with large electron densities.

There have been various attempts to go beyond lin
response theory:~i! quadratic response function approache6

which give the next-higher-order correction in a perturbat
expansion in powers of the ion chargeZ, ~ii ! semiclassical
hydrodynamic descriptions of the electron gas treated a
fluid that responds to the external field created by the mov
ion,7,8 and ~iii ! a scattering approach within the nonline
screening model based on density functional theory as
plied to a static impurity in an electron gas.9 The latter ap-
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proach is restricted to slow ions.10

Recently, Zaremba, Arnau, and Echenique11 extended the
nonlinear screening theory to finite velocities by making u
of the shifted Fermi sphere description introduced
Schönhammer.12 However, rather than treating the intera
tion between the electrons and projectile rigorously, a sph
cal average approximation to the interaction potential w
used. In the present work we avoid this approximation a
perform a fully nonlinear self-consistent calculation of t
screening of a moving charge by an electron gas in the a
batic limit ~steady-state situation! using density-functional
theory. We focus our study on quantities that characterize
screening, like the self-consistent screened potential
charge densities, and the force exerted by the medium on
moving ion that defines the stopping power.

Atomic units are used unless otherwise stated.

II. THEORY

We consider the problem of a chargeZ moving with a
constant velocityv through an electron gas which, in th
absence of the ion, is homogeneous. In the projectile fra
the electrons stream past the ion and scatter from the e
tive potential established by the mutual Coulomb interactio
between the ion and electrons, and between the elect
themselves. This dynamic state is achieved by means o
adiabatic evolution of the electron gas from its initial hom
geneous distribution to the final state in which the ion
dynamically screened.12 In this picture, the electronic state
are characterized by their asymptotic momentumk and, in
2537 ©1999 The American Physical Society
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2538 PRB 59A. SALIN, A. ARNAU, P. M. ECHENIQUE, AND E. ZAREMBA
the projectile frame, the set of occupied states belongs
Fermi sphere ink space the origin of which is atk52v. We
name this adiabatic approach the shifted Fermi sphere
proximation. One of our objectives is to determine se
consistently the effective scattering potential; by the nat
of the problem, this potential has cylindrical symmetry.

To solve this problem we make use of the Kohn-Sh
formulation of density-functional theory within the loca
density approximation.13 We have therefore to solve a on
electron Schro¨dinger equation having the form

@2 1
2 ¹21V~r!2e#ce~r!50, ~1!

where the potentialV(r) is the sum of the projectile poten
tial, Hartree potentialVH(r) and exchange-correlation pote
tial Vxc(r). The electronic orbitals are here labeled by t
energy variablee, which can correspond to either continuu
scattering states or bound states if the latter exist. In ei
case, their angular dependence can be expanded in term
spherical harmonics:

ce~r!5(
lm

ulm~r ;e!Ylm~ r̂!/r . ~2!

The notationr̂ designates a unit vector along the direction
r. The cylindrical symmetry of the potential allows an e
pansion of the form

V~r!5(
n

Vn~r !Pn~cosu!, ~3!

where Pn is a Legendre polynomial. An important cons
quence of the nonspherical symmetry of the potential is
the radial functionsulm(r ;e) satisfy a system of couple
equations

F d2

dr2 12e2
l ~ l 11!

r 2 Gulm~r ;e!52(
l 8

Ull 8
m ul 8m~r ;e!, ~4!

where

Ull 8
m

~r !5E dr̂ Ylm* ~ r̂!V~r ,u!Yl 8m~ r̂!. ~5!

It can be shown that the componentsVn(r ) of the potential
satisfy the conditions

lim
r→0

Vn~r !;H r n if nÞ0,

2
Z

r
if n50.

~6!

The system of coupled equations is solved numerically a
truncation of the partial wave expansion to a maximum va
l max. In practice, we have used values ofl max up to 15. The
number of terms in Eq.~3! has been limited tonmax. Most
calculations have been done withnmax52 ~i.e., inclusion of
monopole, dipole, and quadrupole components! but some
tests have been performed withnmax53.
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A. Determination of the density

1. Continuum orbitals

The continuum solutions of Eq.~1!, normalized on thek
scale, are labeled asck(r) and satisfy the asymptotic cond
tion

ck~r!→ r→`~2p!2 3/2Feik•r1 f ~k, r̂!
eikr

r G . ~7!

As the potential is not spherically symmetric, the radial fun
tions ulm(r ;k) will depend on the directionk̂ of the incident
plane wave. For a givenm, we determine (l max11) linearly
independent solutions of the system~4!, i.e. (l max11) sets
$ul

( j ) ,l 50,l max% wherej varies from 0 tol max. The required
solution may always be expressed as a linear combinatio
these linearly independent solutions

ulm~r ;k!5(
j

g j
m~k!ulm

~ j !~r ;k!, ~8!

where each solution varies asymptotically as

ulm
~ j !~r ;k!→ r→`@Al j

m~k!sin~kr2 lp/2!

1Bl j
m~k!cos~kr2 lp/2!#. ~9!

From the asymptotic condition~7!, one finds

ck~r!5~2p!2 3/2
4p

kr (
j l l 8m

i l 8G j l 8
m

~k!Yl 8m
* ~ k̂!

3Ylm~ r̂!ulm
~ j !~r ;k!, ~10!

where the matrixGm(k) is

Gm~k!5@Am~k!2 iBm~k!#21 ~11!

and the elements of theA andB matrices are defined in Eq
~9!. For completeness, we quote the expression for the s
tering amplitude of an electron scattering into the final dire
tion k̂8:

f ~k,k̂8!5
2p

ik (
l l 8m

Ylm~ k̂8!Yl 8m
* ~ k̂!$ i l 82 lSll 8

m
~k!2d l l 8%,

~12!

where

Sm~k!5@Am~k!1 iBm~k!#Gm~k!,

is theS matrix of the nonspherical scattering potential.
There is a simple way to generate a set of independ

solutions of the system of coupled equations~4!. Using the
form of the coupling terms for smallr it can be shown that
there exist solutions behaving as

ulm
~ j !~r ;k!; r→0r j 1u l 2 j u11(

i 51

`

bi
l r i 21, ~13!

which provides the required set of independent solutions
the vicinity of the origin. We use the Taylor series expans
~13! to solve the system of coupled equations~4! close to the
origin and then switch to the Numerov method for larg
values ofr.
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Once we have determined the wave functionsck , we
need to calculate the densitynC(r). Using an expansion o
the density in Legendre polynomials

nC~r!5(
L

nL
C~r !PL~cosu r !, ~14!

we obtain the expression

nL
C~r !5

1

~2pr !2 (
l l 8m

(
j j 8

H l l 8 L

m 2m 0J
3E dk J j j 8

m
~k!ulm

~ j !~r ;k!ul 8m
~ j 8!

~r ;k! ~15!

J j j 8
m

~k!5(
ll8

i l2l8G j l
m ~k!@G j 8l8

m
~k!#* C ll8

m
~k! ~16!

C ll8
m

~k!5(
L8

H l l8 L8

2m m 0 J CL8~k!. ~17!

The angular coefficients are defined in terms of Wignerj
symbols

H l l 8 L

m 2m 0J 5~2 !m~2L11!~2l 11!1/2~2l 811!1/2

3S l l 8 L

0 0 0D S l l 8 L

m 2m 0D . ~18!

The auxiliary functionCL(k) comes from the angular inte
gration overk for a shifted Fermi sphere

CL~k!5~2 !LE
ym~k!

1

dy PL~y!

5~2 !L@12ym~k!# L50

5~2 !L~12ym
2 !1/2PL

1~ym!/L~L11! L>1,

~19!

where ym5(k21v22kF
2)/2kv for ukF2vu,k,kf1v and,

when kF.v, ym521 for 0,k,kF2v. The function
CL(k) is zero when the latter conditions onk are not met.

In practice we calculate the density changeDnC by sub-
stracting fromnC the expression obtained for the homo
enous system in the absence of the ion in which case
Kohn-Sham orbitals are plane waves, i.e.,fk(r)
5(2p)23/2 exp(ik•r).

2. Bound orbitals

The bound orbitals are determined in the usual way
performing an outward integration of the Kohn-Sham eq
tion from r 50 followed by an inward integration from in
finity, and then matching both solutions at some intermed
distance. The only difference with respect to the case o
spherical potential is that now we get a set ofl max11 lin-
early independent solutionsulm

( j ) when starting from the ori-
gin and l max11 linearly independent solutionsv lm

( j ) when
starting the integration from infinity. The set of linearly in
dependent solutions for the outward integration is de
he
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-
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a
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mined in the same way as for the continuum states. For
inward integration we use the asymptotic condition

v lm
~ j !; r→`d j l exp@2rA22e#. ~20!

If a bound state exists, then there is a linear combination
the functionsulm

( j ) that can be identified with a linear comb
nation of the functionsv lm

( j ) , namely,

(
j

m julm
~ j !~r ;e!5(

i
l iv lm

~ i !~r ;e!

(
j

m j

d

dr
ulm

~ j !~r ;e!5(
i

l i

d

dr
v lm

~ i !~r ;e!. ~21!

This set of 2l max12 homogeneous equations has a nontriv
solution if and only if the determinant is zero, which gene
alizes the Wronskian condition for the case of spherical
tentials. The search for bound-state energies is thus m
equivalent to a search for the zeroes of the determinant of
system~21!. However, in practice, we avoid using the d
rivative of the functions by constructing an equivalent co
dition in terms of the values of the functions at two differe
distances. Once the bound-state energy has been determ
the corresponding eigenfunctionce(r) is determined by a
singular value decomposition14 of the system~21!.

The density produced by the bound statesnB(r) can now
be calculated from

nL
B~r !5

1

4pr 2 (
l l 8m

H l l 8 L

m 2m 0J ul
m~r ;e!ul 8

m
~r ;e!,

~22!

whereul
m(r ;e) is the l component ofce(r) as defined in Eq.

~2!. Once the total density changeDn(r)5nB(r)1DnC(r) is
known, the Hartree and exchange-correlation potentials
calculated and the resulting total potential is then used in
next step of the iteration cycle. This process is continu
until convergence is obtained.

In the projectile frame, the bound density~summing to a
total of NB electrons! is fixed on the ion, and so in the ga
frame it is carried along with the projectile. The continuu
density corresponds to a flux of electrons colliding with t
projectile, having on average the velocity2v in the projec-
tile frame. The scattering of these continuum electrons fr
the projectile gives rise to an accumulation~or depletion! of
charge that, in our adiabatic approximation, is stationary
the projectile frame. This charge accumulation~or depletion!
moves with the projectile in the gas frame. It sums to a to
chargeZ2NB that also moves with the projectile. So, th
generalized Friedel sum rule derived in Appendix B det
mines the number of electrons~Z! associated with the ne
total electronic flux caused by the projectile motion.

Two further remarks are in order concerning the shifte
Fermi sphere approximation. First,in our adiabatic approxi-
mation and in the projectile frame, we have to solve asta-
tionary problem in which the screening charge is not that
the ground-state density of the system projectile1jellium
@which would correspond to the use of a Fermi distributi
of continuum orbitals, i.e., the integration overk in Eq. ~15!
would be from zero tokF with CL(k)52#. In fact, the
screening charge corresponds to an ensemble density d
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mined by the functionCL(k), defined in Eq.~19!. It satisfies
the condition for the validity of the Hohenberg-Kohn the
rem for ensembles whenv,kF ~see Ref. 13, Sec. 3.5!:
CL(k) never increases with increasingk. Under the same
condition, a Kohn-Sham scheme can also be devised
validates the approach described above to solve the prob
in the adiabatic approximation. Of course, the exchange
correlation energy functional is not the same for the
semble as for the ground state of the system. In spite of t
we make use of the local-density approximation~LDA !
based on the energy functional for the ground state of a
mogeneous electron gas. We may note that a homoge
system is translationally invariant~in other words, the
exchange-correlation energy is the same for a shifted
unshifted Fermi distribution!. Still, further examination of
the validity of this particular form of local approximation fo
our case is clearly required.

Second, as concerns the bound states, we have, in s
cases, set the occupation of certain bound orbitals to z
Such a procedure has been used previously to study m
charged ions embedded in a metal15 but it cannot be justified
within the ensemble Kohn-Sham scheme. Nevertheless,
of interest to carry out such calculations to investigate
nature of the screening in various situations. For example
the case of a proton projectile, we allow for the population
the bound state to be zero, one or two electrons which,
spectively, corresponds to proton, neutral hydrogen (H), and
negative ion (H2) projectiles. We will use this terminology
hereafter. Of course the energy loss we calculate will co
spond to asinglecharge state. Any comparison of our resu
with experiment would require some average over vari
charge states.16

B. Determination of the Hartree potential

The Hartree potential is determined from a solution
Poisson’s equation. However, in order to numerically sta
lize the iterative procedure, we in fact introduce a damp
Poisson equation in which the potential for thenth iteration
involves the one from the (n-1!th iteration:

F1

r

d2

dr2 r 2
n~n11!

r 2 2k2GVn
H,n~r !

524pDnn
n21~r !2k2Vn

H,n21~r !524pFn
n21 .

~23!

The introduction of the parameterk ~typically of the order of
one atomic unit! effectively eliminates the long-range natu
of the Coulomb potential, which is the source of the nume
cal instability. However, at convergence the artific
k-dependent terms cancel and one recovers the true for
the Hartree potential. The solution of Eq.~23! is given by

Vn
H,n~r !54pkH h̃n

~1!~kr !E
0

r

dr8 r 82 j̃ n~kr 8!Fn
n21~r 8!

1 j̃ n~kr !E
r

`

dr8 r 82h̃n
~1!~kr 8!Fn

n21~r 8!J ,

~24!
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where the functionsj̃ n andh̃n
(1) are modified spherical Besse

functions defined in terms of modified Bessel functions
fractional order by

j̃ n~x!5Ap

2x
I n1~1/2!~x! ~25!

h̃n
~1!~x!5~2 !n11A 2

px
Kn1~1/2!~x!. ~26!

The functionsI andK are defined as in Ref. 17. The integra
in Eq. ~24! are calculated in a cumulative fashion using Si
pson’s rule to generate the potential at every second poin
the radial mesh; this is then followed by an interpolation
yield the potential on the full radial mesh.

C. Exchange-correlation potential

Our exchange-correlation potential is based on
exchange-correlation potentialmxc@n# for a static homog-
enous system of densityn. Therefore, it does not include an
dynamic contribution. In practice we use the express
given in Ref. 18. The potentialVxc is in fact the change in
exchange-correlation potential caused by the presence o
external charge:Vxc5mxc@Dn(r)1n0#2mxc@n0#. The com-
ponent ofVxc for a given value ofn is given by

Vn
xc~r !5~n1 1

2 !E
21

11

d~cosu!Vxc~r!Pn~cosu!. ~27!

In our calculations, we keep a finite number of terms in t
expansion of the potential over Legendre polynomials a
call nmax the corresponding maximum value ofn in ~3!. As-
suming thatn<nmax,Vxc(r) is a polynomial in cosu of order
nmax at most, in which case the integrand is a polynomial
order 2nmax at most, for which the integral is given exact
by a Gaussian quadrature of ordernmax11. If xi andv i are
the pivots and weights of such a quadrature (i 51,nmax
11),

Vn
xc~r !5 (

i 51

nmax11

V i ,nVxc~r , cos21 xi !, ~28!

V i ,n5~n1 1
2 !v i Pn~xi !. ~29!

D. Calculation of stopping power

A chargeZ traveling with velocityv through the elec-
tronic densityn(r) experiences a force alongv equal to

F5 lim
R→0

v̂•“RE dr n~r!
Z

ur2Ru
, ~30!

whereR(t) is the projectile position. As a uniform densit
produces no force, we can replacen by Dn. Using the ex-
pansion ofVH in Legendre polynomials and the limit~6! for
small distances, the energy loss per unit path length is

dE

dR
5Z lim

R→0
V1

H~R!/R. ~31!
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The energy loss is directly related to the dipole part of
Hartree potential. It is interesting to note that the above re
provides a simple connection between the dipole part of
Hartree potential near the origin and the transport cross
tion since the energy loss may be determined from the la
in the usual way.19 The average energy transferred by
electron with momentumk to an infinitely massive particle
having velocityv is given by v times the average of th
electron momentum change alongv̂. Then the energy loss
per unit path length is~summing over a shifted Fermi sphe
in k space!

dE

dR
5

1

4p3ESFS

dk k2sv
tr , ~32!

wheresv
tr is the component alongv of the transport cross

section~a vector quantity when the potential is not sphe
cally symmetric!

sv
tr5E d k̂8 v̂•~ k̂2 k̂8!u f ~k,k̂8!u2. ~33!

Expression~32! provides the required connection with E
~31!. We discuss in Appendix A the behavior of the stoppi
power as a function of velocity for low velocities.

III. RESULTS

A. Comparison with linear theory for Z small

The numerical solution of the coupled equations can
checked when perturbation theory is valid. For a given
tential lV(r), the transition amplitude~12! for small l is
given by the first Born expression

f B~k,k̂8!58pl(
n

(
l l 8m

~2 !mi l 2 l 8Ylm~ k̂8!Yl 8m
* ~ k̂!

3~2n11!21H l l 8 n

m 2m 0J I l l 8n , ~34!

where

I l l 8n5E
0

`

r 2 dr j l~kr ! j l 8~kr !Vn~r !

and j l is the regular spherical Bessel function of orderl. We
have compared the transition amplitude obtained from
solution of the coupled equations with the Born value~34!
and find very good agreement for small values ofl.

The whole procedure may be further checked by comp
ing our results with those of linear theory. If the exchang
correlation contribution is neglected, then our calculatio
should be entirely equivalent, for a small projectile charge
results based on the RPA response function20 ~hereafter, we
refer to such calculations as linear theory!. We give in Fig. 1
the potential for a projectile charge of20.01 moving with a
velocity of 0.4 a.u. through a gas ofr s52.07. Very good
agreement is obtained for all components of the poten
Similar agreement has been obtained for the componen
the density.

Alternatively, one may use our theory to gauge the role
the exchange-correlation contribution in linear theory. T
e
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e
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l.
of

f
s

is done in Fig. 2 where we give our results with and witho
exchange correlation for the same conditions as in Fig. 1.
see that the difference is not negligible, which proves
limitation of the RPA approximation to the respon
function.21 In particular, the stopping power is significant
different in both calculations. Let us define the quantity

S5 lim
v→0

1

vZ2

dE

dR
. ~35!

For r s52.07 andZ520.01, we getS50.159 a.u. without
and 0.22 a.u. with exchange correlation.

B. Density

1. Comparison with spherical average

Our calculations may be checked against those of
spherical average approximation,11 which corresponds to
nmax50. Good agreement is obtained for the antiproton c
considered in Ref. 11. We have plotted in Fig. 3 the dens

FIG. 1. Comparison of the potential~calculated without
exchange-correlation! for a projectile charge20.01 and a velocity
of 0.4 a.u.~lines! with linear theory~circles!: ~a! monopolar com-
ponent of the potential multiplied byr, ~b! dipolar ~full line and
circles! and quadrupolar~dashed line and open circles! components
of potential.
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along the direction of the projectile velocity forr s52.07 for
the nonspherical case. One can see a forward-backw
asymmetry that increases with increasing projectile veloc
in good agreement with the calculations of Ref. 11. We h
plotted in Fig. 4 the density obtained in the spherical a
nonspherical calculations for a velocity of 0.8 a.u. There i
significant difference for the antiproton case. The asymme
of the density is significantly reduced in the present calcu
tions, particularly in the backward direction. The structure
the forward direction has completely disappeared. In our
culations, the asymmetry of the density is due to both
asymmetry in the potential and the integration over a shif
Fermi sphere. Only the latter source of asymmetry is pres
in the spherical approximation. This means that, when a f
self-consistent calculation of the potential and charge den
is performed at finite velocities, the asymmetry of the pot

FIG. 2. Relative density change for a projectile charge20.01
and a velocity of 0.4 a.u. calculated with~lines! and without~lines
with circles! exchange correlation: dipolar~full lines! and quadru-
polar~dashed lines! component of density. Circles correspond to t
results of linear theory.

FIG. 3. Relative density change along the projectile velocity
an antiproton traveling through a jellium with densityr s52.07 with
velocity 0 ~dash-dotted line!, vF/2 ~dashed line! and 0.8 a.u.~full
line!.
rd
,
e
d
a
ry
-

l-
e
d
nt
y
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tial compensates partially the asymmetry caused by the s
of the Fermi sphere in the evaluation of the density. We m
observe this effect directly by looking at the various comp
nents of the potential~Fig. 1!. In fact, the dipolar componen
of the induced potential has a sign opposite to that of
monopolar one close to their respective maxima. This is e
to understand. Because of the shift in the Fermi sphere, in
case of antiprotons, the density change is smaller in the
ward than in the backward direction. In the forward directi
the total density is larger and produces more screen
Therefore the induced potential is weaker, which decrea
the asymmetry in the density with respect to the spheric
symmetric approximation. This variation of the density is
utmost importance if one calculates the stopping power fr
Eq. ~31!. If one fails to account for the asymmetry in th
density caused by the asymmetry in the potential used
determine the Kohn-Sham orbitals, then the latter proced
gives an incorrect value, even for vanishingly small velo
ties. This is explained in Appendix A. In contrast, the diffe
ence is much smaller between the present calculations
those of the spherical approximation for the case of proto

r

FIG. 4. Relative density change along the projectile velocity
v50.8 a.u. andr s52.07. The projectile is an antiproton~a! or a
proton ~b!. Our results~full line! are compared with those of th
spherical approximation~Ref. 11! ~dashed line! and of the static
case~dash-dotted line!.
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The density variation is much more localized in the case
protons@note the scale difference in thex axis of Figs. 4~a!
and 4~b!#: the maximum at the position of the proton is 7
whereas it is only20.94 for the antiproton case.

2. Comparison with linear theory

The difference with linear theory has been already illu
trated in the spherical approximation for antiprotons.11 A
similar comparison is given in Fig. 5. At the antiproton p
sition, linear theory gives a relative depletion of.23. Such
an unphysical value is a frequent feature of perturbat
theory when it breaks down. Furthermore, this overestim
tion of the depletion at the antiproton position produce
reduction of the range of the density variation and of
asymmetry. For a proton, linear theory underestimates
density at the proton by a factor of roughly 2.5. It therefo
overestimates the asymmetry, which is reduced in our ca
lations by the large screening of the nuclear charge.

3. Friedel oscillations

The usual Friedel oscillations in the density are seen
from the projectile at low velocities. We plot in Fig. 6 th

FIG. 5. Relative density change along the projectile velocity
an antiproton~a! and a proton~b! with velocity 0.8 a.u. andr s

52.07. Our results~full line! are compared with linear theor
~dashed line!.
f

-

n
-

a
e
e

u-

r

monopolar part of the density for the static case and for fin
velocities. The other multipolar components of the dens
show similar oscillations. It can be clearly seen that the f
quency of the oscillations and their amplitude decrease w
the velocity increases. A similar effect has been found
Ref. 22 for a hard sphere moving in a jellium. This effect c
be related to the shift in the Fermi distribution. As shown
Eq. ~B12!, the density arises from an integration overk
weighted by the functionCm(k). For the static case,Cm is
independent ofk and the integration overk yields a single
oscillating term having a frequencyp/kF . For finite veloci-
ties andv,kF , Cm is also constant forv,kF2v so the
integral overk from 0 to kF2v gives a single oscillating
term with frequencyp/(kF2v) and a smaller amplitude
The contribution fork.kF2v is smaller becauseCm(k) de-
creases rapidly withk and it is partially quenched by inter
ferences. This explains qualitatively the observed behav
Physically, it comes from the fact that the density oscil
tions far from the projectile are an average over dens
waves having a distribution of wave vectors the center
gravity of which isv ~instead of zero for the static case!. The
interference pattern is characterized by a beating freque
of the order ofp/(kF2v) and a smaller amplitude.

C. Stopping power

We give in Fig. 7 the energy loss for various values ofZ.
In all cases, the occupation of the bound states has bee
to zero. We have also included, for the sake of comparis
the unphysical caseZ50.5. The most striking result is th
linearity of the energy loss as a function of velocity for a
cases up to velocities close to the Fermi energy. The lar
deviation with respect to linearity is observed for protons.
is well known, it can be proved that the energy loss tends
zero linearly with velocity when the velocityv tends to zero
(v!vF). However, until now, no evaluation was availab
on the importance of higher orders inv for the Taylor ex-
pansion of the stopping power at low velocities. Our calc
lations show that linearity is observed up to velocities clo
to the Fermi velocity. The same conclusion was reached w

r

FIG. 6. Friedel oscillations for various velocities. The relati
monopolar density change multiplied byr 2 is shown for an antipro-
ton with velocity 0~dash-dotted curve!, vF/2 ~dashed curve! and 0.8
a.u. ~full curve! in a jellium with densityr s52.07.
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the nonlinear hydrodynamic theory7 ~note that the calcula
tions for protons in the latter work should be compared
our results for H discussed in Sec. III D!. The consequence
of this linearity with velocity is that the variation withZ is
very close to the one already observed for the static case.23 In
addition to being farther from linearity, the proton stoppi
corrresponds to a maximum in the dependence overZ of the
stopping power divided byZ2.

D. Bound states

We have carried out a spin-polarized calculation for
case ofH, which means that we have accounted for a sin
occupied bound state. We give in Table I the Kohn-Sh
eigenenergies as a function of velocity for two different v
ues ofr s . We are well aware of the fact that the Kohn-Sha
eigenvalues should be considered with some caution and
they cannot be interpreted as an ionization energy. Howe
we are more interested here in trends than in absolute va
The evolution of the Kohn-Sham eigenvalues as a func
of velocity is representative of the effect of dynamic scre
ing on the bound states. As expected, we see that the bin
energy increases with increasing velocity, i.e., the bou
state becomes less sensitive to the presence of the jelliu
the velocity increases. This behavior is at variance with
one found in Ref. 24: the latter authors found that the bou
state energy increases with velocity for low velocities.

The density of the bound state shown in Fig. 8 is large

FIG. 7. Stopping power~in a.u.! divided byvZ2 as a function of
velocity for various projectiles andr s52.07.

TABLE I. Orbital energies of H~in a.u.!.

v ~a.u.! r s52.07 r s53

0.0 20.0203 20.0892
0.1 20.0902
0.2 20.0231 20.0928
0.3 20.0968
0.4 20.0300 20.1022
0.5 20.0343 20.1090
0.6 20.0394
0.8 20.0500
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the forward direction than in the backward direction, whi
means that the bound electron feels an attraction toward
forward direction~less screening by continuum electrons!.
This is more clearly seen in Fig. 9 where we plot the asy
metry in the density as a function ofuzu. This asymmetry is
defined as 2@nB(1)2nB(2)#/@nB(1)1nB(2)#. The
asymmetry of the continuum density has two different o
gins. One is the shift in the Fermi distribution, the other
the asymmetry of the potential. It is the asymmetry in t
shifted Fermi distribution that produces a smaller electro
density in the forward direction for a positive ion. We ha
shown already that the asymmetry of the potential create
density change in the opposite direction, precisely becaus
the lower density in the forward direction caused by t
shifted Fermi distribution. The same effect can be seen in
total density in the present case. However, the bound-s
density is not determined by integration over a Fermi dis
bution. Therefore the asymmetry of the bound-state den
arises only from the asymmetry of the potential. This is t

FIG. 8. Contribution of the H bound state to the relative dens
change along the projectile velocity forv50.8 andr s52.07 ~full
curve! compared to that of the static case~dash-dotted curve!.

FIG. 9. Relative asymmetry of the density for a H atom with
velocity 0.8 a.u. traveling through a jellium withr s52.07.
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reason why the bound state has an asymmetry opposi
that of the continuum and total densities. This effect can o
be seen in a self consistent calculation, i.e., when the po
tial fully accounts for the asymmetry caused by the projec
motion.

As shown in Fig. 10, the H stopping is smaller than t
proton stopping. This reduction is caused by the sma
asymmetry in the screening of the proton field for the H c
though the density itself is larger at the origin for H than f
protons~see Table II!. Part of this reduction may be relate
to the previous discussion on the asymmetry of the bo
state. Expression~31! shows the direct relation between th
density asymmetry and the stopping power. Therefore
bound state density gives a contribution to the stopp
power opposite that of the continuum. In fact, the forwa
backward asymmetry in the density of continuum electro
produces an attraction of the bound electron in the forw
direction. This means that the interaction of the bound e
tron with the continuum electrons produces an energy g
~as the electronic state is stationary in the projectile fram
we may consider that the bound electron-proton sys
evolves as a rigid body!. In other terms, the reduction of th
energy loss for a H atom compared to the proton one has t
different origins. One is due to the change in screening
the unbound electrons caused by the presence of a b
state. The other is due to the attraction of the bound elec
in the forward direction~this effect arises to first order inv
from the dipolar term of the potential!. The contribution as-

FIG. 10. Stopping-power~in a.u.! divided byvZ2 as a function
of velocity for various projectiles andr s52.07. The dashed curv
gives the result of linear theory and the dash-dotted curve the
ergy gain by the bound electron for the case of H.

TABLE II. Relative density change at the origin.

v ~a.u.! Antiproton Proton H

0.0 20.954 8.60 17.5
0.2 20.953 8.52 17.3
0.4 20.951 8.35 16.8
0.5 20.950 8.25 16.5
0.6 20.947 8.10 16.0
0.8 20.939 7.52 14.9
to
ly
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sociated with the energy gain by the bound electron is m
smaller than the one due to screening~see Fig. 10!. It is
interesting to note that the evaluation of the stopping pow
in the projectile frame through the transport cross sect
~32! includes automatically these two effects through t
Kohn-Sham potential. In fact, the Kohn-Sham potential
counts for the interaction of any electron with all electron
whether they are bound or not.

IV. CONCLUSION

We have shown that an ensemble Kohn-Sham calcula
of the dynamical screening of an ion moving in an electr
gas is feasible. It allows therefore to determine se
consistently the perturbation of the medium by the mov
projectile. The virtue of the method is that it allows an u
ambiguous definition of the bound electronic orbitals movi
with the projectile. The perturbed continuum orbitals rep
sent the projectile wake, i.e., a perturbation of the medi
moving with the projectile. Bound and continuum orbita
are orthogonal at any time since they are solutions of
same Kohn-Sham equations. We have shown that the as
metry of the potential creates an asymmetry in the bou
states that is the opposite of the one produced on the
density by the projectile motion: the bound electron feel
net attraction in the forward direction. It would be of gre
interest to study the relevance of these features to elec
capture and loss processes.25

We have completed the proof of the linearity in the var
tion of the stopping power with velocity at low velocities
We have extended the derivation of the Friedel sum rule
oscillations by fully taking into account the cylindrical sym
metry of the potential at finite velocities. We have found th
the stopping power of the electron gas is nearly linear~in
velocity! up to the Fermi velocity, the largest deviation bein
observed for the case of protons~moving with no bound
electron!. This is in accord with previous findings with th
spherical average11 and nonlinear hydrodynamic7 approxi-
mations.

The main limitation of the present method of solution li
in the use of spherical coordinates and in convergence d
culties with the iterative solution of the Kohn-Sham equ
tions when the velocity increases. This has limited its use
the present work, to velocities below the Fermi velocity.
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APPENDIX A: STOPPING POWER AT LOW VELOCITIES

The usual proof that the stopping power varies linea
with velocity for low velocities is based on its relation wit
the transport cross section calculatedwith a spherically sym-
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metric potential.19 The linearity in v then arises from the
shift in the Fermi sphere. However, for nonzero velociti
the potential has multipolar components and the dipo
component is linear inv for small v. The previous proof is
therefore incomplete as long as the contribution of the di
lar component of the potential has not been evaluated.

We treat the problem first in the projectile frame. T
energy given by an electron with momentumk scattered by a
projectile of infinite mass and velocityv into the directionk8
is v•(k2k8). The average over all possible scattering dire
tions and all electrons gives

dE

dR
5

1

4p3ESFS

dkE dk̂8 kv̂•~k2k8!u f ~k,k̂8!u2, ~A1!

where the sum overk is over a shifted Fermi sphere as e
plained earlier. The contribution, to first order inv, of the
monopolar term of the potential,V0 , has already been
derived.19 The dipolar component of the potentialV1 is lin-
ear inv. Therefore, to first order inv, the contribution of the
dipolar component of the potential to the energy loss may
calculated from the energy lossdE1 /dR caused by the dipo
lar potential alone when the integration overk is over an
unshifted Fermi sphere:

dE1

dR
5

1

4p3E
0

kF
k2 dkE dk̂E dk̂8 kv̂•k

3~ u f 1~k,k̂8!u22u f 1~k8,k̂!u2!. ~A2!

This contribution is not zero in general, because of the as
metry of the potential, as can be checked from the form
the transition amplitude~12!. However for vanishingly low
velocities, one may use the Born approximation~34! which
verifies the conditionf (k,k̂8)5 f * (k8,k̂) and, therefore, the
quantity dE1 /dR is of order v2 at least. So the previou
derivation of the low-velocity limit of the stopping powe
yields the correct result in spite of its incompleteness:
transport cross section may be calculated, in this limit, fr
V0 only.

Let us calculate now the energy loss in the electron
frame. We callĤ(t) the Hamiltonian describing the electro
motion in the field of the moving ion. LetC i(t) be the so-
lution of the time-dependent Schro¨dinger equation. The en
ergy lost by the projectile per unit path length is

dE

dR
52

1

v
d

dt
^C i~ t !uĤ~ t !uC i~ t !& ~A3!

52
1

v
^C i~ t !u

dĤ~ t !

dt
uC i~ t !&. ~A4!

The last step follows from the time-dependent Schro¨dinger
equation. Using the fact that the time dependence ofĤ(t)
arises entirely from the projectile potential and that the la
is a one-electron operator, the previous expression ma
cast into the form

dE

dR
5

Z

vE dr n@r2R~ t !#
d

dtS 1

ur2R~ t !u D . ~A5!
,
r

-

-

e

-
f

e

s

r
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The dependence ofn on time is fixed by our adiabatic ap
proximation, which gives a constant density in the projec
frame. We therefore obtain the result~31!, which proves the
equivalence between Eq.~31! and the expression in terms o
the transport cross section~32!. Using Poisson’s equation
one shows immediately that

dE

dR
5ZE dr n1~r!. ~A6!

However, for the result~A6! to give correctly the linear de
pendence at low velocities, it is essential that the den
n1(r) be calculated with both the monopolarand dipolar
components of the potential. In fact, the above proof of E
~A6! assumes thatC i(t) is solution of the time dependen
Schrödinger equation. We only get correctly the term line
in v if C i(t) is correct to first order inv. The dipolar com-
ponent of the potential indeed gives a contribution to
density that is linear inv. We have checked in actual calcu
lations that the results are grossly in error if the density
calculated fromV0 only. Our self-consistent calculations ob
viously satisfy this criterium and both expressions for t
energy loss give the same results.

APPENDIX B: FRIEDEL SUM RULE AND FRIEDEL
OSCILLATIONS FOR FINITE VELOCITIES

The well-known Friedel sum rule and Friedel oscillatio
can be readily obtained for finite velocities from our previo
expressions. The total variation of the screening density
be written as

Z5NB1NC5NB1E dr DnC~r!5NB1E dk Dnk
C ,

~B1!

whereDnC(r) gives the variation in density due to the co
tinuum states andNB is the total number of electrons i
bound states.26 By definition and for a spin-unpolarized ca
culation ~the generalization to spin-polarized calculations
trivial!,

NC52E dkE dr$ucku22ufku2%. ~B2!

From the Schro¨dinger equation

~k22k82!E dr$ckck8
* 1ck* ck8%

52E dr$@ck8
* ¹2ck2ck¹

2ck8
* #1c.c.%

52 lim
r→`

H E r 2dV r̂Fck8
*

d

dr
ck2ck

d

dr
ck8

* G1c.c.J .

~B3!

Introducek85k1dk we end with
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E drucku25
1

2k
lim
r→`

H E r 2d V r̂F d

dk
ck*

d

dr
ck

2ck

d

dk

d

dr
ck* G1c.c.J . ~B4!

To calculate Eq.~B2!, we may use the asymptotic form~7!
of ck . After some elementary steps and making use of
optical theorem

4p Im@ f ~k,k̂!#5kE dV k̂8u f ~k,k̂8!u2, ~B5!

we get

Dnk
C5F4p

k

d

dk
f * ~k,k̂!12i E dV r̂ f ~k, r̂!

d

dk
f * ~k, r̂!

1
4p

k2 f ~k,k̂!G Y ~2p!3. ~B6!

We have already given the expression of the transition
plitude as expression~12!. By substitution and a further us
of the optical theorem we obtain the final expression

NC5
i

p (
l l 8m

E k22 dk i l 2 l 8Ylm~ k̂!Yl 8m
* ~ k̂!F S d

dk
SmD †

SmG
l 8 l

.

~B7!

Performing the angular integration,

NC5
i

2p (
l l 8m

E dk Cl l 8
m

~k!i l 2 l 8F S d

dk
SmD †

SmG
l 8 l

~B8a!

5
i

2p (
m

E dk TrFcmS d

dk
SmD †

SmG , ~B8b!

where the operatorcm has matrix elementsC l l 8
m (k) i l 2 l 8 and

Tr stands for the trace of the matrix product. For the cal
lation of the latter, we may useSm(k)5exp@2iDm(k)#. The
unitarity of theSm operator implies thatDm is hermitic. We
havedSm/dkÞ2iSmdDm/dk because the operatorsdDm/dk
and Dm usually do not commute. However, the trace of
product of operators is invariant under a change in their or
which means that any commutator can be set to zero in
.,
,

e

-

-

er
e

calculation of the trace. We end with

NC5
1

p (
m

E dk TrFcm~k!
dDm

dk G . ~B9!

This expression cannot be further simplified in the gene
case because of the shift in the Fermi sphere, which in
duces a dependence onk for the bounds on the integratio
over k̂ and therefore a dependence of the matrixcm on k.

To make the connection with the usual sum rule, it is
interest to consider the case of a potential with cylindri
symmetry for zero velocity. Then the integration overdV k̂ is
trivial and one getscll 8

m (k)52d l l 8 . If we call d l
m the ~real!

eigenvalues ofDm, one obtains

NC5
2

p (
lm

@d l
m~kF!2d l

m~0!#. ~B10!

It reduces trivially to the usual expression for the case o
spherically symmetric potential since in the latter cased l

m

does not depend onm.
The derivation of the Friedel oscillations follows simila

steps. Now we calculate the limit forr→` in Eq. ~B4! up to
next order in 1/r .

DnC~r !; r→`2
~2p!23

r 2

d

drE k22 dk Real$ f ~k,2 k̂!e2ikr%

~B11!

; r→`2
1

4p2r 2

3(
lm

E dk Real$e2ikr 2 i l p Tr@cmSm2Cm#%.

~B12!

The integration overk to first order in 1/r cannot be carried
out as usual because the matrixCm is zero at the maximum
value of k. Furthermore,Cm decreases rapidly fork.kF
2v ~whenv,kF), which explains why the frequency of th
Friedel oscillations decreases when the velocity increa
The dependence ofCm on k also explains the decrease in th
amplitude of these oscillations.
m.
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21I. Nagy, J. László, and J. Giber, Z. Phys. A321, 221 ~1985!; B.
Dabrowski, Phys. Rev. B34, 4989 ~1986!; I. Nagy, A. Arnau,
and P. M. Echenique,ibid. 38, 9191~1988!.

22L. Bönig and K. Scho¨nhammer, Phys. Rev. B39, 7413~1989!.
23P. M. Echenique, A. Arnau, M. Pen˜alba, and I. Nagy, Nucl. In-

strum. Methods Phys. Res. B56/57, 345 ~1991!.
24F. Guinea, F. Flores, and P. M. Echenique, Phys. Rev. B25, 6109

~1982!.
25P. M. Echenique, F. Flores, and R. H. Ritchie, Solid State Ph

43, 229 ~1990!.
26For spin unpolarized calculations, this is twice the number

bound states.


