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Low Latency Avoidance of Dynamic Obstacles for
Quadrotors with Event Cameras

Davide Falanga, Kevin Kleber, Davide Scaramuzza
Depts. of Informatics & Neuroinformatics, ETH and University of Zurich

In this paper, we address one of the fundamental challenges for micro aerial

vehicles: dodging fast-moving objects using only onboard sensing and compu-

tation. Effective avoidance of moving obstacles requires fast reaction times,

which entails low-latency sensors and algorithms for perception and decision

making. All existing works rely on standard cameras, which have an average

latency of tens of milliseconds and suffer from motion blur. We depart from

state of the art by relying on a novel bioinspired sensor, called event camera,

with reaction times of microseconds, which perfectly fits our task requirements.

However, because the output of this sensor is not images but a stream of asyn-

chronous events that encode per-pixel intensity changes, standard vision algo-

rithms cannot be applied. Thus, a paradigm shift is necessary to unlock the

full potential of event cameras. Our proposed framework exploits the tempo-

ral information contained in the event stream to distinguish between static and

dynamic objects, and makes use of a fast strategy to generate the motor com-

mands necessary to avoid the detected obstacles. Our resulting algorithm has

an overall latency of only 3.5ms, which is sufficient for reliable detection and

avoidance of fast-moving obstacles. We demonstrate the effectiveness of our

approach on an autonomous quadrotor avoiding multiple obstacles of different

sizes and shapes, at relative speeds up to 10m/s, both indoors and outdoors.

Figure 1: Sequence of an avoidance maneuver.
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Videos of the Experiments

All the experiments reported in this manuscript is available at http://rpg.ifi.uzh.ch/
event_based_avoidance

Introduction

Micro aerial vehicles (MAVs) are at the forefront of this century’s technological shift. They are
becoming ubiquitous, giving birth to new, potentially disruptive markets worth several billion
dollars, such as aerial imaging (forecast value of 4 billion USD by 2025 (1)), last-mile delivery
(90 billion USD by 2030 (2)) and aerial mobility (almost 8 billion USD in 2030 (3)).

Keeping a vehicle airborne above a crowd poses large safety risks. Several drone crashes
have been recently reported in the news, due to either objects tossed at quadrotors during public
events (4, 5), or collisions with birds (6, 7). Enabling MAVs to evade fast-moving objects (cf.
Fig. 1) is therefore critical for the deployment of safe flying robots on a large scale and is still
unsolved.

The Challenge

The temporal latency between perception and action plays a key role in obstacle avoidance.
The higher the latency, the lower the time the robot has to react and execute an avoidance
maneuver (8). This is especially critical for MAVs, where a collision can not only damage
the environment, but also cause severe hardware failure. Additionally, micro quadrotors have
reduced payload capabilities, which puts a hard bound on the sensing and computing resources
they can carry.

The existing literature on obstacle avoidance for MAVs relies on standard cameras (in a
monocular (9–11) or stereo configuration (12–15)) or on depth cameras (16–18). However, these
works assume that the obstacles in the environment are either static or quasi-static (i.e., slow
relative motion).

Similarly, state-of-the-art consumer drones are not currently capable to reliably detect and
avoid moving obstacles. For example, the Skydio drone, as of today one of the most advanced
autonomous drones on the market, is not capable of dealing with moving objects (If you throw

a ball at it, it’s almost certainly not going to get out of the way, said Adam Bry, CEO of
Skydio (19)).

Developing effective algorithms to avoid dynamic obstacles is therefore a key challenge in
robotics research, as well as a highly admired goal by major industry players.

Event Cameras

To avoid fast-moving obstacles, we need to perceive them fast. As it turns out, standard cameras
are not good enough: they have an average latency of tens of milliseconds (the exposure time of
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Figure 2: Comparison of the output of a conventional camera and that of an event camera when
they are looking at a rotating disk with a black dot. While a conventional camera captures frames
at a fixed rate, an event camera only outputs the sign of brightness changes continuously in the
form of a spiral of events in space-time (red: positive changes, blue: negative changes).

a standard camera varies between 1 and 100 ms). Therefore, their limitations arise from their
physical nature and cannot be solved with sophisticated algorithms. The solution is given by
a novel type of sensor, called event camera, which has reaction times of microseconds. In a
recent study on the role of perception latency for high-speed sense and avoid (8), it was shown
analytically that, using event cameras, the latency between the time a visual signal is triggered by
the sensor and processed to output control commands is significantly lower than that of standard
cameras (ms vs tens of ms). This promises terrific consequences for robotics applications.
However, because the output of an event camera is not images but a stream of asynchronous
events, standard vision algorithms cannot be applied. Thus, novel algorithms need to be devised
to unlock the full potential of event cameras for the task at hand.

Event cameras (20) are bio-inspired sensors that work radically different from traditional
cameras. Instead of capturing images at a fixed rate, an event camera measures per-pixel
brightness changes asynchronously. This results in a stream of events at microsecond resolution.
More specifically, an event camera has smart pixels that trigger information independently of
each other: whenever a pixel detects a change of intensity in the scene (e.g., caused by relative
motion), that pixel will trigger an information at the time the intensity change was detected. This
information is called event, and encodes the time (at microsecond resolution) at which the event
occurred, the pixel location, and the sign of the intensity changes. Let tk-1 be the last time when
an event fired at a pixel location x, and let Lk-1 = L (x, tk-1) be the intensity level at such pixel
at time tk-1. A new event is fired at the same pixel location at time tk as soon as the difference
between the intensity Lk-1 and Lk is larger than a user-define threshold C > 0. In other words, an
event is fired if ‖L (x, tk)− L (x, tk-1)‖ > C (positive event) or ‖L (x, tk)− L (x, tk-1)‖ < −C
(negative event). We refer the reader to (21) for further details.

To better highlight what happens across the entire sensor, we compare the output of an event
camera to the one of a conventional camera in Fig. 2 and in a video (22).

Event cameras can thus be seen as asynchronous, motion-activated sensors, since they



provide measurements only if and where there is relative motion between the camera and the
environment. And because their latency is in the order of microseconds, they are a natural choice
for detection and avoidance of fast moving obstacles by flying MAVs.

If one removes the events induced by the ego-motion of the vehicle (23, 24), one can directly
obtain information about the moving part of the scene. This leads to multiple advantages over
standard cameras for detection of dynamic obstacles: (i) the output is sparser and lighter than a
frame, therefore cheaper to process; (ii) no segmentation between static and dynamic objects is
necessary, since to do so it is possible to exploit the temporal statistic of each event; (iii) their
high temporal resolution (in the order of microseconds) allows low-latency sensing.

Related Work

In recent years, event cameras have attracted the interest of the robotics community (21). Obstacle
detection is among the applications with the highest potential, and previous works investigated
the use of these sensors to detect collisions (25) and track objects (23, 26). However, very few
examples of closed-loop control based on event cameras are available in the literature. Among
these, the majority of the works focuses on simple, low-dimensional tasks, such as 1-DoF
heading regulation (27, 28), stereo-camera gaze control (29, 30), 2-DoF pole balancing (31),
1-DoF robotic goalkeeping (32, 33), or navigating ground robots among static obstacles (34–36).

Examples of closed-loop control of more complex robotic systems, such as quadrotors, using
event cameras are our recent works (37–39). In (37), we proposed an event-based visual-inertial
odometry algorithm for state estimation and closed-loop trajectory tracking of a quadrotor.
Instead, (38) and (39) are the most related to this paper. In (38), we analyzed the feasibility of
detecting spherical objects thrown at a stationary event camera on small embedded processors
for quadrotors. In (39), we showed preliminary results in using shallow neural networks for
segmenting moving objects from event streams and demonstrated an application to quadrotor
obstacle avoidance. However, the resulting sensing latency was 60ms rather than the 3.5ms of
this paper, thus strongly limiting the maximum relative speed at which moving objects could be
evaded. Additionally, differently from this paper, there we did not consider the relative distance
and velocity to compute the avoidance commands. To the best of our knowledge, this is the first
work that implements and demonstrates low latency (3.5ms) dynamic obstacle dodging on an
autonomous quadrotor with relative speeds up to 10m/s.

Overview of the Approach and Contributions

Our moving-obstacle detection algorithm works by collecting events during a short-time sliding
window and compensating for the motion of the robot within such a time window. Fig. 3
shows the effects of the ego-motion compensation: on the left side, the 3D volume of the
events accumulated during an arbitrary time window of 10ms, on the right side the same events,
after ego-motion compensation, back-projected on the image plane. We analyze the temporal



Class Name Reaction Times [ms] Reference

Bird Starling (Sturnus Vulgaris) 76± 38 (40)
Bird Pigeon (Columba livia domestica) 50− 100 (41)
Bird Hummingbird (Eugenes fulgens) 20− 50 (42)
Bird Yellowhammer (Emberiza citrinella) ∼ 10 (43)
Bird Greenfinch (Carduelis chloris) ∼ 30 (43)
Fish Squid (Loligo opalescens) 50− 75 (44)
Fish Herring Larvae ∼ 40 (45)
Fish Crab (Chasmagnathus granulatus) 30− 50 (46)
Fish Goldfish (Carassius auratus) ∼ 150 (47)
Fish Larval Zebrafish < 100 (48)
Fish Coral Reef Fish (Spiny Chromis) ∼ 15 (49)

Insect House fly (Musca domestica) 30− 50 (50)
Insect Condylostylus 2− 5 (51)
Insect Skipper butterfly (Hesperiidae) < 17 (51)
Insect Cockroach (Periplaneta Americana) ∼ 50 (51)
Insect Hawkmoth (Manduca sexta) 50− 100 (52)
Insect Fruit fly (Drosophila) 61± 21 (53)
Insect Locust (Locusta migratoria migratoriode) ∼ 50 (54)

Mammal Shrew ∼ 10 (55)
Mammal Mouse ∼ 20 (55)
Mammal Rat ∼ 30 (55)
Mammal Rabbit ∼ 40 (55)
Mammal Cat ∼ 30 (55)
Mammal Guinea Pig ∼ 45 (55)
Mammal Dog ∼ 40 (55)
Mammal Sheep ∼ 60 (55)
Mammal Goat ∼ 40 (55)
Mammal Giraffe ∼ 100 (55)
Mammal Elephant ∼ 100 (55)
Mammal Human ∼ 200 (56)

Table 1: Reaction times to visual stimula in animals. The estimated reaction times are reporting
in different formats (i.e., confidence intervals, ranges, upper-bounds or order of magnitude)
based on the information provided in the literature.



statistics of the motion-compensated events to remove those generated by the static part of the
environment.

Broadly speaking, our algorithm is based on the intuition that the static part of the scene
fires events uniformly across the entire time window and, after the ego-motion compensation,
the pixels belong to show a uniform distribution of timestamps; conversely, dynamic objects
generate ego-motion compensated events that are accumulated around specific sections of the
time window, and can, therefore, be distinguished. Our technique to detect moving obstacle using
event cameras is based on the method proposed in (23), where the authors used an optimization-
based ego-motion compensation scheme. We modified that method to only rely on an Inertial
Measurement Unit for the ego-motion compensation, without using any optimization scheme,
which makes the algorithm sufficiently fast to run in real-time on a small on-board computer. An
analysis of the impact of neglecting the linear component of the robot’s ego-motion is provided
in Sec. Impact of Using a Simplified Ego-Motion Estimation Algorithm of the supplementary
materials. An intuitive explanation of how and why our algorithm works is provided in Sec. Time
Statistics of Events to Detect Moving Obstacles of the supplementary material, while we refer
the reader to Sec. Ego-Motion Compensation of the Events for a detailed explanation of this
process, which allows us to obtain a so-called event frame, containing only events coming from
moving objects, at very high rate. We leverage a fast clustering algorithm to tell apart different
objects in the event frame and use a Kalman filter to obtain information about their velocity.
Fig. 4 provides a visual explanation of the steps involved in our algorithm, which is thoroughly
described in Sec. Obstacle Detection.

The position and velocity of each obstacle relative to the camera are then fed to a fast
avoidance algorithm designed to leverage the low sensing latency. To do so, we use a reactive
avoidance scheme based on the use of artificial potential fields (57) relying on fast geometric
primitives to represent the obstacles, which renders it computationally inexpensive. We propose
a novel formulation of the repulsive field, which better suits the task of avoiding fast-moving
obstacles by taking into account the need for a prompt reaction of the robot when an obstacle is
detected. Compared to previous approaches, our formulation of the repulsive potential increases
significantly faster as the distance between the robot and the obstacle decreases in order to
render the avoidance maneuver more reactive and agile. Additionally, we consider both the
magnitude and the direction of the obstacle’s velocity to decide in which direction to evade, and
introduce a decay factor in the magnitude of the potential to take into account that the obstacles
we consider are dynamic, i.e., they do not occupy the same position in time. Further details about
the avoidance strategy are available in Sec. Obstacle Avoidance.

Our approach prioritizes computation speed over accuracy, therefore, we trade-off detection
accuracy for latency. Nevertheless, in Sec. Accuracy and Success Rate we show that our
algorithm only takes on average 3.5ms (from the moment it receives the events to process to
when it sends the first command to avoid the detected obstacles) to detect moving obstacles with
a position error usually in the order of a few tens of centimeters.

Trading-off detection accuracy for latency is not only a necessity for robotic platforms, but it
has been frequently observed also among animals (58) for the execution of several tasks involving



(a) The 3D volume of the events generated within a time
window of 10ms.

(b) The same events, projected into the image plane after
ego-motion compensation.

Figure 3: Our algorithm collects all the events that fired during the last 10ms, here represented
in the 3D volume on the left side, and used the Inertial Measurement Unit to compensate for
the motion of the camera. The ego-motion compensated events are therefore projected into
a common image frame, here shown on the right side, where each pixel contains potentially
multiple events. By analyzing the temporal statistics of all the events projected into each pixel,
our approach is able to distinguish between pixels belonging to the static part of the scene and to
moving objects.



(a) Frame provided by the Insightness
SEES1, which shows clearly the mo-
tion blur due to the relative motion
between the sensor and the moving
obstacle..

(b) All the events accumulated in a
time window. Red indicates positive
events, while negative events are re-
ported in blue.

(c) The same events, motion-
compensated using the IMU: if
a pixel is colored in white, it
means that at least one event has
been backprojected there after
motion-compensation.

(d) The motion-compensated events,
with color code representing the nor-
malized mean timestamp (Eq. (4)):
the events belonging to the dynamic
part of the scene are represented in
yellow.

(e) Mean-timestamp image after
threhsolding: green and purple indi-
cate the static and the moving part of
the scene, respectively.

(f) Events belonging to moving obsta-
cles. This frame is used to segment
out the different dynamic objects in
the scene (Sec. Obstacle Segmenta-
tion).

Figure 4: A figure summarizing all the steps of our ego-motion compensation algorithm to isolate
the events belonging to moving obstacles. Fig. 4a shows a frame captured by the Insightness
SEES1 camera. Fig. 4b reports all the events accumulated in the last window, with red and
blue indicating the polarity (positive and negative, respectively). Fig. 4c reports the result of the
ego-motion compensation, showing in white all the pixels where there has been at least one event
in the time window. We compute the normalized mean timestamp of all the events belonging
to a given pixel, and the resulting values are shown in Fig. 4d. Based on the normalized mean
timestamp, we can disambiguate between the events belonging to the static part of the scene and
those belonging to the dynamic objects (Fig. 4e, where green represents static events and purple
moving events). Finally, we obtain a frame containing only the events belonging to the dynamic
part of the scene, as shown in Fig. 4f.



visual sensing.
We demonstrate the effectiveness of our approach in real experiments with a quadrotor

platform. We validate our system with both a monocular setup (for obstacles of known size) and
a stereo setup (for obstacles of unknown size), both indoors and outdoors. The entire avoidance
framework is capable of running in real-time on a small single-board computer on-board the
vehicle, together with the entire software stack necessary to let the robot fly (i.e., state estimation,
high-level control, communication with the flight controller). Experimental results show that our
framework allows the quadrotor to avoid obstacles moving towards it at relative speeds up to
10m/s from a distance of around 3m. The integration of known techniques for event-based
obstacle detection (23) and avoidance (57), adapted in order to make it possible for the entire
framework to run in real-time on a small computer as well as to deal with fast-moving obstacles,
represents the main contribution of this paper. To the best of our knowledge, this is the first work
showing a quadrotor avoiding fast-moving obstacles using only on-board sensing and computing.

Results

Evaluation of the Event-Based Obstacle Detector

In this section, we perform a quantitative evaluation of the performance and effectiveness of our
algorithm to detect moving obstacles using event cameras. The first analysis we conduct is about
the accuracy of the detections. We collected a large dataset of obstacle detections, including
ground-truth data from an Optitrack motion-capture system, in order to characterize the detection
error of our algorithm, and in Sec. Accuracy and Success Rate we provide the main results for
both the monocular and stereo cases.

In Sec. Computational Cost, we analyze the computational cost of the algorithm, providing
some details about how each component contributes to the overall time. Finally, in Sec. Different
Types of Obstacles we show that our algorithm can detect different sized and shaped obstacles,
while in Sec. Detection of Multiple, Simultaneous Obstacles we discuss the detection of multiple,
simultaneous obstacles.

Accuracy and Success Rate

We collected a dataset of more than 250 throws, obtaining around 1200 detections, and compared
the output of our event-based detector with ground-truth data from a motion-capture system. For
each detection, we computed the norm of the position error, and in Tab. 2, we summarize the
results.

We grouped together measurements falling within bins of size 0.5m, with the first one starting
from a distance of 0.2m along the camera’s optical axis, since the algorithm did not successfully
detect the obstacles at closer ranges. In the case of the monocular detector, it was necessary
to discard some of the data we collected due to the fact that, at short distances, the obstacle is
often only partially visible, and therefore our monocular algorithm fails to correctly estimate



Monocular Stereo

Distance [m] Mean Median Std. Dev. M.A.D. Mean Median Std. Dev. M.A.D.

0.2 - 0.5m 0.08 0.05 0.18 0.09 0.07 0.05 0.07 0.06
0.5 - 1.0m 0.10 0.05 0.22 0.10 0.10 0.05 0.18 0.10
1.0 - 1.5m 0.10 0.05 0.20 0.10 0.13 0.07 0.21 0.12

Table 2: A table summarizing the accuracy of our event-based algorithm to detect moving
obstacles. We analyzed both the monocular and the stereo setups, and compared the detections
with ground-truth data provided by a motion-capture system. For each configuration, we report
(expressed in meters) the mean, the median, the standard deviation and the maximum absolute
deviation of the norm of the position error, for different ranges of distances.

its distance since it would fit a known size to a partially visible object. This issue becomes less
significant as the distance to the camera increases, and after 1m, it does not significantly impact
the detector’s performance. On the other hand, as expected, the stereo configuration is more
precise at low ranges: the further the distance between the cameras and the object, the higher the
uncertainty in the triangulation and, therefore, the larger the error.

Independently of the configuration, however, the data in Tab. 2 show that our algorithm,
although not tailored towards accuracy but rather optimized for low latency, provides measure-
ments that are sufficiently accurate to allow a quadrotor to perceive its surroundings and detect
moving obstacles effectively. Indeed, the position error is on average smaller than the vehicle
size, while the standard deviation is a slightly higher but still reasonable up to 1m. Among the
factors that contribute to the error in estimating the obstacles’ position, the low resolution of
the camera certainly plays a key role. In Sec. Experiments, we discuss this, as well as other
drawbacks of current event cameras.

Another important aspect to consider in our detection algorithm is its success rate. For the
entire framework to be effective, not only it has to guarantee low latency, but also it has to
guarantee robustness in terms of success rate. In order to assess the robustness of our algorithm,
we performed an evaluation with objects of different sizes and shapes. Such objects were thrown
through the field of view of the sensors and, using the intrinsic calibration of the camera and
ground-truth data from a motion-capture system, we obtained information about when they were
supposed to be visible. If the object was in the field of view of the cameras, but the system did
not report any detection, we considered it as a failure of the detection algorithm. This allowed to
analyze the success rate of our algorithm in detect moving objects, which is reported in Tab. 3.
We used objects of size up to 30 cm, and in the table we group together objects belonging to
three different categories: smaller than 10 cm, smaller than 20 cm and up to 30 cm. For each
category, we provide data about the success rate when the objects move at different distances
from the camera, and group the detections according to such a distance.

As one can notice, our algorithm provide a high success rate in different scenarios, with



Distance [m]

Size ≤ 0.5m ≤ 1m ≤ 1.5m

≤ 0.1m 92% 90% 88%
≤ 0.2m 87% 92% 97%
≤ 0.3m 81% 88% 93%

Table 3: A table summarizing the success rate of the event-base detector. Each column reports
the success rate for objects moving at a certain distance range from the camera. Each row shows
the success rate of detecting objects smaller than a certain size. The results are obtained on a
dataset comprising 100 throws of objects belonging to each size.

small and large objects. Given the limited field of view of the cameras, large objects have a lower
detection rate at short distances, mostly because of their different appearance in the two cameras
used in the stereo setup, which makes it hard for the algorithm to match the individual detections.
Similarly, small objects are harder to detect at large distances because of the limited angular
resolution of the sensor used for the experiments. Additionally, we did not notice any significant
impact of the objects’ speed or incoming angle on the success rate.

Computational Cost

To quantify the computational cost of our detection algorithm, we ran an extensive evaluation by
throwing objects within the field of view of the event camera, while simultaneously rotating it,
and measured the time necessary to process all the events that fired within the last time window
of 10ms. Table 4 shows the results of our evaluation, highlighting how each step of the algorithm,
described in details in Sec. Obstacle Detection, contributes to the overall computation time.
Our evaluation was performed on an NVIDIA Jetson TX2 board, with the algorithm running
exclusively on the CPU (i.e., the GPU available on the same board was not used at all). The
numbers reported in Tab. 4 refer to the time required to run the detection algorithm with one
camera, however running multiple instances of the same algorithm for multiple cameras (as for
example in the stereo case) does not affect the performance in a significant way, as the individual
parts can be computed in parallel.

The most expensive part of the algorithm is given by the ego-motion compensation, which
on average, requires 1.31ms (36.80% of the overall time), with a standard deviation of 0.35ms.
As one can imagine, the time necessary for this step depends on the number of events that need
to be processed, and Fig. S4 clearly shows a linear dependence between the two. To understand
how many events are typically generated in real-world scenarios during our experiments, we
collected some statistics about the number of events that the algorithm needs to process. The
data we collected that, on average, both indoors and outdoors, the number of events belonging to
a time window of 10ms spanned between 2000 and 6000.

Another step that depends on the relative motion between the camera and the scene is the



Step µ [ms] σ [ms] Perc. [%]
Ego-Motion Comp. 1.31 0.35 36.80

Mean Timestamp Thresh. 0.98 0.05 27.52
Morphological Ops. 0.58 0.04 16.29

Clustering 0.69 0.20 19.39

Total 3.56 0.45 100

Table 4: The mean µ and standard deviation σ of the computation time of the obstacle detection
algorithm proposed in Sec. Obstacle Detection.

clustering of the events belonging to the dynamic obstacles. This step is necessary to understand
how many objects are in the scene and to associate each event with them. Clustering the events
usually requires 0.69ms (19.39% of the overall time), with a standard deviation of 0.20ms.
The actual processing time to cluster the events depend on the number of pixels where events
belonging to dynamic obstacles fired, and Fig. S5 shows how long our clustering algorithm takes
as a function of the number of pixels to process.

Finally, thresholding the mean timestamp image and applying some morphological operations
to the thresholded image do not depend on the number of events to be processed (as shown by
their very low standard deviations), since the entire picture has to be processed, and they require
on average 0.98ms (27.52%) and 0.58ms (16.29% of the overall time), respectively.

It is important to notice that in our evaluation of the algorithm’s computational time, we
neglected the estimation of the 3D position of the obstacle. This step requires very simple
calculations (c.f. Sec. 3D-Position Estimation), which are independent on the number of events
generated and on average require times in order of few µs. Therefore, their impact on the overall
computational time is negligible.

Different Types of Obstacles

The main reason for us to adopt a stereo configuration for our framework is the necessity to be
able to detect moving obstacles independently on their shape and size correctly. Using a single
camera, this is not possible as long as the size of the obstacle is not known in advance. Figure S6
shows that the algorithm we propose in this paper to detect moving obstacles using two event
cameras is able to detect different kinds of obstacles. In that figure, one can notice how obstacles
with completely different geometries can be detected: a small ball, a box, a whiteboard marker,
a frisbee, a quadrotor, and a bowling pin. The first column reports a frame grabbed from the
SEES1 camera, where the object is often not clearly visible due to motion blur (we manually
highlighted the region where the objects are in the frame with a red circle). The remaining
columns depict the previously described steps of our detection algorithm, with the same color
code used in Fig. 4.



Detection of Multiple, Simultaneous Obstacles

Thanks to the clustering process proposed in Sec. Clustering and the measurements’ association
step described in Sec. Obstacle Correspondence, our pipeline is able to deal with multiple
obstacles moving in the scene simultaneously.

Figure S7 shows an example where the proposed algorithm correctly detects and clusters the
events belonging to three different moving obstacles in the scene. In this case, three small-sized
balls (manually highlighted by a red circle to facilitate the reader’s understanding) are thrown by
hand in front of the camera, and the algorithm successfully associates each event to the object
they belong to.

The main limitation of our approach is due to the fact that, when two or more obstacles are
very close to each other in the frame containing the events belonging to dynamic objects, it is
very hard, if not impossible, to disambiguate among them. This is due to the fact that no prior
information about the obstacles is used (e.g., shape or, in the stereo case, size), as well as not
exploiting any intensity information (i.e., the frames from the on-board camera) in order to tell
apart objects that are impossible to segment out using only events.

In our experimental evaluation, this turned out not to be a real issue for the system itself,
since as soon as the overlapping obstacles move away from each other, the system is able to
detect them promptly and treat them as separate entities.

Experiments

To validate our obstacle avoidance framework, we conducted a large set of experiments in
real-world scenarios. The experiments were executed in two different scenarios, one indoors, the
other one outdoors. The indoor experiments were conducted within a motion-capture system,
in the same setup we used in our previous work (8), and the aim was twofold: (i) collecting
ground-truth data in order to verify the effectiveness of the framework in situations where
a collision with the obstacle would have happened (which was checked in post-processing
thanks to the data from the motion-capture); (ii) validate the overall framework in an easier
setup before moving to more complex scenarios. We used the same quadrotor platform we
presented in (8) for the indoor experiments, equipped with a monocular setup. Conversely, the
outdoor experiments were conducted using a different vehicle, equipped with a stereo setup, as
presented in Sec. Experimental Platform. In the remainder of this section, we provide additional
details about both the indoor (Sec. Indoor Experiments) and outdoor (Sec. Outdoor Experiments)
experiments.

Indoor Experiments

As previously mentioned, the main goal of the indoor experiments is to determine the effective-
ness of our framework to avoid dynamic obstacles by determining if a collision was actually
prevented by analyzing the data coming from a motion-capture system. The indoor experiments
were realized using the same platform described in (8), in the monocular setup. We repeatedly



threw a ball of known size towards the quadrotor, which used the event camera to detect and
avoid it. Using the ground-truth measurements coming from the Optitrack motion-capture
system, we could intersect the trajectory of the ball with the position where the vehicle was
hovering, in order to determine if, without the execution of the escape maneuver, the ball would
have hit the vehicle or not. The outcome of this analysis is that our algorithm is capable of
preventing actual collisions between a flying robot and dynamic obstacles, at relative speeds up
to 10m/s, as confirmed by the ground-truth data about the trajectory of the object provided by
the motion-capture system.

Figure 5 shows one of the indoor experiments, reporting four snapshots recorded with a static
camera. The ball takes approximately 0.25 s to reach the vehicle from the moment it is thrown
(Fig. 5a). At that time, as shown in Fig. 5d, the quadrotor already moved to the side to prevent
the collision, showing that the algorithm successfully detected the ball and planned an evasive
maneuver with very low latency. The experiment reported in Figure 5, as well as other indoor
experiments, are shown in the Movie S1.

Outdoor Experiments

After evaluating the performance of our framework in an indoor setup, we performed outdoor
experiments using the quadrotor platform described in Sec. Experimental Platform, equipped
with two Insightness SEES1 cameras in a stereo setup. We executed two types of experiments,
namely in a static scenario, where the vehicle hovers at the desired position, and in a dynamic
scenario, where the robot flies towards a target location. In both cases, we threw different kinds
of objects towards the quadrotor, which only relied on the two event cameras to detect them and
avoid them.

We tested the performance of our algorithm in static scenarios with different types of
objects, with multiple obstacles moving towards it at the same time, as well as throwing them
consecutively one after the other to benchmark the restiveness out the overall approach. The
vehicle successfully manages to detect them and avoid them most of the time, although in some
cases, the detection was not successful and led to a collision between the robot and the obstacles.
In Sec. Major Failure Causes, Lessons Learnt and Disadvantages of Event Cameras, we discuss
the major failure causes of our algorithm; nevertheless, in outdoor experiments, the algorithm
successfully detected and avoided the obstacles thrown towards it more than 90% of the time.
Movie S2 shows the result of our outdoor experiments in a static scenario.

Figure 6 shows four snapshots captured from a sequence recorded in a dynamic scenario.
The robot moves towards a target position, from left to right in the pictures, at a linear speed
of 1.5m/s. While reaching its destination, the robot detects the yellow ball thrown towards
it (shown on the right side of Fig. 6a). The vehicle decides to execute an evasive maneuver
upwards while keeping its travel speed towards the desired position constant. This results in
a maneuver that simultaneously allows the vehicle to proceed along with its task and avoid a
collision. Additional experiments in a dynamic situation are shown in the Movie S3.



(a) t = 0 s (b) t = 0.075 s

(c) t = 0.15 s (d) t = 0.225 s

Figure 5: A sequence from one of the indoor experiments. A ball is thrown towards the vehicle,
equipped with a monocular event camera, which is used to detect and evade the obstacle. The ball
is thrown at time t = 0 s, and reaches the position where the quadrotor is hovering approximately
at time t = 0.225 s. The robot successfully detects the incoming obstacle and moves to the side
to avoid it.



(a) t = 0 s (b) t = 0.15 s

(c) t = 0.30 s (d) t = 0.45 s

Figure 6: A sequence from our outdoor experiments. The quadrotor is flying towards a reference
goal position when an obstacle is thrown towards it. The obstacle is successfully detected using
a stereo pair of event cameras, and is avoided by moving upwards.



Materials and Methods

Obstacle Detection

This section describes how our event-based algorithm to detect moving obstacles works. An
additional explanation of the working principle of this algorithm is provided in Movie S4.

Ego-Motion Compensation of the Events

An event camera generates events when intensity changes occur in the image. This can happen
because of either moving objects or the ego-motion of the sensor. As we are only interested
in avoiding moving objects, the first step is to remove all data generated by the quadrotor’s
ego-motion.

One way of removing ego-motion from an event stream is described by (23). This approach
does, however, utilize an optimization routine to estimate the ego-motion, which is computa-
tionally demanding and, therefore, introduces latency in the perception system. In this work,
we replace the optimization step with a more simple and computationally efficient ego-motion
compensation algorithm. To do this, we use the IMU’s angular velocity average over the time
window where the events were accumulated in order to estimate the ego-rotation and use this
rotation to warp the events in the image. Our approach does not consider the translational motion
of the camera but rather assumes that the events are generated mostly by rotational motion. In
order to compensate for the translational motion, it would be necessary to estimate the depth
of the points generating each event, which would increase the computational complexity too
much to be practical. As long as the distance to stationary objects is large enough, our system
is not significantly affected by this assumption. Additionally, an analysis of the impact of
neglecting the linear component of the robot’s ego-motion is provided in Sec. Impact of Using a
Simplified Ego-Motion Estimation Algorithm of the supplementary materials. This choice allows
our pipeline to be fast enough to guarantee real-time performance but comes at the cost of a
potentially higher amount of non-compensated events. To cope with this, we tune the parameters
of our algorithm, whose working principle is described below, so that it is able to filter out most
of the events generated by the static part of the scene.

The first step of our algorithm requires the collection of a batch of events and IMU data
over a specified time δt. In our experiments, we used a time window of length δt = 10ms,
since we realized that this value represents a good compromise between sensitivity and real-time
performance. A too short time window renders the entire algorithm too little sensitive, since
the events collected do not contain enough information to perform reliable detection. On the
other hand, increasing the time window too much leads to a very high number of events to
process, making the entire algorithm slower, and does not provide much added value, since the
additional events are generated by the past history of the obstacle motion. Next, we average the
IMU’s angular velocity over δt as ω̄ =

∑

δt ωt. We then apply the Rodrigues rotation algorithm
to build the rotation matrix from ω̄δt (59). Each event ei of the batch is then warped in the
image plane by ω̄(ti − t0), where t0 is the time-stamp of the first event of the batch and ti the



time-stamp of event ei. This warping is described by a field φ : IR3 → IR3 that warps the events’
2D displacement as φ(x, y, t− t0) : (x, y, t) → (x′, t′, t). These motion-compensated events are
denoted by:

C ′ = Π{φ(C)} = Π{φ(x, y, t− t0)} = {x′, y′, t0} ∀{x, y, t} ∈ C. (1)

The original event position (x, y) is part of a discretized image plane in N
2, while (x′, y′) are

part of IR2. From the warped events, we construct the event-count image I , where the pixel value
records the total number of events mapped to it by the event trajectory:

ξij = {{x′, y′, t} : {x′, y, t0} ∈ C ′, i = x′, j = y′}. (2)

Here (i, j) ∈ N
2 denotes the integer pixel coordinates of the discretization bin for (x′, y′) ∈ IR2.

From this we construct the event-count pixel Iij as Iij = |ξij|, with |A| being the cardinality of
the set A. Next, we construct the time-image T , which is also in the discretized plane N

2. Here
each pixel contains the average time-stamp of the warped events as:

Tij =
1

Iij

∑

t : t ∈ ξij. (3)

In order to determine which pixels belong to a moving object or the background they are
each given a score ρ(i, j) ∈ [−1, 1] for {i, j} ∈ T as:

ρ(i, j) =
T (i, j)− mean(T )

δt
. (4)

These scores produce the so called normalized mean time-stamp image ρ. Now, if ρ(i, j) ≥
τthreshold, with τthreshold being a specified threshold, the pixel belongs to a moving object,
otherwise to the background.

While the original approach (23) uses a fixed threshold to distinguish between ego-motion
generated events and those generated by a moving object, we instead use a linear function that
depends on the angular velocity’s magnitude, i.e. τthreshold(ω) = a · ||ω||+ b. Here a and b are
design parameters, where b regulates the threshold while the camera is static and a increases
it with an increase of the angular velocity’s magnitude. This has the advantage that it is easier
to detect moving objects while the quadrotor is static, while still reducing the increased noise
generated by faster rotational velocities. After thresholding, it can happen that some events
belonging to the static part of the scene are not filtered out, generating some salt and pepper
noise that we remove using morphological operations.

It is important to notice that, since our algorithm relies only on the IMU to perform ego-
motion compensation, it is less computationally demanding than the approach in (23), but at
the same time also more sensitive to false positive detection generated by the ego-motion of
the vehicle. To cope with this, we adopted fairly large values for the threshold parameters, in
order to avoid false positive. This came at the cost of a less sensitive detection algorithm (i.e.,



it discards more detections that it would with lower thresholds), and therefore we had to find a
good compromise between sensitivity and reliability.

Figure 4 shows our algorithm in action. All the events generated in the last time window
(Fig. 4b) are motion-compensated using the IMU and, for each pixel, we compute the normalized
mean timestamp (Fig. 4d), which is then thresholded (Fig. 4e) to obtain a frame containing only
events belonging to moving obstacles (Fig. 4f).

The same algorithm running across different consecutive time windows is shown in Fig. S8.
Each column corresponds to a different time, with the first row reporting the frame captured
by the on-board camera, the second row showing the events collected in the window, and the
third row presenting the same events after the ego-motion compensation and thresholding of the
normalized mean timestamp.

Obstacle Segmentation

After performing the ego-motion compensation of the events that fired in the last time window,
we obtain a frame containing the location of the events belonging to the dynamic part of the scene
(Fig. 4f). It is important to note that at this point, our algorithm already discarded all the static
parts of the scene, with a very little computational cost. To do so with a standard camera, one
has to receive at least two frames in order to be able to distinguish between static and dynamic
objects, and each frame needs to be entirely processed. The output of an event camera, instead,
is much more sparse, allowing us only to process the pixels where at least one event fired.

In the remainder of this section, we describe how we use a frame like the one in Fig. 4f in
order to cluster together the pixels belonging to the same object.

Clustering

The thresholded image created by the ego-motion compensation described in Section Ego-Motion
Compensation of the Events can include multiple moving obstacles, as well as noise. Therefore,
the next step is to separate the image points of the individual objects, as well as the noise.

The goal for the system is to be capable of handling an arbitrary number of obstacles, as well
as being robust against noise. Additionally, due to the low latency requirement, the clustering has
to be performed in the shortest time possible. With these requirements, we evaluated different
algorithms in order to decide on the best fitting one for our system.

Our experimental evaluation highlighted that the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm (60) has all the required characteristics for low-latency
detection of moving objects. Indeed, it detects clusters without previous knowledge about their
shape or their amount. Additionally, it can handle noise by combining it into a separate category.
It has an average time complexity of O(n log(n)) and a maximum one of O(n2), but without the
need for an iterative solution, which makes it comparatively fast. Another advantage is that its
cost function can be arbitrarily chosen and, therefore, be optimized for our system. Besides the
cost function, it only has two design parameters: the minimum number of data points within a



cluster and the maximum cost ǫ for choosing whether a data point belongs to a given cluster. A
detailed description of it is found in (60).

Optical Flow

The density of image points, and their distance in the image plane depends on the objects’
velocity, distance to the sensor, as well as their overall size. Having only the mean time-stamp
information and image position resulting from the ego-motion compensation, as described in
Sec. Ego-Motion Compensation of the Events, makes it impossible to effectively cluster the
image points of objects with different velocities and distances from the DVS. Therefore, we
require additional features. One available possibility is to calculate the image points optical-flow
and, therefore, get an estimate of their image-plane velocity. An added advantage is that two
objects that generate image-point clusters in close proximity to each other but move in different
directions, are easier to distinguish. Ideally one would directly calculate the optical-flow from
the event data, but existing algorithms for this either only produce the velocities magnitude or
direction, or are extremely computationally expensive while having a low accuracy as evaluated
in (61). Instead, we decided to use a conventional optical-flow algorithm on the unthresholded
normalized mean time-stamp image produced by the ego-motion compensation. The high
temporal resolution of the DVS and high update frequency of our system allows us to assume that
the displacement between two frames is small and approximately constant in a region around an
image point. Therefore, we use the Lucas-Kanade algorithm (62), which has the advantage that
it is less sensitive to noise compared to point-wise methods and by combining the information
of several nearby points it is better at handling the ambiguity of the optical-flow equations. To
increase the robustness of the optical flow, we apply an averaging filter both to the input images,
as well as the resulting velocity field.

Combined Clustering Algorithm

To maximize the accuracy of the clustering, we utilize all the available data information: the im-
age position p, the normalized mean time-stamp value ρ and the, through optical-flow estimated,
velocity v. With these quantities, we constructed the DBSCAN’s cost function as:

Ci,j(p,v, ρ) = wp||pi − pj||+ wv||vi − vj||+ wρ|ρi − ρj|. (5)

Here w = [wp, wv, wρ]
T is a weight vector for the influence of the individual parts.

Even though the DBSCAN algorithm is quite efficient with a maximum data size scaling of
O(n2) the computation time increases with the data size. Especially for fast-moving objects, or
ones that move close to the sensor, the density of the generated events and, therefore, the overall
data size to be clustered increases. This leads to far greater computation time. To overcome this,
we perform a pre-clustering step of the image points using an eight-way connected components
clustering algorithm. For this, we assume that two image points that are located directly next
to each other in the image plane always belong to the same object. We then calculate the



mean velocity of the image points belonging to the cluster, as well as the mean normalized
mean time-stamp and fit a rotated rectangle around the points. The DBSCAN’s cost function
is adapted to the new features. Instead of using the individual point’s velocity and normalized
mean time-stamp, we use their corresponding mean values, while the difference in position is
substituted by the minimal distance of the corresponding rectangles as:

Ci,j = wp distmin(ri, rj) + wv||vmean,i − vmean,j||+ wρ|ρmean,i − ρmean,j|. (6)

If two corresponding rectangles should overlap, their distance is set to zero. Instead of using
rectangles, ellipses could have been used, but finding the minimal distance between two ellipses
requires the root calculation of a fourth-order polynomial, requiring an iterative solution, which
takes drastically more time. As the connected components algorithm has a time complexity
of O(n) and reduces the DBSCAN’s data size by orders of magnitude, the overall clustering
computation time was decreased on average by a factor of 1000.

3D-Position Estimation

After receiving a set of cluster points, we first fit a rotated rectangle around them to reduce the
data dimensionality. From this, we get the four corner points, as well as the center position in the
image plane.

For the next step, the estimation of the obstacle’s depth towards the image plane, we have to
distinguish between the Monocolur and Stereo Case.

Monocular Case. As we are not able to calculate the depth of an image point from a single
monocular image, we instead limit our system to objects of known size. With the added size
information, we can then estimate the depth of an object in the camera’s frame of reference as:

C ẑ =
fωreal

ω̂
, (7)

where f is the focal length, ωreal the width of the object and ω̂ the measured side length of the
fitted rectangle.

Stereo Case. For the stereo case, we use the disparity between two corresponding clusters
of the stereo image pair for the depth estimation. This allows the algorithm to function with
objects of unknown size. To determine cluster correspondences, we utilize a matching scheme
minimizing the cost:

C = wp |xc,top − xc,bottom|+wa max

(

Atop

Abottom
,
Abottom

Atop

)

+wn max

(

ntop

nbottom
,
nbottom

ntop

)

− 2, (8)

with w = (wp, wa, wn) being weights, xc the cluster’s center’s position in the image plane, A the
fitted rectangle’s area and n the number of cluster points. Next, we use the cluster’s disparity to
calculate the depth as described in (63). To increase the robustness, we use the cluster’s centers
to estimate the depth instead of directly projecting the corner points into 3D space. Having



estimated the obstacle’s depth, we approximate its size using the rearranged formulation as in
the monocular case as:

ωest =
C ẑω̂

f
. (9)

Image to World Projection

With the obtained obstacle’s depth and size, we now project the cluster’s corner and center points
into 3D space using the perspective projection model in homogeneous coordinates:

λi





ui

vi
1



 = KCXi, (10)

with K being the intrinsic camera matrix, λi the scale factor, CXi the Cartesian coordinates
of each point of the cluster in the camera frame, and ui and vi the pixel coordinates of their
projection in the image. The points CXi are then transformed into the world’s frame of reference
by applying:

[

WXi

1

]

= TWBTBC

[

CXi

1

]

, (11)

where TWB and TBC are transformation matrices representing the pose (rotation and translation)
of the body frame with respect to the world frame, and of the camera with respect to the
body frame, respectively. Here the center-point’s depth is both increased and decreased by the
obstacle’s estimated size as:

C ẑc,± = C ẑ ± ωest. (12)

This gives us a total of six points WX1:6 representing the obstacle.

Obstacle Correspondence

In order to estimate an obstacle’s velocity, we first have to determine if a newly detected obstacle
corresponds to a previous one and, if this is the case, to which. This is done by finding the
best match between the new obstacle’s center and the predicted position of the saved obstacles’
centers. This is done by finding the closest position match within a sphere around the newly
detected obstacle.

Obstacle Velocity Estimation

Once the 3D position of an obstacle has been estimated, our algorithm requires some further
processing in order to provide valuable information to the planning stage, for a twofold reason: (i)
the event-based detections are sometimes noisy, especially at large distances; (ii) it is necessary
to estimate the obstacle’s velocity, which is used to determine the avoidance direction, as well
as a scaling factor for the repulsive potential field (Sec. Obstacle Avoidance). To do so, we



use a Kalman filter (64), with the obstacle’s position estimate as input for the measurement
update. This introduces some time lag (typically below 0.3ms) as the Kalman filter behaves as
a low-pass filter, but the increased accuracy is, in this case, preferable. For this we assume a
constant velocity model having as state the obstacle’s position and velocity:

xk = xk−1 + ẋk−1 ∆t (13)

ẋk = ẋk−1 (14)

∆t = tk − tk−1. (15)

With this we can formulate the linear motion model as:

x̂ =

[

x

ẋ

]

(16)

x̂k = Ak x̂k−1 + vk (17)

zk = H x̂k +wk (18)

Ak =

[

I3x3 ∆t · I3x3
03x3 I3x3

]

(19)

H =
[

I3x3 03x3

]

, (20)

where v ∼ N (0,Q) is the normally distributed process noise and w ∼ N (0,R) is the normally
distributed measurement noise. Using this we now construct the Kalman Filter as follows (64):

x̂p,k = Ak x̂m,k−1 (21)

Pp,k = Ak Pm,k−1 A
T
k +Q (22)

Kk = Pp,k H
T (H Pp,k H

T +R)−1 (23)

x̂m,k = x̂p,k +Kk (zk −H x̂p,k) (24)

Pm,k = (I−Kk H)Pp,k(I−Kk H)T +Kk R KT
k . (25)

This has the added advantage that we receive a filtered estimate of the obstacle’s velocity without
any further computations.

Obstacle Avoidance

The primary objective of our avoidance framework is to guarantee low latency between sensing
and actuation. The low latency on the perception side is guaranteed by the previously described
event-based obstacle detection pipeline. For the overall system to be effective, however, it is
necessary to reduce the latency of the decision-making system responsible for driving the robot
away from the detected obstacles. Based on this consideration, it is intuitive to understand
that any optimization-based avoidance technique is not suited for our purpose since numerical
optimization would introduce latency due to the non-negligible computation times. Rapid



methods to compute motion primitives for aerial vehicles exist in the literature (65). However,
they present a number of drawbacks. First, it is necessary to sample both space and time to find a
safe position for the robot and a suitable duration of the trajectory. Additionally, continuity in the
control inputs is not always guaranteed. Finally, including this kind of methods within existing
motion generation frameworks is not always trivial due to multiple reasons: it is necessary
to continuously switch between the main navigation algorithm, driving the robot towards its
goal, and the avoidance algorithm, steering it away from obstacles; it is not always trivial to
obtain a behavior that allows the robot to keep executing its mission (e.g., reach its goal) while
simultaneously avoiding moving obstacles.

The artificial potential field method is a natural and simple solution to all the aforementioned
issues. Given a closed-form expression of the attractive and repulsive fields, it is particularly
simple to compute their gradients within negligible computation time in order to generate the
resulting force responsible for letting the robot move. Considering an obstacle as the source of a
repulsive field also allows us to not require any sampling in space and time since the resulting
potential decides in which direction the robot should move at each moment in time. Finally, the
resulting potential can be used at different levels of abstraction in order to integrate the command
derived from its gradient into existing motion generation algorithms, for example, as velocity or
acceleration commands.

Using potential fields for pathfinding and obstacle avoidance has been extensively researched.
This approach is, however, mostly used in static scenarios, whereas our system is thought for
dynamic obstacles. The typical approach is to build a discretized map, where each element
represents the potential combined from the attractive and repulsive parts. This map building
approach is feasible in 2D, but its size and the required computational power to build and analyze
it drastically increase when doing so in 3D, as it increases from O(n2) to O(n3). Instead of
building a map, we represent the obstacles as a struct of features, resulting in a sparse and
minimal data representation. The obstacles are represented as ellipsoids, with a potential that
is decaying over time. We use the estimated obstacles’ position and velocity to calculate their
repulsive forces at each time step. Additionally, given a reference target position, we compute
the attractive force towards it. With the combined force, we then produce a velocity command
which is sent to the controller. Additionally, the system’s behavior, when no obstacles are present,
is similar to the one generated by a high-level trajectory planner driving the robot towards the
desired goal location.

Obstacles Representation

We chose to represent the obstacles as ellipsoids, as they are a good representation of the expected
Gaussian error of both the position and size. Additionally, they allow us to generate a continuous
repulsive force when an obstacle is detected. Using the six coordinate points W X̂1:6 in Eq. 12, we
fit a minimal volume ellipsoid around them using the approach described in (66) and illustrated
in Fig. S9.



Repulsive Potential Field

Each obstacle produces a potential field Ur,i, from which we get the repulsive force Fr,i by
calculating its gradient as Fr,i = −∇Ur,i. One way of formulating the potential field was
proposed by (67), which in turn is a modification of the original artificial potential field definition
by (57), as:

Ur,i(ηi) =

{

kr,i

(

η0−ηi
η0

)γ

, if 0 ≤ ηi ≤ η0

0, if ηi > η0
, (26)

with a resulting force:

Fr,i = −∇Ur,i =







kr,iγ

η0

(

η0−ηi
η0

)γ−1

∇ηi, if 0 ≤ ηi ≤ η0

0, if ηi > η0
, (27)

where kr, γ and η0 are design parameters and ηi is the distance to the obstacle i. This kind of
field does, however, produce a gradient whose magnitude increases slowly as the distance to the
obstacle decreases, as shown in Figure S10a. This has the effect that the repulsive force acting
on the quadrotor only reaches significant values when the obstacle is close, or a high repulsive
gain kr has to be chosen, which might lead to unstable, aggressive behavior.

Therefore, we propose a new formulation of the repulsive force as:

||Fr,i|| =







kr,i

(

1−
1− eγηi

1− eγη0

)

, if 0 ≤ ηi ≤ η0

0, if ηi > η0

, (28)

as shown in Figure S10b. Here ηi is the minimal distance to the ellipsoid’s surface of obstacle i.
Through this formulation, the force’s magnitude is limited to a specified value kr and increases
much faster. This is desirable when evading fast-moving obstacles, as compared to static ones,
for which the fields described in other works were developed, as the quadrotor’s dynamics require
it to start evading before an obstacle comes too close, as discussed in (38).

Conventionally, the gradient of the distance towards the obstacle ∇ηi is responsible for the
direction of the repulsive force Fr,i. It points in the direction of the steepest descent of the
obstacle’s distance, which is the opposite direction between the quadrotor’s center and the closest
point on the obstacle’s ellipsoid’s surface. This means that an obstacle pushes the quadrotor
away from it. We do, however, want to apply a different avoidance strategy. Instead, we use the
obstacle’s predicted velocity ẋi and the distance’s gradient ∇ηi and calculate the normalized
cross product as:

θi =
∇ηi × ẋi

||∇ηi × ẋi||
. (29)

Next, we project this vector into the plane orthogonal to the quadrotor’s heading θquadrotor as:

θi,n = θi− < θi,θquadrotor > θquadrotor. (30)



With the new avoidance direction θi,n the repulsive force Fr,i becomes:

Fr,i = −∇Ur,i =







kr,i

(

1−
1− eγηi

1− eγη0

)

θi,n, if 0 ≤ ηi ≤ η0

0, if ηi > η0

. (31)

This formulation of the potential field yields to a behaviour such that, if the quadrotor is moving
towards the goal location, it flies around any detected obstacle if the goal position is behind it,
while if it is in hover conditions it moves in a direction orthogonal to the obstacle’s velocity.
Finally, we include the magnitude of the obstacle’s estimated velocity ||ẋi||, into the repulsive
force Fr,i as:

Fr,i = −∇Ur,i =







||ẋi||kr,i

(

1−
1− eγηi

1− eγη0

)

θi,n, if 0 ≤ ηi ≤ η0

0 if ηi > η0

. (32)

By doing so, faster obstacles produce a larger repulsive force and the quadrotor will therefore
perform a more aggressive avoidance maneuver. This is desirable since the faster an obstacle, the
lower the avoidance time, which therefore implies the necessity for a quick evasive maneuver.

Additionally, we ensure that the z-component of the repulsive force is always positive, namely
Fr,i,z = |Fr,i,z|, as quadrotors with sufficiently large thrust-to-weight ratios are typically capable
of producing larger accelerations upwards than downwards.

The repulsive constant kr,i is in our case dynamic and decays with time as:

kr,i(t) = kr,0 e
−λdecay(t−tdetection,i), (33)

where kr,0 is the initial repulsive constant, λdecay a factor regulating the decay rate, t the current
time and tdetection,i the last time the specific obstacle was detected. Through this decay, obstacles
are kept in case of a temporary occlusion or when they leave the camera’s field of view. Their
effect on the quadrotor, however, decreases as the time to their last detection increases. If kr,i
falls below a given threshold kr,τ , the obstacle is removed.

Finally, the parameter ηi represents the minimal distance between the quadrotor’s center to
the obstacle’s ellipsoid’s surface minus the quadrotor’s radius. The computation of the minimal
distance between a point and an ellipsoid’s surface is described in (68).

The total repulsive force is then the sum over all individual obstacles as:

Fr,total =
∑

i

Fr,i. (34)

Attractive Potential Field

The goal of the attractive potential field is to allow the vehicle to reach the desired target position
and hover there until the user provides a new reference. In this work, we provide a simple



formulation for the attractive potential that assumes that no static obstacles are present in the
scene, i.e., the straight-line path between the robot and the obstacle is collision-free. However,
one can easily replace this component of our avoidance scheme with more sophisticated methods
to generate commands that drive the vehicle towards its goal. These can be based, for example,
on potential field-based techniques dealing with static obstacles and local minima, which is out of
the scope of this work, or completely different methods able to generate velocity or acceleration
commands (for example (69)).

For the attractive potential, we want the system to produce the same velocity towards a goal
as a high-level planner would produce if no obstacle is present, but also produce stable dynamics
close to the goal. Therefore, we chose the hybrid approach of a conical and polynomial potential
field (70) as:

Ua =

{

ka
(γa+1)eγa

0

||e||γa+1, if ||e|| < e0

ka||e||, if ||e|| ≥ e0
. (35)

This function is differentiable at e0, i.e. the crossover distance between the two different potential
fields, with e being the error between the goal’s and quadrotor’s positions, ka the attractive
constant and γa a design parameter. By taking its gradient we get the attractive force as:

Fa = −∇Ua =







ka
e

||e||

(

||e||
e0

)γa

, if ||e|| < e0

ka
e

||e||
, if ||e|| ≥ e0

, (36)

which is continuous in e. The constant ka regulates the output velocity ẋ, see Section Output
Velocity, and by setting it to ka = ||vdes|| the quadrotor’s velocity’s magnitude is ||ẋ|| = ||vdes||,
while ||e|| ≥ e0 and no obstacles are present.

If we would instead solely rely on the conical potential field, the quadrotor would start to
oscillate around its goal position, as the resulting force’s magnitude would be ka, regardless
of the error. The attractive force’s magnitude is shown in Figure S11. If γa = 0 then ||Fa|| is
identical to that of the conical part, producing a constant magnitude of the attractive force, while
for γa = 1 the magnitude goes linearly to 0. With increasing γa the magnitude drops faster with
an increasingly large area around ||e|| = 0, where it is close to 0.

Output Velocity

The velocity is the output of our system and is given to the controller to derive the required total
thrust and body-rates. From the total repulsive force Fr,total and attractive force Fa we get the
total virtual force acting on the quadrotor as Ftotal = Fr,total +Fa. With this force, we now have
three possible design choices to calculate the quadrotor’s desired velocity ẋ:

ẍ =
Ftotal

m
(37)

ẍ = Ftotal (38)

ẋ = Ftotal, (39)



where m denotes the quadrotor’s mass.
Both (37) and (38) produce a first order dynamic, while (39) directly produces the velocity

output. Introducing further dynamics into the system results in additional delays, which is
undesirable since we want our system to be as responsive as possible. We, therefore, chose (39)
as it produces the fastest response.

Experimental Platform

Hardware

To validate our approach with real-world experiments, we designed a custom quadrotor platform.
The main frame is a 6” Lumenier QAV-RXL, and, at the end of each arm, we mounted a
Cobra CM2208-2000 brushless motor equipped with 6”, three-bladed propeller. The vehicle is
equipped with two on-board computers: (i) a Qualcomm Snapdragon Flight, used for monocular,
vision-based state estimation using the provided Machine Vision SDK; (ii) an NVIDIA Jetson
TX2, accompanied by an AUVIDEA J90 carrier board, running all the rest of our software
stack. In this regard, the output of our framework is a low-level control command comprising
the desired collective thrust and angular rates the vehicle should achieve in order to fly. These
commands are sent to a Lumenier F4 AIO Flight Controller, which then produces single-rotor
commands that are fed to DYS Aria 35a motor controllers.

The quadcopter is equipped with two front-facing Insighteness SEES1 cameras, in a vertical
stereo setup, connected via USB to the Jetson TX2. The SEES1 sensor provides both frame and
events, and has a QVGA resolution (320× 240 pxl). In order to have a sufficiently high angular
resolution, each camera has a lens providing a horizontal field of view of approximately 80◦.
Such a small field of view is particularly low for tasks such as obstacle avoidance, where a large
field of view is preferable to increase the area that the robot can sense. The choice of adopting a
vertical stereo setup rather than a more common horizontal setup was driven by the necessity
of maximizing the overlap between the field of view of the two cameras while guaranteeing a
sufficiently large baseline (in our case, 15 cm).

In addition to the previous sensing suite, we mounted a Teraranger EVO 60m distance sensor
looking downwards. The goal of this additional sensor is to constantly monitor the height of
the vehicle in order to detect whether there is any drift in the state estimate provided by the
Visual-Inertial Odometry (VIO) pipeline running on the Snapdragon Flight. Whenever we detect
a discrepancy beyond a manually defined threshold, the quadrotor automatically executes an
emergency landing maneuver.

Software

We developed the software stack running on our quadrotor in C++ using ROS for communication
among different modules. To reduce latency, we implemented the obstacle detection and
avoidance algorithms within the same ROS module, so that no message exchange is necessary
between the camera drivers and the code responsible for detecting moving obstacles, as well as



Figure 7: The quadrotor platform we used in our outdoor experiments. The following components
are highlighted in the picture: (1) the Nvidia Jetson TX2, running the obstacle detection and
avoidance algorithm, as well as the high-level controller; (2) the Lumenier F4 AIO Flight
Controller; (3) the two Insightness SEES1 cameras, in a vertical stereo setup; (4) the Qualcomm
Snapdragon Flight board, used for state estimation.



between the latter and the planning stage. The output of this module is a velocity command,
which is then fed to the position controller proposed in (71) and available as opensource 1. The
low-level controller, responsible for tracking desired body rates and collective thrust, is the
default one provided by the Lumenier F4 AIO Flight Controller, which then communicates with
the ESCs to generate the single rotor thrusts.

In our outdoor experiments, the state of the vehicle is estimated using the Visual-Inertial
Odometry pipeline provided by the Qualcomm Machine Vision SDK 2, which however only
provides new estimates at camera rate (up to 30Hz. This is not sufficient to control our vehicle
with low latency and would represent a bottleneck in the entire pipeline. In order to obtain a
higher-rate state estimate, we feed the output of the VIO into an Extended Kalman Filter (72),
together with IMU measurements, to obtain information about the position, orientation and
velocity of the vehicle at 250Hz.

Major Failure Causes, Lessons Learnt and Disadvantages of Event Cam-

eras

As we have previously shown, event cameras allow fast, low-latency detection of moving
obstacles. We discussed in Sec. Event Cameras the advantages of these novel bio-inspired
neuromorphic sensors against standard cameras. However, as of today, they are mostly a
research-oriented sensor, and thus still require a significant engineering effort in order to solve
the main issues they present.

One of the problems with current event cameras is their weight. Most of the event cameras
available nowadays are larger and heavier than state-of-the-art standard cameras for robotic appli-
cations, which are typically below 50 g. The Insighteness SEES1 is, to the best of our knowledge,
the smallest event camera that also provides frames (which is particularly convenient to easily
calibrate the intrinsic and extrinsic parameters of the sensor) and can be easily mounted on a
quadrotor (its size is 3.5× 3.5 cm, and it weighs 15 g). However, its resolution (320× 240 pxl,
QVGA) is particularly low compared to standard cameras. This imposes the necessity to find
the right trade-off between the field of view and the angular resolution: the larger the first, the
smallest the second, which reduces the sensing range at which it is possible to detect objects
reliably (8). A small field of view, however, has a negative impact on the detection of obstacles
entering the sensing range of the vehicle from the side, as for example in our outdoor dynamic
experiments: the larger the field of view, the earlier the vehicle can detect and avoid obstacles
moving towards it from the sides.

Another problem characterizing these novel sensors is their noise characteristics. Indeed,
these sensors show higher noise than standard cameras, which often has a negative impact on
the performance of event-based vision algorithms. In our approach, for example, in order to
obtain reliable detections and to eliminate false positives caused by the sensor noise, we had to

1http://rpg.ifi.uzh.ch/rpg_quadrotor_control.html
2https://developer.qualcomm.com/software/machine-vision-sdk



significantly increase the threshold used to separate events generated by the static part of the
scene from those caused by moving objects. This resulted in an obstacle detection algorithm less
reactive to small relative motion, especially at large distances. For this reason, we discard all the
detections reporting distances between the camera and the obstacle beyond 1.5m.

The aforementioned reasons represent the main failure causes of our approach. In most of
the cases, when our quadrotor was not able to avoid an object thrown towards it, this was due to
the fact that it was detected too late, either because it entered the field of view of the camera at a
distance that was too short (and therefore the vehicle could not complete the evasive maneuver
in time), or because the motion of the obstacle did not generate sufficient events to allow our
algorithm to detect it.

Conclusions

We presented a framework to let a quadrotor dodge fast-moving obstacles using only onboard
sensing and computing. Different from state of the art, our approach relies on event cameras,
novel neuromorphic sensors with reaction times of microseconds. Each pixel of an event camera
reacts to changes in intensity, making this sensor a perfect fit for detecting and avoiding dynamic
obstacles. Event cameras can overcome the physical limitations of standard cameras in terms of
latency, but require novel algorithms to process the asynchronous stream of events they generate.

We investigated the exploitation of the temporal statistics of the event stream in order to
tell apart the dynamic part of a scene, showing that it is possible to detect moving objects with
a perception latency of 3.5ms. We showed that our algorithm is capable of accurately and
reliably detecting multiple simultaneous objects with different shapes and sizes. We combined
our event-based detection algorithm with a fast strategy to generate commands that allow the
vehicle to dodge incoming objects. We validated our approach with extensive experiments on
a real quadrotor platform, both indoors and outdoors, demonstrating the effectiveness of the
method at relative speeds up to 10m/s.
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Supplementary Materials

Time Statistics of Events to Detect Moving Obstacles

To provide an intuitive example of how and why our algorithm successfully classifies static and
dynamic events, Fig. S1 shows the simplified case of a mono-dimensional event camera (i.e.,
an event camera having only one row), rotating in a plane while observing both a static and a
dynamic object. The dynamic object (in red) moves from left to right, while the event camera
rotates counter-clockwise.

In the center of the figure, we consider a time window spanning from an initial time t1 to a
final time t5, and we discretize this interval into five time instants to visualize the sequence of
events generated by both the motion of the camera and the dynamic object. Let us assume that at
time t1, both objects generate an event due to the motion of the camera: the static object fires an
event at pixel p1, the dynamic object at pixel p2. At time t2, the motion of the dynamic object
causes another event at pixel p3, while at time t3 the motion of the camera generates events at
pixels p2 (static) and p4 (dynamic). The same concept applies to times t4 and t5. After collecting
all these events, if we motion-compensate them to remove the effects of the motion of the camera,
we obtain a situation like the one depicted at the bottom of the center part of the image, where
multiple events get back-projected into the same pixel location.

On the right side of the figure, we report the time statistics of the event project into pixels p1
to p4, which are the only ones having motion-compensated events. As one can see, the events
belonging to the static part of the scene are equally spread across the time window, while the
events fired due to the motion of the dynamic object are concentrated either at the beginning,
the center, or the end of the window. If we now compute the mean timestamp of all the events
falling in each pixel, subtract the mean of all the events, and normalize it by the length of the
time window, we obtain a score for each pixel spanning between −1 and 1. We expect events
belonging to the static part of the scene to have a score of approximately zero since they contain
events spread across the entire window more or less uniformly. On the contrary, events belonging
to the dynamic part of the scene have scores that can span between −1 and 1, depending on
where they are concentrated within the time window. In particular, the events generated by the
dynamic object at the beginning of the window have a score of −1, those fired at the center of
the window have a zero score, while those generated at the end of the window have a score of
approximately 1. Since we are interested only in the latest position of the dynamic obstacles, we
discard non-positive scores, taking into account only events with a score above zero. Fig. S2
confirms the expected pattern in the statistics of the events in a time window on real data: the
first row shows the mean timestamp of a region belonging to the static part of a scene, where the
histogram clearly highlights an equal distribution of the events across the entire window; the
second row shows the same data for a region belonging to the dynamic part of a scene, where the
events are concentrated towards the two ends of the time window.

It is important to notice that, for the sake of making this example simple enough, we only
considered one type of event (either positive or negative), while in a real case, each object
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Figure S1: A simple, yet effective example to explain the working principle of our algorithm.
On the left side, a one-dimensional event camera is placed in front of two objects: a static object,
represented in green, and a dynamic object, in red. The dynamic object moves from left to
right, while the event camera rotates in the opposite direction. In the center of the figure, we
show on top the sequence of events generated by the motion of the camera and of the dynamic
object, for a fixed number of time instant (from an initial time t1 to a final time t5), while at the
bottom the ego-motion compensated events. On the right side, finally, we report the histogram
of the timestamps of all the events falling in each pixel. These histograms clearly highlight the
difference in terms of temporal distribution within the time window between the events generated
by the static object and the events belonging to the dynamic object.

generated both positive and negative events, simultaneously. However, the principle can be easily
extended to events with polarity. Additionally, we invite the reader to notice that not every motion
can be compensated, but rather only rotations and roto-translations with respect to a planar scene.
Indeed, these motions can be modeled as homographies, and the events they generate can be
motion-compensated. However, since we only consider the events that fire within a very short
time window, the majority of the scene moves by a very small amount of pixels. Therefore
we can approximate the camera motion as a homography. The mathematical description of the
motion compensation algorithm is provided in Sec. Ego-Motion Compensation of the Events.

Impact of Using a Simplified Ego-Motion Estimation Algorithm

The ego-motion estimation and compensation algorithm used in our system (Sec. Ego-Motion



Compensation of the Events) assumes the optical flow and, therefore, the events to be only due
to the rotation of the camera. In order to account for the linear motion of the camera, one would
need some sort of depth estimation, which would render the entire algorithm significantly slower.
Nevertheless, using a rotational model to explain the events generated by the ego-motion of the
camera is sufficiently accurate to guarantee good overall performance, as shown by the tables in
Sec. Accuracy and Success Rate. From a theoretical perspective, this is justified by the fact that
translational and rotational optical flow are often very similar and, therefore, very hard to tell
apart. As shown in Fig. 15.7 of (73), translation along the X-axis is almost like a rotation around
the Y-axis. One needs a long observation time and a smaller focal length (wider field of view)
to better distinguish them). Thanks to such a similarity, one can fit a rotational motion to the
translational flow to explain the events generated by the latter. This intuition was corroborated
in (74), which shows in the supplementary video the impact of ignoring the linear velocity of the
motion. This video was generated using only the IMU, without any depth estimation: one can
see that the motion-compensated images obtained when the IMU data is taken into account look
quite sharp everywhere on the image plane.



(a) A scene without moving objects. The patch highlighted in red in the left mean timestamp image belongs to a
static part of the scene, and is reported in the center figure. On the right side, we show the histogram of all the
ego-motion events belonging in such patch.

(b) A scene with one moving object. In this case, we selected a patch belonging to a dynamic part of the scene,
namely a ball thrown through the field of view of the camera and moving from left to right in the frame. As one can
notice, several pixels report a high mean timestamp, and the histogram of all the ego-motion compensated events
belonging to the patch confirms this trend.

Figure S2: A figure reporting the statistics of the events within a single time window for two
cases: no dynamic object in the scene (top row) and one dynamic object in the scene (bottom
row). For each row, we report: on the left, the mean timestamp image, with color-code shown on
the right side representing the mean of the timestamps of all the events back-projected to each
pixel location; in the center, a 4× 4 pxl patch belonging to a static part (top row) or dynamic
part (bottom row) of the scene, taken from the region highlighted in red in the mean timestamp
image; on the right, the distribution of the events belonging to that patch. As one can notice, the
events in a patch belonging to the static part of the scene report a fairly uniform distribution of
their timestamps within the window. Conversely, the events belonging to a dynamic object are
very concentrated towards one side of the window (in this case, the end).



Figure S3: The quadrotor platform we used in our outdoor experiments. The following compo-
nents are highlighted in the picture: (1) the Nvidia Jetson TX2, running the obstacle detection
and avoidance algorithm, as well as the high-level controller; (2) the Lumenier F4 AIO Flight
Controller; (3) the two Insightness SEES1 cameras, in a vertical stereo setup; (4) the Qualcomm
Snapdragon Flight board, used for state estimation.
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Figure S4: Time necessary to perform the ego-motion compensation as a function of the number
of events generated.
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Figure S5: Time necessary to perform the clustering of the scene’s dynamic part, depending on
the amount of pixels belonging to moving objects.



(a) A small-sized ball (radius 4 cm).

(b) A small-sized marker (width 6 cm, height 9.5 cm, thickness 2.5 cm).

(c) A whiteboard marker (length 14 cm, thickness 1.5 cm).

(d) A frisbee (radius 13.5 cm, height 3.5 cm).

(e) A drone (tip-to-tip diagonal 60 cm, height 10 cm).

(f) A bowling pin (length 25 cm, thickness 6 cm).

Figure S6: Our algorithm is able to detect different kinds of objects, as shown in this figure. Each
row shows the detection of different objects, depicted in the pictures in the first column. From top
to bottom: a small-sized ball, a box, a whiteboard marker, a frisbee, a quadrotor, and a bowling
pin. These objects were detected using our stereo setup, without any prior information about their
shape or size. As one can notice, the frame provided by the on-board camera (second column)
presents some motion blur due to the speed of the object, which however is not a problem for
our event-based detection algorithm (last column).



(a) A frame from the on-
board Insightness SEES1
camera. The three circles
highlight the dynamic ob-
stacles in the scene (three
balls of different sizes).

(b) The normalized mean
timestamp image gener-
ated using the events ac-
cumulated in the last time
window.

(c) The normalized mean
timestamp image after
thresholding.

(d) Clustering of the
three dynamic obstacles
present in the scene.

Figure S7: An example of our algorithm detecting and clustering multiple moving obstacles.
(S7a) The frame from the on-board camera, where three moving obstacles, manually circled in
red, are visible. (S7b) The mean-timestampe image. (S7c) The mean-timestamp image after
thresholding: green represents the static part of the scene, purple indicates events belonging to
dynamic obstacles. (S7d) Clustering of the events belonging to different dynamic obstacles.



(a) Frame at time t0. (b) Frame at time t1. (c) Frame at time t2. (d) Frame at time t3.

(e) Events at time t0. (f) Events at time t1. (g) Events at time t2. (h) Events at time t3.

(i) Events belonging to
moving obstacles at time
t0.

(j) Events belonging to
moving obstacles at time
t1.

(k) Events belonging to
moving obstacles at time
t2.

(l) Events belonging to
moving obstacles at time
t3.

Figure S8: A sequence captured during one of our experiments, where the quadrotor is hovering
indoors and an object is thrown towards it with the purpose of evaluating the sensing pipeline.
Each column represents a different time, more specifically: t0 = 0 s (first column), t1 = 0.05 s
(second column), t2 = 0.10 s (third column), t3 = 0.15 s (fourth column). The first row reports
the frame captured by the on-board camera. The second row shows the events, generated by both
the motion of the vehicle and the moving obstacle, collected within the last time window of size
δt = 10ms, where blue represents positive events, and red represents negative events. The third
row shows the ego-motion compensated events belonging only to the dynamic part of the scene,
obtained applying the algorithm described in Sec. Ego-Motion Compensation of the Events.



Figure S9: Construction of the obstacle’s ellipsoid in the world’s frame of reference from the
clustered data in the image plane. A minimal volume ellipsoid is fitted around the six projected
points using an iterative approach.
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(a) Repulsive force as described by (67).
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(b) Our proposed repulsive force.

Figure S10: Plots illustrating the two different types of repulsive forces described in this work.
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Figure S11: Illustration of the attractive force for different values of γa.




