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vehicle trajectories. These can be obtained from automated vehicle identification (AVI)
techniques such as automated license plate recognition, but may also originate from float-
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rates at the AVI-stations. Analysis of this problem leads to an expression for the mutual
dependencies between link volume observations and AVI data, and the formulation of an
estimation problem with inequality constraints. A number of traditional estimation proce-
dures such as discounted constrained least squares (DCLS) and the Kalman filter are
described, and a new procedure referred to as Bayesian updating is proposed. The advan-
tage of this new procedure is that it deals with the inequality constraints in an appropriate
statistical manner. Experiments with a large number of synthetic datasets show in all
cases a reduction of the error of estimation due to usage of trajectory counts, and com-
pared to the traditional DCLS and Kalman filtering methods, a superior performance of
the Bayesian updating procedure.
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1. Introduction

This paper proposes a method to track time-varying traffic patterns from a combination of
link volume counts and trajectory observations. Such a method may be applied if accurate
information about Origin-Destination (OD) travel demand is needed on-line, for example as a
part of a short term traffic forecasting system on motorways.

Whereas link volume counts are collected routinely by road authorities, observations of tra-
jectories or parts of trajectories of individual vehicles are much harder to obtain in a cost effec-
tive manner. This is likely to change in the near future due to the availability of Automated
Vehicle Identification (AVI) techniques. AVI may be based on various mechanisms, for exam-
ple the usage of a transponder on the vehicle, the usage of automated license plate readers, or
vehicles transmitting their trajectories.

In this paper license plate survey data is used as an example of trajectory information.
Although observing vehicle trajectories comes close to directly observing OD-tables, a well
known problem with license plate surveys is the presence of recording errors which, if no cor-
rection is applied, may lead to an overestimation of the number of trips and an underestimation
of the average trip length. It is hypothesised that data from which the total number of trips can
be deduced, e.g. link volume data, can be effectively used to complement license plate data.

The methods that are discussed in this paper depart from the assumption that with every
entry of a transport network, a set of probabilities is associated with which the reachable desti-
nations are selected by motorists. These probabilities are referred to as split probabilities.

Until now these methods have only been applied to the problem of estimating OD-matrices
from time-series of traffic counts, see e.g. Cremer and Keller (1981,1987), Nihan and Davis
(1987, 1989), Cascetta et. al., (1993), and Van Der Zijpp and Hamerslag (1994). Like in above
mentioned work, the considerations in this paper are limited to networks in which the route
choice issue can be ignored. It should be noted though, that this is not a fundamental limitation
to this type of methods.

The paper is structured as follows: Section 2 contains the problem definition and notation.
Section 3 analyses the problem of estimating OD-matrices from time series of traffic counts. In
this section a measurement equation is derived and a result concerning the statistical properties
of the measurement error is presented. Section 4 presents a new method for the estimation of
parameters in a system with linear observations and in the presence of inequality constraints,
and also describes a number of traditional estimation procedures such as the discounted con-
strained least squares (DCLS) method and the Kalman filter. Section 5 contains a short over-
view of OD-estimation from license plate surveys and describes the approach taken in this
paper towards the use of license plate surveys. In section 6 it is shown that the main part of the
analysis presented in section 3 also applies to OD-estimation from combined traffic counts -
trajectory counts. Section 7 contains evaluation results based on simulated data.
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2. Problem definition

A transport network is considered in which one route exists per connected Entry-Exit (EE)
pair. A typical example of such a network is a motorway corridor, see figure 1. It is assumed
that time series of observations of all entering volumes and a subset of the internal link vol-
umes are available. These data may contain observation errors. In addition to this, the pres-
ence of license plate recording stations is assumed. These stations produce lists of vehicle
registrations. It is assumed that only a fraction of the vehicles are correctly identified. This
fraction is referred to as the recognition rate and is assumed to be known. Typical values of
this rate are in the range 50-90%. There are two remarks that need to be made at this point:
 • In the present paper the recognition rate is presented as a property of only the license plate 

reader, implying that up- and downstream recognition rates are independent random varia-
bles. In reality the recognition rate is almost certain a combined property of a vehicle, 
license plate reader and other circumstances (such as weather conditions). This leads to 
correlation between up- and downstream recognition rates. An appropriate way to model 
this, would be to specify the recognition rate as a product of vehicle specific, location spe-
cific and other factors. Research into this direction will be reported on in a future paper.

 •  The recognition rate may not be exactly known. The derivations given in this paper depart 
from the assumption that the recognition rate, i.e. the probability of recognizing a vehicle, 
is exactly known. However, analytically it is feasible to make similar derivations based on 
the assumption that instead, the mean and the variance of the recognition rate is known.

If travel-times cannot be neglected, a first approximation is to let the partitioning of the
time-axis depend on the location, resulting in moving time coordinates, see Van Der Zijpp
(1996). Applying moving time coordinates requires no fundamental modification to the meth-
ods presented in this paper. Further refinements are obtained by taking travel-time dispersion
into account, see e.g. Bell (1991b) and Chang and Wu (1994), but such approaches require the
estimation of extra parameters and hence do not lead to a reduced error of estimation by
default. In the present paper, travel-time dispersion is not explicitly modelled but is accounted
for by the introduction of assignment errors, i.e. vehicles being counted in two different peri-
ods.

Induction loop License plate recording station

Entry Exit

Figure 1: Sample network. Traffic data are collected with induction loops and license plate 
readers.
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A notation is used in which most quantities are expressed as vectors:

m, n, l, h Number of entries, number of exits, number of link volume
observations (excluding entry volumes), and number of license
plate readers

i, j, k Indices corresponding to entries, exits, and link volume
observations

(t) Entry flow vector (length m). This vector represents the true
entry volumes in period t, t=1,2,…

q(t) Vector of entry volume observations in period t
fij(t) Number of trips for EE-pair i-j with departure period t,

i=1,…m, j=1,…n.
(t) Idealized link flow vector (length l). Element k of this vector

contains the number of trips with departure period t that traverse
location k.

y(t) Vector of link volume observations in period t
τ Path-link observation incidence map. τijk=1 if route i-j uses link

k and zero otherwise, k=1,2,…l
eab(t) Trajectory count. Number of vehicles observed during period t at

location a and (not necessarily in period t) at location b, but not
at any site upstream of a or downstream of b. The indexing of the
license plate readers is chosen in such a way that a<b implies
that a is not reachable from b.

αk recognition rate at site k.
κ Path-license plate reader incidence map. κija=1 if route i-j

traverses license plate reader a and zero otherwise, a=1,2,…h

The errors in the entry volume and link volume observations are represented by r(t) and s(t)
respectively. These errors are assumed to be zero mean random variables of which the second
moments are given. The observation mechanism is described by the following equations:

q(t) = (t)+r(t)
E[r(t)] = 0

E[r(t) r(p)′] = Φδtp (1)

and:

y(t) = (t)+s(t)
E[s(t)] = 0

E[s(t) s(p)′] = Θδtp (2)

where Φ and Θ are matrices of appropriate size.
The objective is to estimate the EE-flows fij(t) on the basis of the observations that are

available up to and including period t.

q̃

ỹ

q̃

ỹ
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3. Dynamic OD-estimation from time series of traffic counts

Analysis
The problem of determining the OD-flows from the observations described in the previous

section is an under-specified problem, i.e. many OD matrices exist that would reproduce the
observations. In literature various mechanisms are described that could be used to select a
‘best’ matrix, e.g. maximizing entropy or calibrating a model of travel demand. In this paper
the assumption of slowly varying split probabilities is used. According to this idea, with every
entry a set of probabilities is associated with which destinations are selected. These probabili-
ties are represented by bij(t), i.e.: bij(t) is the probability that a vehicle that enters at entry i in
period t will leave the network at exit j. The split probabilities may vary slowly over time, sat-
isfying the following random walk model:

b(t+1)=b(t)+w(t) (3)

where b(t) represents the vector of split probabilities. Within each period the split probabilities
are assumed to remain constant. The vector w(t) represents a zero mean random variable of
which the covariance matrix is denoted by St, i.e.:

E[w(t)]=0
E[w(t) w(p)′] = Stδtp (4)

The split probabilities that correspond to one origin should be non-negative, not larger then
unity, and add up to unity. This is expressed in the following equations:

0≤b(t)≤1 (5)

π′b(t)=1 (6)

where π is a matrix of which the nonzero elements are defined by:

πϕ(i,j),i = 1 i=1,…m, j=1,…n (7)

In this equation ϕ(i,j) represents the order of the split probabilities bij(t) in the vector b(t), i.e.
bϕ(i,j)(t)=bij(t). An example of a mapping that can be used for this purpose is:

ϕ(i,j)=(n-1)i+j (8)

This mapping corresponds to b(t) = vec( [bij(t)] ), i.e. the elements of the matrix [bij(t)] are
rearranged column by column in a vector. The assumption of slowly varying split probabilities
imposes a minimum of restrictions on the OD-flows but at the same time constitutes a suffi-
cient basis for the statistical estimation of OD-flows from time series of traffic counts. Appli-
cations of the assumption go back to Cremer and Keller (1981). The assumption of piece-
wise-constant split probabilities implies that the distribution of the OD-flows with departure
period t is given by the following multinomial distribution, see e.g. Nihan and Davis (1989):

P[f(t)| (t),b(t)]= (9)

In this equation f(t) represents the vector of EE-flows with departure period t. The elements
of the idealized link flow vector are the sum of all flows with departure period t that pass a
given location. This is expressed in with:

q̃ q̃i t( )!
bij t( )

fij t( )

fij t( )!j 1=
n∏i 1=

m∏
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(t) = U ′ f(t) (10)

where U  is a matrix of which the elements are defined by:

Uϕ(i,j),k = τijk
i=1,…m, j=1,…n, k=1,…l

From equations (9) and (10) no tractable probability distribution of the idealized link vol-
ume vector follows. Instead the statistical properties of this vector are described in terms of
their first and second moments. Combining equations (9) and (10) with the assumptions about
observation errors given in equations (1) and (2) can be shown to result in:

E[y(t)|q(t)] = H′(t)b(t) (11)

where H(t) is a matrix of which the non-zero elements are defined by:

Hϕ(i,j),k(t) = τijk qi(t)
i=1,…m, j=1,…n, k=1,…l (12)

This gives rise to specification of the following measurement equation:

y(t)=H'(t)b(t)+v(t) (13)

This equation can be used when estimating the split probabilities b(t). The vector v(t) repre-
sents the zero mean measurement error that accounts for mis-specification of the matrix H(t),
i.e. observation errors contained in q(t), random effects due to the uncoordinated choices of
motorist, and observation errors, i.e. the difference between the idealized link volume vector

(t) and the observation y(t). The fact that the problem definition poses no restrictions on the
locations on which traffic is counted and a number of other factors imply that elements of the
vector v(t) are dependent. The covariance matrix of v(t) is denoted with Rt, i.e.:

E[v(t)]=0
E[v(t) v(p)′] = Rt (14)

Statistical analysis of the random variable v(t)≡y(t)-H'(t)b(t), as presented in Van Der Zijpp
(1996) has revealed that:

Rt=E[ v(t) v(p)′ |b(t),q(t)] =( U ′cov[f(t),f(t)|b(t),q(t)]U + Θ )δtp,
cov[f(t),f(t)|b(t),q(t)]=Qt(Bt-Btππ′Bt′)+BtπΦπ′Bt (15)

where Qt=diag(πq(t)), Bt=diag(b(t)) and diag(.) is the operator that takes a vector as its input
and outputs a diagonal matrix with the elements of this vector on its diagonal. Evaluation of
(15) requires knowledge of b(t) which is generally not available in a procedure aimed at esti-
mating b(t). Instead the expression can be used as a way to approximate the covariance matrix
of v(t) that applies in absence of knowledge of b(t), replacing b(t) with its most up to date esti-
mate. Such a matrix is hence referred to as a point-estimate based approximation.

As an alternative to usage of an approximation based on (15), tests are also performed with
the following simplified approximation for Rt (see section 7):

Rt=diag(y) (16)

where y is the average of the observations y(t). Usage of this matrix is equivalent to assuming
that the elements of the observation error vector are mutually independent. Estimators based
on (15) and (16) will be compared in section 7.

ỹ

ỹ
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4. Estimation procedure

Various approaches are possible to estimate the split probabilities b(t) in the system
described by equations (3), (4), (5), (6), (13) and (14). In this section we describe methods
based on discounted constrained least squares, Bayesian updating and the Kalman filter.

Discounted constrained least squares (DCLS)
The DCLS estimate for the split probabilities (Nihan and Davis, 1987 and Cremer and Kel-

ler, 1987) is given by:

b(t)≡

0≤b(t)≤1 π′b(t)=1 (17)

where:

(18)

The parameter λ, 0≤λ≤1, determines the weight that is put on older observations. The advan-
tage of the DCLS method is its ease of implementation. A disadvantage is its weak theoretical
basis: it is not possible to exploit any of the details specified in the previous section, such as
equations (1) or (2), nor can knowledge of the joint probability distribution of the EE-flows
given by equation (9) be used.

Bayesian approach
The subjective probability distribution, given by p[b(t)|y(1), y(2)…y(t)], is central to the

Bayesian approach. This distribution encapsulates all knowledge about b(t) available at time t.
Point estimates for b(t) may be derived by maximizing this expression, resulting in a Maxi-
mum APosteriori (MAP) estimate, or better, by taking the expectation, resulting in the subjec-
tive expectation. Given the subjective probability distribution, the subjective expectation can
be shown to be a minimum variance unbiased estimate.

Information contained in a new observation may be incorporated in the subjective proba-
bility distribution using Bayes’ rule:

= (19)

The denominator of expression (19) is referred to as the normalisation constant as it is
invariant for b(t). The numerator consists of the product of the Likelihood function (left) and
the prior distribution (right). It is well known that if both the prior distribution and the likeli-
hood function are Multivariate Normal (MVN), the posterior distribution is also MVN. More-
over if v(t) satisfies (14) and is MVN, the expectation and covariance matrix characterising
the posterior distribution are given by:

b(t)+=b(t)-+Kt[y(t)-H(t)′b(t)-]

Kt=Σb(t)-H(t)[H(t)′Σb(t)-H(t)+Rt]
−1

Σb(t)+=Σb(t)-−Σb(t)-H(t)[H(t)′Σb(t)-H(t)+Rt]
−1H(t)′Σb(t)- (20)

argmin

b
J b t,( )

J b t,( ) λ
t k−

y k( ) H′ k( )b−
2

k 1=

t

∑=

p b t( ) y 1( ) …y t( )[ ]
p y t( ) b t( ) y 1( ) …y t 1−( ),[ ] p b t( ) y 1( ) …y t 1−( )[ ]⋅

p y t( ) y 1( ) …y t 1−( )[ ]
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where b(t)- and Σb(t)- are the apriori mean and covariance, and b(t)+ and Σb(t)+ are the aposte-
riori mean and covariance. This measurement update, supplemented with time extrapolation
equations is known as the Kalman filter (Kalman, 1960).

However, the MVN distribution is not a very suitable way to represent the knowledge about
split probabilities, as it does not reflect the inequality constraints (5). Also, usage of (20) could
easily lead to negative estimates. This problem was already recognised in Nihan and Davis
(1989), where several heuristic algorithms were proposed to constrain the estimates to the fea-
sible region. A similar observation was made in the context of static OD-estimation in Bell
(1991a). A remedy for this problem presented in Van Der Zijpp and Hamerslag (1994) is the
usage of a Truncated Multivariate Normal (TMVN) distribution.

A truncated probability distribution is derived from its original by redistributing the proba-
bility mass that was originally assigned to points outside the truncation interval proportionally
over the points inside this interval. The use of a truncated distribution is indicated if one
beliefs that a distribution provides a reasonable model for a phenomenon inside the truncation
interval while at the same time one knows that the phenomenon can never take values outside
this interval. A truncated distribution is characterized by a subset of the parameters that define
the original. For example, the truncated MVN distribution is characterized by a vector and a
matrix. Unlike the non-truncated MVN distribution these parameters do not correspond
directly to the mean and variance of the truncated distribution.

If in (19) the prior distribution is TMVN and the likelihood function is MVN, it can be
shown that the posterior distribution remains in the class of TMVN distributions. Moreover,
equation (20) still defines the parameters that characterise the posterior distribution (Van Der
Zijpp and Hamerslag, 1994).

This is illustrated graphically in figure 2. The posterior distribution that is obtained by mul-
tiplying a normally distributed prior distribution and likelihood function and normalizing the
result is a normal distribution, see top graph. If the prior distribution is replaced with a TMVN
distribution, see bottom graph, the shape of the resulting posterior distribution remains
unchanged inside the truncation interval, and hence is characterised by parameters identical to
those obtained when using an MVN distributed prior.

A practical difficulty is the computation of the mean associated with a TMVN distribution.
No analytical solution exists for the multidimensional integral that needs to be solved, nor is
numerical integration an option due to CPU time constraints. However the mean may be
approximated by taking the average value of a large number of random numbers drawn from a
TMVN distribution. TMVN random numbers may be generated simply by generating MVN
random numbers and rejecting all outcomes that do not satisfy (5). Details of this technique are
described in Van Der Zijpp (1996)

In the above, only the measurement update has been discussed. In addition to this a time
extrapolation is needed to account for changes of the split probabilities over time such as
described by (3). An approximation based on the Kalman time extrapolation equations is used:

p[b(t+1)|Y(t)] ≈ TMVN[ b(t+1)- , Σb(t+1)- ]|b(t+1)
with:

b(t+1)-=b(t)+

Σb(t+1)-=Σb(t)++St (21)

The error that is contained in this approximation vanishes if w(t) is zero. A discussion on
the sizes of this error can be found in Van Der Zijpp (1996).
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A final remark concerns the usage of the equality constraints (6). These constraints are
dealt with by considering them as perfect measurements, see Anderson and Moore (1979) and
Van Der Zijpp and Hamerslag (1994).

Kalman filter
The Bayesian updating approach described above results in a recipe that closely resembles

a statistical approach known as the Kalman filter. The Kalman filter consists of a recursion for
b(t) identical to (20) and (21), and was applied by Cremer and Keller (1987) and Nihan and
Davis (1987). The differences between the Bayesian and the Kalman methods stem from the
interpretation of b(t). In the Kalman approach b(t) represents the minimum variance unbiased
estimate for b(t) while in the Bayesian approach b(t) is interpreted as a parameter characteris-
ing a TMVN distribution. This leads to two practical differences:
1. The Bayesian approach admits solutions for b(t) violating (5), while the Kalman filter 

does not. The following statement is therefore included after the measurement update 
in the Kalman filter used in the experiments (see section 7):

b(t)=max[min[b(t),1],0] (22)

2. In the Bayesian approach a special postprocessing algorithm is needed to derive a 
point estimate from b(t), while in the Kalman filter b(t) itself is the point estimate.

5. OD-estimation from license plate surveys

Historical overview
It has long been recognized that license plates can be a valuable source of (static) OD-

information (Kryger and Ottesen, 1956, Brenner et al., 1957). Until recently, the recording of
license plate registrations had to be done manually. To economize on manpower as well as to

apriori
likelihood

aposteriori

apriori likelihood
aposteriori

b(t)+b(t)- b(t)

p[b(t)]

b∗(t)+b∗(t)-

p[b(t)]

b(t)

Figure 2: Bayesian update: aposteriori=likelihood.apriori/normalising constant. Top graph: 
prior distribution is MVN. Bottom graph: prior distribution is TMVN.
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minimize errors of recording it has become usual to only record a part of the license plate, for
example a combination of the last three digits or letters. Such a survey is known as a partial
license plate survey.

A problem that occurs if only a part of the license plate is recorded is that of the spurious
matches which occur if two different vehicles have identical partial registrations. The extent to
which spurious matches influence the OD-estimates was studied by Makowski and Sinha
(1976) and Hauer (1979), who also proposed approximate statistical procedures to estimate
OD-matrices from partial license plate surveys in the presence of spurious matches. These pro-
cedures were later improved by Maher (1985).

Another area of work concerned the elimination of spurious matches. These procedures
were usually heuristic and require not only the partial registration, but also other data, such as
time stamp, vehicle type etc. Spurious matches are then eliminated by imposing extra condi-
tions to a ‘match’, for example by requiring corresponding vehicle types, arrival within a cer-
tain time window, etc. Methods proposed by Shewey (1983) and Evans et al. (1993) can be
classified in this category. Also most commercially available license plate matching programs
are of this category, e.g. Buchanan and Partners (1986), Lucas (1986), and MVA Systematica
(1987).

Statistical procedures based on partial registration data and time stamp information were
proposed in Watling and Maher (1988, 1992) and Watling (1990, 1994).

Some effort has also been spent on the recovery from observation errors. Some types of
errors are frequently made by human observers, for example mixing up the characters ‘3’ and
‘8’ or transposing characters, e.g. writing down ‘xx-34-np’ instead of ‘xx-43-np’. Heuristic
procedures to compensate or correct for this type of recording errors are common practice, see
e.g. the NOPCOP (Lucas, 1986) and MicroMatch computer programs (Buchanan and Part-
ners, 1986), and proposed improvements by Evans et al. (1993).

Reviewing the literature on this subject, it catches the eye that there is an emphasis on the
statistical treatment of the phenomenon of spurious matches, while very little attention is paid
to the statistical treatment of recording errors (a noted exception is Geva et al., 1982).

Analysis
 The problem that is considered in the present paper deviates from the traditional one in a

number of ways:
 • The license plate surveys will be used in the context of dynamic OD-estimation rather than 

static OD-estimation;
 • The possibility of spurious matches may safely be ignored. As complete rather than partial 

registrations will be read, the probability that a misread registration is matched with another 
registration is negligible;

 • The issue of recording errors can not be ignored as reading full registrations with auto-
mated equipment implies that a significant fraction of the registrations is misread (research-
ers report recognition rates during field tests in the range 65%-90% (Kanayama et al., 
1991));

 • Recording stations need not correspond with network entries or exits;
 • Any number of recording stations may be present on an entry-exit path.

Figure 1 shows a simple network configuration that expresses all these properties. In the
analysis it is assumed that each image processor produces a list of, partly erroneous, registra-
tions. Only the number of matches is used in the estimation process. These numbers are sum-
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marized in a vector e(t) consisting of trajectory counts eab(t), a<b, which denote the number
of vehicles that were recognized at site a during period t and at site b, but not at any site
upstream of a or downstream of b. An extra category e00(t) accounts for those vehicles that
are detected correctly once or not at all.

Whether or not a vehicle travelling on EE-pair i-j contributes to eab(t) depends on a number
of nested selections. In order to contribute, it is required that no recognition(NR) occurs
upstream of a or downstream of b, and recognition(R) occurs at both a and b, so the probabil-
ity that a trip in flow fij(t) contributes to eab(t) equals:

P[(NR upstream of a) ∧ (R at a) ∧ (R at b) ∧ (NR downstream of b)] (23)

This probability is given by:

= (24)

for 1≤a<b≤h, and complemented with . As an aid in deriving the joint probability distribu-
tion of {eab(t), 1≤r<s≤h}, trajectory count contributions, denoted by (t), are introduced
which denote the contribution of flow fij(t) to trajectory count eab(t). The probability that an
arbitrary vehicle entering at i will contribute to trajectory count (t) is equal to bij(t). .
Hence, the joint distribution of the trajectory count contributions is given by the following
multinomial distribution:

P[g(t)| (t),b(t)]= (25)

Now let θ(a,b) denote the position of the element eab(t) in the vector of trajectory counts
e(t), then the expectation of e(t) is given by:

E[e(t)|q(t)]=G′(t)b(t) (26)

where G(t) is defined by:

Gϕ(i,j),θ(a,b)(t)=qi(t).pab
ij

i=1,2…m, i=1,2…n, a=1,2…h, b=a+1,r+2…h (27)

Analogous to (13), equation (26) gives rise to the specification of a measurement equation:

e(t)=G′(t)b(t)+z(t) (28)

where z(t) is a zero mean random variable that accounts for random effects and mis-specifica-
tion of G(t) due to observation errors contained in q(t). Parallel to (13-16), one can derive the
covariance matrix of z(t) from the multinomial distribution of the trajectory count contribu-
tions, or one can choose a more simple approach, replacing this matrix with a diagonal matrix
derived from the average observed values.

Instead of analysing this issue to the last detail at this stage we will first consider the more
general case of estimating split probabilities from combined link-volume counts - trajectory
counts.

pab
ij 1 αc−( )

κ ijc

c 1=

a 1−

∏
 
 
 
 

αa

κijr
αb

κ ijs
1 αd−( )

κ ijd

d b 1+=

h

∏
 
 
 
 

p00
ij

gab
ij

gab
ij pab

ij

q̃ q̃i!
i 1=

m

∏
j 1=

n

∏
pab

ij bij t( )( )
gab

ij t( )

gab
i j t( ) !r s< ab 0=∨

∏
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6. OD-estimation from multiple data sources

Analysis
The combined usage of volume counts and trajectory information is a yet unexplored possi-

bility to collect dynamic OD-information. It is expected that the two sources of data effectively
complement each other, provided that an appropriate statistical estimation procedure is used.

Equations (13) and (28) can be combined in the following measurement equation:

(29)

Dependencies between elements of the measurement error vector [v′(t) z′(t)]′ follow from
the fact that both y(t) and g(t) can be written as linear combinations of trajectory count contri-
butions which are multinomially distributed according to (25). The estimates of the split prob-
abilities may benefit from knowledge of these dependencies, summarized in a covariance
matrix R* (t).

If the symbol o(t) is used to denote the combined observation vector [y′(t) e′(t)]′, then paral-
lel to (2) and (10) it holds that:

o(t)=U*′ g(t)+ (30)

for some matrix U*  of which each element is either one or zero.
The traditional problem of estimating EE-matrices from link volumes is characterized by

the dependencies b→f→y, where the split probabilities b need to be estimated, the conditional
distribution of the EE-flows f given b is multinomial, and the vector of traffic counts y is a lin-
ear combination of f.

The problem of estimating EE-matrices from combined data can be characterized in a simi-
lar way. In fact for each network with combined observations one can define an imaginary net-
work with link volume observations only, in which the observations behave equivalently. For

this purpose divide each flow fij(t) into subflows (t) that each travel over their own imagi-

nary path with a probability bij(t)  and suppose that the observations o(t) satisfy (30).
Now o(t) has the statistical properties that belong to a combined observation but at the same

time is a linear combination of (notional) subflows. The statistical properties can hence be cap-
tured in equation (15).

Using this recipe results in the following point-estimate based approximation for Rt*:

Rt* =( U* ′cov[g(t),g(t)|b(t),q(t)]U* + Θ* )δtp
cov[g(t),g(t)|b(t),q(t)]=Qt* (Bt* -Bt*π*π*′Bt* ′)+Bt*π*Φπ*′Bt* (31)

where Qt* , Bt* , π* and Θ*are defined analogous to Qt, Bt, π and Θ in equation (15).
Again, as an alternative to the above method, a simplified approach will also be tested (see

section 7):

Rt*=diag(o) (32)

where o represents the average observed value of o(t).
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Estimation procedure
The estimation of the split probabilities from combined data poses no new problems. The
DCLS, Kalman and Bayesian updating methods that were proposed in section 4 to estimate
split probabilities from link volume observations can be used unaltered when equations (13),
(15) and (16) are replaced with (29), (31) and (32) respectively.

7. Experimental results

The objective of the experiments is to evaluate the effect of the input data and estimation
method on the error of estimation. In particular the usage of link volume data is compared
with the usage of combined data, and the traditional estimation methods such as the DCLS
method and the Kalman filter are compared with the Bayesian updating method described in
section 4. To versions of the latter method are tested: the first version uses a covariance matrix
derived from the average observations while the second version uses the point-estimate based
matrix described in equations (15) and (31).

Test-data
Test-data are generated according to a number of specifications that can be given in

advance. The parameters that define these specifications are given in table 1A, and their
meaning is explained in the text below. Travel-time dispersion has not explicitly been taken
into account when generating the test-data Instead an error term was added to all traffic
counts, allowing for assignment errors (see section 2). The test-data comprise EE-flows as
well as synthesized traffic counts and trajectory counts. The topology of the network and the
locations of induction loops and license plate readers are shown in figure 1. Possibly, more
efficient configurations involving the same number of license plate readers exist for this net-
work. The primary objective has however been to illustrate end test the theory presented ear-
lier.

 The generation of the test-data involves the following steps:
1. Generation of the split probabilities. The split probabilities are initialized with a ran-

domly generated vector b(0). Subsequently the vectors b(0)…b(T) are generated using 
the random walk model (3) while ‘mirroring’ the elements of b that violated the ine-
quality constraints (5). The following specification for St is used:

St=βI (33)

2. Generation of the entry flow volumes. The entry volumes are sampled from a normal 
distribution of which mean and variance equal a parameter q.

3. Generation and assignment of the EE-flows. The EE-flows are sampled from the 
multinomial distribution (9), using the probabilities generated under step -1-. The ide-
alized link volumes follow from applying (10).

4. Generation of the entry- and link volume observation errors. These errors are gener-
ated in accordance with equations (1) and (2), using the following specifications for Φ
and Θ:

Φ=σq
2I (34)

Θ=σy
2I (35)

5. Generation of the trajectory counts. For each individual vehicle its contribution to the 
vector of trajectory counts is determined by simulating its detection status at the 
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license plate readers on its path. The recognition rates that are used in this process are 
given by:

αr=α
r=1,2…h (36)

In order to reduce random effects, for every set of parameters described in table 1A, ten
independent datasets are generated. Each estimation method will be applied to all of these sets,
after which the errors of estimation will be averaged. Each set consist of 48 periods and was
generated bearing in mind a period length of ten minutes. Network 1 represents the default
configuration. Each of the specifications 2-6 differs only in one parameter from this configura-
tion.

Estimation methods
The methods that are compared are divided in the following categories (see also table 1B):

1. The DCLS method, see equations (17) and (18). After some experimenting, the dis-
counting parameter λ was set to 1- β.

2. The Bayesian Updating method (BU), see equations (20) and (21). In accordance with 
the way the test-data are generated the matrix St is set to βI. The observation error cov-
ariance matrix Rt is either derived from the average observed value (methods 3 and 4) 
or from theoretical considerations (methods 5 and 6).

3. The Kalman filter method (methods 7 and 8). This method is identical to the Bayesian 
updating method, except for remarks -1- and -2- at the end of section 4.

Each method is first applied to a dataset consisting of entry volumes and link volumes only,
and subsequently to a dataset consisting of entry volumes, link volumes and trajectory counts.

Evaluation criterion
The following measure is used as an evaluation criterion:

RMSE(t)= (37)

where N represent the number of connected EE-pairs. For every period and network specifica-
tion in table 1A the measure is averaged over the number of datasets that are generated. The
averages over the last 40 periods of the measure are summarized in table 1C.

Results
The test results are summarized in table 1C. One should relate the outcomes in table 1C to

an average entry volume of 100 or 200 (see table 1A). When comparing the results, the meth-
ods should be divided in two groups: those using link volume counts only (method 1, 3, 5 and
7), and those using combined data (method 2, 4, 6 and 8). In both groups it is clear that the best
performance is obtained from the Bayesian updating methods (3-4-5-6) followed by the
Kalman methods (7-8) and the DCLS method (1-2). The difference between the use of a point-
estimate based covariance matrix (5-6) and the use of a matrix derived from the average obser-
vations (3-4) is marginal but observable. The performance of both groups of methods for net-
work 1 can be viewed in more detail in figure 3.

The most striking result is the superior performance of the BU methods relative to the
DCLS and Kalman methods. This is illustrated by the fact that the BU methods produce better
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Table 1A: Specification of test-data

Network specification

1 2 3 4 5 6
β 0.0001 0.01 0 0.0001 0.0001 0.0001
q 100 100 100 200 100 100
σq

2 20 20 20 20 100 20
σy

2 20 20 20 20 20 100
α 0.5 0.5 0.5 0.5 0.5 0.5

Table 1B: Specification of estimation methods

Method Type Input data Remarks
1 DCLS link volumes  λ=1- β
2 DCLS combined λ=1- β
3 BU link volumes Rt=diag(y)
4 BU combined Rt*=diag(o)
5 BU link volumes Rt, see (15)
6 BU combined Rt*, see (31)
7 Kalman link volumes Rt=diag(y)
8 Kalman combined Rt*=diag(o)

Table 1C: Error of estimation (RMSE veh./period)

Method
Network specification

1 2 3 4 5 6
1 18.24 22.16 17.50 34.81 18.12 19.22
2 17.02 20.73 16.40 33.31 17.00 17.70
3 16.66 16.65 16.44 32.01 17.17 17.00
4 16.09 15.74 15.68 30.95 16.22 16.33
5 16.52 16.51 16.31 31.89 16.57 16.71
6 16.07 15.71 15.67 31.05 16.02 16.21
7 17.60 18.31 21.33 33.38 17.91 18.68
8 16.70 17.15 18.42 32.44 16.62 17.24
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results using link volume counts only than the DCLS and Kalman methods using both link
counts and trajectory information.

Another conclusion is that the difference between BU methods that attempt to take depend-
encies of observations into account (method 5 and 6) barely produce better results than BU
methods that implicitly assume independence (method 3 and 4).

For network specification 1, the main difference between the performance of the methods is
the number of periods needed to reach a certain level of accuracy (see figure 3). In this respect
the advantages of the BU methods are evident. This also makes the Bayesian updating the pre-
ferred method under less favourable circumstances, where the network may involves a larger
number of EE-pairs, the measurements contain larger errors, or if the rate of change in the split
probabilities is higher.
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Figure 3: Average error of estimation compared for four types of methods applied to 
networks generated according to specification 1 (see table 1A), using link volume 
counts (top graph) and combined data (bottom graph).
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8. Conclusions

AVI technologies which are currently being developed and implemented are likely to give
rise to information that can be effectively used to supplement time series of traffic counts as a
source of data for dynamic OD-estimation. An example of an AVI technology is license plate
recognition based on image processing. This technology can be implemented at relatively low
cost, especially if a limited number of license plate readers are placed at strategic locations.

Allowing data to be used from induction loops and license plate readers at arbitrary loca-
tions gives rise to mutual dependencies between observations. These dependencies can be
described by considering both the traffic counts and the trajectory counts as sums of trajectory
count contributions. A similar argument can be put forward if the usage of traffic counts is to
be combined with other sources of trajectory information, even if the latter apply to only one
category of vehicles (e.g. probe vehicles).

The estimation problem in which above analysis has resulted is characterized by the pres-
ence of nonnegativity constraints applying to split probabilities which are to be estimated
from linear measurements. This problem can be solved with traditional estimation procedures
such as DCLS or the Kalman filter, but on theoretical grounds a newly developed method
referred to as the Bayesian updating method is preferred.

Experiments clearly show the benefits of this new method and also show that the error of
estimation reduces if trajectory counts derived from license plate survey data are used in addi-
tion to traffic counts. The experimental results are less conclusive about the practical need for
the analysis of the dependencies between observations, as the results show only a marginal
improvement if these dependencies are taken into account.
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