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Abstract

In this paper, we present some new dynamic Opial-type diamond alpha inequalities
on time scales. The obtained results are related to the function f*.
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1 Introduction

A time scale T is an arbitrary nonempty closed subset of real numbers. For ¢ € T, we define
the forward jump operator o : T — T by o (¢) := inf{s € T : s > £} and the backward jump
operator p: T — T by p(£) := sup{s € T : s < t}. If 6(£) > ¢, we say that ¢ is right-scattered,
whereas if p(f) < t, we say that ¢ is left-scattered. Points that are simultaneously right-
scattered and left-scattered are said to be isolated. If o (¢) = ¢, then ¢ is called right-dense;
if p(¢) = t, then ¢ is called left-dense. Points that are right-dense and left-dense at the same
time are called dense. The mappings u,v : T — [0,00), defined by u(f) := o(¢t) — ¢ and
v(t) := t — p(t), are called the forward and backward graininess function, respectively. If
T has a left-scattered maximum ¢;, then T% = T — {#;}, otherwise TX = T. If T has a right-
scattered minimum £,, then Ty = T — {£,}, otherwise Ty = T. Finally, Tﬁ =T*N T

Theorem 1.1 Assumef,g:T — R are delta differentiable at t € T*. Then:
1. Thesumf +g:T — R is delta differentiable at t with

f+220 =20 +g>@.

2. Forany constant o, af : T — R is delta differentiable at t with
(@f)2(2) = af 2 (2).

3. The productfg: T — R is delta differentiable at t with
()20 = f2)g(0) + 7 (£)g™ (1) = f(£)g™ (1) +f* ()¢ ().

Theorem 1.2 Assumef,g:T — R are nabla differentiable at t € Ty. Then:
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1. Thesumf +g:T — R is nabla differentiable at t with
F+2 O =@ +g" ).

2. Forany constant a, af : T — R is nabla differentiable at t with
@)Y (@) = af ¥ ().

3. The product fg: T — R is nabla differentiable at t with
()Y () =f" 0g(e) +£*(£)g" (£) = £ ()" (2) + £ (£)g” (¢).

The following formulas will be used in our paper:

(f“l {ka = k} leN
(fl+l [§ :f'k(fplk] leN.
Definition 1.3 Let 0 < « <1 and let f be both delta and nabla differentiable at ¢ € Tf.

Then f is diamond-o differentiable at £ and £« (¢) = af 2 () + (1 — a)f~ (2).

Definition 1.4 Leta,beT,a<b,f: T — R and « € [0,1]. The diamond-« integral of ¢
on [a, b]r is defined by

b b b
[ rou=a [ roacra-a [ rove

Theorem 1.5 Let f,g: T — R be &y -differentiable at t € T. Then
L. f+gis Oo-differentiable t € T with (f + g)%« = f« + g%,
2. fg is Oo-differentiable at t € T with (fg) = g + af°g® + (1 —a)f*g".

Many authors have studied the theory of integral inequalities on time scales (see, for
example, [1-10]). In [3], the following Opial inequality on time scales was established.

Theorem 1.6 ([3]) For a delta differentiable f : [0,h] N T — R with f(0) = 0, we have

h h
/ |(f+f")fA|At§h/ IF2]° At o))
0 0
with equality when f(t) = ct.
In [1], the authors established the following theorem.

Theorem 1.7 ([1]) Let w(t) be positive and continuous on (0, h) with foh o IAt <00, g > 1.
For a differentiable f : [0,h] — R with f(0) = 0, we have

[ws ([ e (o7

where p > 1 and }7 + % =1, and with equality when f(t) = cf(f w1 AT for a constant c.



Mirkovi¢ Journal of Inequalities and Applications (2017) 2017:139 Page 3 0of 10

2 Main results

In this section, we present our results.

Theorem 2.1 Let T be a time scale. For <, differentiable f : [0,h)] N T — R, with f(0) =0

we have

g k| k-1 o k
fo IFE| 7 (O)0at < B fo [F« " (6)0at. )

Proof Starting with the left side of (2), we obtain

L <> L <>
[ 17 @euto = [l 000
0 0
h
=/ V‘kflan +afa(fk—l)A +(1—Oé)fp(fk’1)v|(t)<>a(t)
0
h
=« f [0+ af? (FY) + - a)f (FFY) T (At
0
h
+(1-a) f e e +af"(fk’1)A + (l—a)f”(fk’l)v|(t)Vt
0
h h
50:/ [fk’lf%}(t)At+a2f 77 (F51) 2| (8) At
0 0
h h
+ot(1—a)/ vak’l)v|(t)At+(l—a)/ [F o (1) vie
0 0

" k-1\A 2 " k-1\V
+a(1—a)/0 1 (A (Ve + 1 -a) fo 7 (7 ()ve.

Using Definition 1.3, we get

h h
/ Lfk|<>“(t)<>a(t) <a / laf A + @ - a)f Y| ()AL
0 0

h h

+(x2f V”(fk’l)A|(t)At+a(l—a)/ 77 (7)Y | (8) At
0 0
h
+(1-a) / laf A+ - a)f Y| () Ve
0
h h
+ot(1—a)/ V“(fk’l)A|(t)Vt+(l—a)2f [f”(fk’l)v|(t)Vt
0 0
h h
§a2/ [fk’lfA|(t)At+a(1—a)/ IV (oAt
0 0

h h
+a2/ [f”(fk’l)A|(t)At+oc(1—a)/ 77 (7)Y | (1) At

0 0

h h
+a(1—a)f vk-vA|(t)w+(1_a)2/ IF Y @) ve
0 0

" k-1\A 2 " k-1\V
+a(1—o¢)/0 172 (7<) (Ve + (1 - ) /0 o () |0V,
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We find that

/ohlf“(fk‘l)ﬂ(tw - /Ohlf"(f L) @A
[ ) s

h
:A lfa(fAfk—2 +fofAfk—3+___+ (fJ)ZfA)‘(t)At

h
Z/O lfofk_2+(fg)sz_g+"'+(fa)HfA’(t)At

k=2

:Lh;?WﬂH%

IF4| @ At.

Similarly,

k-2

[ o [ ) v

Therefore,

h h h
/ Lfk|%(t)<>at < oe2/ Lfk’lfA |O)AL + (1 - a)/ [f"*lfV [GIN
0 0 0

| k-2
+052/
O =

ST I A
n=0

k-2

+a(1—oz)f0h

o) T @A
n=0
h h
+a(l-a) /0 A OVE+ (1 - @) /0 IV (Ve

k-2

h
+Ot(1—0[)/ Efn(f(r)k—l—n lfA|Vt
0 n=0
i k-2
+(1-a)? / Sore) Y@ ve
0 n=0

h k-2
o i1
¢ X
+oz(1—oz)/0 ([f‘_1|+
¢ k-1
+oz(1—oz)/0 ([f‘|+

)LfA(t)|At

k-2
an (fp)k—l—n
n=0

)[fv(t)\At

k=2
XEWﬂ“*)met
n=0
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Zf,,, (fp)k—l—n

h k=2
+(1—oz)2/0 ([f/”’ +
n=0

o [ (11 ey ola

)[fv(t)|w

L = k-1-n
vati=a [/ (171 D)ol
n=0

- h(w—w . iov"vf')“'ﬂ) v

e [ (171 2o
o [ (S ) ol

vat=a) [ (S0 ) ol
rat=a [ (Sl el

k-1

ca-ap [ (Zov"uw*ﬂ) e

Page 5 of 10

Consider g(t) fo |f = (s)|<s. Then we have g2(¢) = |[f2(0)], gV (&) = |f¥ (t)|, and |f] < g,

so that g(t) = [ [ ()[Oas = | fo fO(5)Cas] = [f(£) —£(0)] = [f(2)

The above inequality becomes

h
+(1—oe)2/ (Zg k . n) ) &)Vt
h
=« /( ) At +a(l - oe)/ (t)At

h
1- Vi+(1—-a) NV 1)V
+a a)/ ) OV a)/o(g)(tw

—a[afo (gk)AAt+(1—o¢)/(;h(gk)AVt:|
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+(1—ot)|:/0ha(gk)VAt+(l—a)/.oh(gk)thi|

h

h A v h
=a / (@) Ca+ Q=) [ (&) Cu= / (&))<,
0 0

0

k h k
= O =g ) -g0) = [e] = [ /0 o <s>|<>as] .

By using Hélder’s inequality with indices p = 75 and g = k, we obtain

h k h K on Lk
(o e
h k-1, i
(o) ([sores)
h
= 6 [ ol s
h
_ hk—l/O [f%(s)\k%s,

hence the proof is complete. d

Theorem 2.2 Let w(t) be positive and continuous on (0,h), with foh W "I(t) At < 00, g > 1.
For differentiable f : [0, h] — R with f(0) = 0 we have

hkAA hl"fA ([ “Ag 3
<
[ yae= ([ omea)' ([ erra)’ g

wherep>land 1 +1 =1,
pa

Proof We take g(t) = fot If2(s)|As. Then |[£(£)] < g(t), g2(®) = |f2(¢)|, so we have

[
g (2g<g)) )= [ @)°ar
to 2=t ([t
([ orbob VA,@At)k
(e (Fesvon) ]
([ (e m

o )n—l—k

IF*| @) At
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Theorem 2.3 Let w(t) be positive and continuous on (0, h), with foh w1t VE < 00, g > 1.
For differentiable f : [0,h] — R with f(0) = 0 we have

h h k I k
k|V 1-q 1 v |P g
/Oy|w§<fow w) </Oa)[f|Vt>, (@)

wherep>1land * +1 =1,
p o q

Theorem 2.4 Assumethatp >1,q = 1, a € [0,1], 1 € (0,00)T, w € C([0, k], (0, 00)) and
feCL ([0,Ar,R). Ifaf* =0, (1- a)fV>0andf0) 0 then

h h
k kA Y3 \V
o /0 () (0] At+ (1 -a) /0 |(F) " @)| vt

h g h }é
1- Qa P
5(/0 w q(t)<>at) (fo w(@®)|fO (1) <>at) . (5)

Proof By Theorems 2.2, 2.3, Holder’s inequality and k = g +(Q+ p) we get

k h
Ofk/ |(fk)A(t)|At+(1—oc)k/ (7)Y ()| ve
i’ “")kf (79" ) A+ (1 - ) 77075 /|(fk ®|vt

k k h 5 ’
<@ ( / wl_q(t)At) ( / Dl ’pN>
0
k k h ]5( ];;
Q1 _a)§+(1+19);, (/O a)lq(t)Vt> (/(; w(t)vv(t)|th)
h £ h 5
< (a/ wlq(t)At> (af a)(t)|(fo(t)+(l—oz)fv(t)|pAt)
0 0
h ;
+ ((l—a)/ wlq(t)Vt)
0
0 5
~ ((1 —a) /0 o(B)]af* () + 1 -a)f¥ (1) I"Vt)
h £ h
:<a / wl‘q(t)At) (a / w(t)[f<>a(t)|”At)
0 0
h £ h 5
+ ((1—a) /0 wl-q(t)w) ((1—a) /0 w(t)[f%(t)}”w>
h k h k %
< [(a/ wl_q(t)At> + ((l—a)/ wl_q(t)Vt> i|
0 0
h k h k %1
'|:<oz/ a)(t)[f%(t)|pAt> + <(1—O[)/ w(t)[fO“(t)|th> :|
0 0
" " £
(A 1- ~1(t)V
5(0{/0(0 &) AL+ ( ot)/oa) (2) t)

Sl
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k

h
. OQ p <>ﬂ p
(a/o w@)|f O At + 1 - (x/ B)|f @) Vt)
h L oph H
=( f w”(t)%t) ( / w(t)Lf%(t)|”<>at) : 0
0 0

Theorem 2.5 Assumethatl<p <2,q=-,a €10,1], h € (0,00)1, w € C([0, A], (0, 00))
and f € Cy,_([0,h],R). If af* > 0, (1 - oz)fV >0 and f(0) = 0, then

k[ a A l_kukv v
ot [0 @lars - [0 0|ve

-1

Sk =i G
<) igT B)|g® (¢ poat]
;a (}.)Vﬁ [/0 ()¢ (1)
k-1 k k-1
ra (k_ 1) Y () - £(0)), 6)

where B := minge(om, V1), V(i) = max{ [y @' 1(5)t, fuh o U(t)Out), y = max{|f(0)],
[f ()}

Proof Weletu € [0, k]t be arbitrary. By applying Theorem 2.4 to the function g(¢) = f(¢) -
£(0), we obtain

kukAA l_kukvv
o [l Olar 0 -a) / [ONCI
k-1
e
0
w1 .
1-a) KN 0)| Ve
ra-a) [ §<f)(g )'70)
KNT o« %) xa VY
5(0)[05 /0 At + (1-a) /0 ] w]
k k-1 ! -1|A k-1 “ -1V
a(1>[f(0)|[oz [e 1 aea-ar [N v
2 (K 2 k2 [ ke2ya k2 "] k2|v
@ (2)[f(0)|[a [ arsa-ar [g [ ve]

k u u
e </<_z) [fk‘2(0)|[a2/0 ¢l a-or |g2‘VVt:|
k u u
+aft (k_l) {fk-l(o)\[afo [f|AAt+(1—a)/O [f|VVt}
k u k u k
1— 1 o P ’
5(0) [/0 w q(t)oat] [/0 w(®)|g% (1) <>at:|
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k-1 k=1
k “ 1- K “ O » ]p
+a<1> Lf(0)|[f0 2 q(t)oat} [/0 o(t)|g% (0) ' Sut
JA u k=2 u k=2
2 2 - i Su ([P
+a (2)Lf(o)|[/0 ® q(t)<>at:| [/0 w(®)|g® (0] <>at]

2

ko [ Kk k-2 Yo g
+o (k—Z)lf (0)|[/0 1)) q(t)Oat]

: [ /0 uw(t) Ig%(t)ip%t]p

+ ot (kljl) Lfk‘l(o)iafou[fA(t)lAt

k-1 k k-1 “ v
o (k_l)[f (o>|(1_a)/0 ¥ ()| ve

k-2 K , Y ]% ) %
J ) 1-q y O » ) i|

+ ot (kf 1) y* 7 (Fw) - £(0)).

Similarly,
h h
ak/ |(fk)A(t)|At+(1—a)kf ()" (8)| Ve
A h o 7
< / 7(0 l"that] [ ¢ <>°ft"<>at]
<;a ()W)IUM () /M“)“'g |

+ak-1( k )y“(f(m ~f).

k-1

Adding these two inequalities and taking into account that a” + " < (a + b)" holds, for
a,b >0 and r > 1, yield the desired inequality. O

3 Conclusion
In this paper, we have obtained several Opial-type integral inequalities on time scales via

the notion of the diamond-alpha derivative. These inequalities are related to the function
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