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Abstract—Designing an efficient defense framework is challenging with respect to a network’s complexity, widespread sophisticated

attacks, attackers’ ability, and the diversity of security appliances. The Intrusion Response System (IRS) is intended to respond

automatically to incidents by attuning the attack damage and countermeasure costs. The existing approaches inherit some limitations,

such as using static countermeasure effectiveness, static countermeasure deployment cost, or neglecting the countermeasures’

negative impact on service quality (QoS). These limitations may lead the IRS to select inappropriate countermeasures and deployment

locations, which in turn may reduce network performance and disconnect legitimate users. In this paper, we propose a dynamic defense

framework that selects an optimal countermeasure against different attack damage costs. To measure the attack damage cost, we

propose a novel defense-centric model based on a service dependency graph. To select the optimal countermeasure dynamically, we

formulate the problem at hand using a multi-objective optimization concept that maximizes the security benefit, minimizes the negative

impact on users and services, and minimizes the security deployment cost with respect to the attack damage cost.

Index Terms—Intrusion, Response system, Attack damage cost, Vulnerabilities surface coverage, Multi-objective optimization.

✦

1 INTRODUCTION

D ESIGNING a proper defense framework requires compre-

hensive understanding of attackers’ and defenders’ abilities.

The Intrusion Detection System (IDS) detects hostile activities or

exploits in a network, while the Intrusion Response System (IRS)

protects the network by selecting appropriate countermeasures to

effectively handle malicious activities (e.g., disabling a daemon or

adapting the firewall configuration) [1]. The IRS model comprises

four main components: attack damage cost, countermeasure pos-

itive effect, countermeasure negative impact, and countermeasure

deployment cost. The attack damage cost represents the amount of

damage to an attack target when the existing security controls

are either unavailable or ineffective [2]. The countermeasure

positive effect represents how much a countermeasure can protect

resources, while the negative impact refers to the impact of a

countermeasure on services’ availability and users’ access. The

countermeasure deployment cost refers to the administration cost

or complexity of adding a security policy in security appliances.

Designing a proper IRS framework inherits some challenges:

• IRS Components Evaluation: The attack damage cost

should be evaluated accurately; otherwise, the automated

IRS may needlessly reduce network performance or

wrongly disconnect users from the network. Thus, a trade-

off between network performance and network security

should be established. The countermeasure positive effect

component should consider several factors: 1) actual pro-

tection of services at different defense points, 2) already
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deployed active countermeasures, and 3) countermeasures

success/failure to mitigate attacks. For the countermeasure

negative impact, we need to take into account the impact

of countermeasures on online users and affected services.

• IRS Components Combination: To select an optimal coun-

termeasure at attack time, we need to combine the IRS

components. However, those components impact different

security attributes and do not use the same measurement

unit, which makes the combination not straightforward.

• IRS Dynamicity: The static evaluation of IRS components

results in several weaknesses: 1) the countermeasures can

be predicted by attackers, 2) there is no mechanism for

evaluating the effectiveness of deployed countermeasures

over time (non-adaptive), or 3) it does not reflect the

dynamicity of network status; i.e., added/removed ser-

vices, vulnerabilities, or online users. Hence, a dynamic

IRS is needed. However, each IRS component presents

specific challenges. The attack damage cost component

should consider the number, frequency, and steps of at-

tacks, which may vary considerably. The countermeasure

positive effect component should take into account the

effectiveness of deployment over time and improved se-

curity state. The countermeasure negative impact compo-

nent should consider the dynamicity of network status.

The countermeasure deployment cost component should

consider the state of security appliances. For example,

inserting a firewall rule requires an analysis of all the

existing rules in a firewall in order to determine the proper

order for this rule and to commit the updates [18]. As the

number of rules increases, the insertion processing time

increases.

In this paper, we propose a framework for selecting and

deploying optimal countermeasures to intrusions dynamically. The

advantage of such deployment is that countermeasures can be fine-
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tuned according to the context in which the intrusions are detected.

In other words, the IRS will take into consideration the resources

being targeted by the attack, resources being used by the user, the

load of the system, the severity of dependency between services,

the history of previous deployments (countermeasure effective-

ness), and the current complexity of security defense points. Thus,

countermeasures are not predictable since they are not statically

determined. Since attack damage and countermeasure costs impact

different attributes, we modeled our problem as multi-objective

optimization problem. Thus, our framework provides a set of

best solutions (different trade-offs) and selects the optimal one

based on the severity of attack damage cost. Compared to the

previous work, which consider only two objectives, maximizing

the security performance and minimizing the security impact on

service quality, in this paper, in addition to these two objective

functions, we consider a third objective function, minimizing the

security deployment cost.

The main contributions of the proposed framework are as

follows: 1) To evaluate the attack damage cost, we consider

both the current and the potential damage costs using a service

dependency graph. The former represents the damage on non-goal

services, whereas the latter refers to future damage in relation

to goal service (attacker target), 2) We propose a new model to

evaluate the countermeasure positive effect dynamically which is

based on the vulnerabilities surface coverage and countermeasure

goodness. Moreover, this process takes into account the already

deployed active countermeasures; thus, it avoids deploying useless

countermeasures, 3) We evaluate the countermeasure negative

impact on the basis of direct and backward impacts on services

and users. These impacts are modeled using a service dependency

graph, 4) We evaluate the countermeasure deployment cost by

means of incompatibility and administration costs. We present a

dynamic model to measure the complexity of deployment cost

over time, and 5) In the case of detection of a compromised vul-

nerability in our attack defense tree, we identify all attack paths to

the goal node and then for each path one optimal countermeasure

is selected to secure the path. In other words, we stop the ability of

the attacker from different attack paths to compromise the target

by a combination of optimal countermeasures.

The rest of this paper is organized as follows: Section 2

provides the IRS background. Section 3 presents our problem

statement. Section 4 provides a mathematical formulation of our

optimization problem. The proposed framework will be discussed

in Section 5. Section 6 discusses the various experimental results.

Finally, Section 7 makes some concluding remarks.

2 RELATED WORK

In designing a cost-sensitive IRS, several models have been

proposed to attune the attack damage and countermeasure costs.

As explained, they do not use the same measurement unit [1],

[25]. Some models attempt to put these two costs in the same

measurement unit by simplifying the problem [4]–[6]. For exam-

ple, Balepin et al. [6] propose to consider only availability loss

of services affected by the intruder and countermeasure. Other

models evaluate attack and countermeasure costs without putting

them into the same measurement unit (e.g., [10], [20], [22]–

[24]). These models define different parameters to calculate costs

separately and then use several techniques to compare them. Since

our proposed model lies in this category, to continue, we discuss

some highly related frameworks.

Chung et al. [10] propose an attack graph model to detect a

multi-step attack. When an attack is detected on a node in the

attack graph, a countermeasure selection module measures the

benefit of all relevant countermeasures on different places from

that node to the target by considering all possible paths in the

attack graph. The best countermeasure is the one that brings the

highest protection and lowest resource cost and intrusiveness to

the service level agreement (SLA). This approach suffers from a

number of limitations. First, although they state that the problem

is a multi-objective optimization one, they reduce it to a single-

objective optimization problem, which provides a single solution.

They combine the objectives using the well-known ROI (Return

of Investment) function, which does not belong to any stud-

ied combination methods (known as scalarization [8]). Second,

countermeasure cost and intrusiveness on SLA are static values

initialized in advance. Therefore, the only objective that varies in

function of countermeasures is the benefit objective. That is, their

problem, by its nature, is a single-objective optimization problem

(maximizing the benefit). Third, they define the effectiveness as

the percentage of probability changes of the node, for which the

countermeasure is applied, meaning that it is dynamic. However,

in the experiments, they use static values. Finally, they do not

consider the effectiveness overlap between all the candidate coun-

termeasures and the already deployed active ones.

Granadillo et al. [22] propose a Return on Response In-

vestment (RORI) model to evaluate countermeasures. Several

parameters are considered to find the optimal solution: attack

damage, countermeasure positive effect, countermeasure cost, and

security equipment cost. They propose the countermeasure surface

coverage to calculate the amount of risk reduction. This approach

suffers from several limitations. First, the countermeasure surface

coverage is defined as the percentage of attack surface it covers.

However, in practice, it is not straightforward to establish a

mapping between countermeasures and attacks. Second, in this

model, it is possible to apply more than one countermeasure

simultaneously. In this case, the surface of one countermeasure

may be partially or totally covered by others. Since the coun-

termeasure surface coverage is presented by a percentage, we

cannot decide whether or not there is a joint surface. In the case

of a possible joint surface, they use the average between the

maximum and minimum surface coverage, which is not always

reliable from the security perspective. Third, they do not consider

the countermeasure’s negative impact on services. Sometimes,

the maximum benefit brings the maximum impact on service

availability. Finally, regarding multi-objective optimization, this

model suffers from the same problem as [10] does.

In this paper, we propose a framework that identifies all the

best countermeasures and selects the optimal one, without the

aforementioned limitations. The proposed framework answers the

following questions: 1) how much are the current and potential

damage costs when the attack scenarios and attacker’s abilities

vary, 2) how accurate is the countermeasure risk reduction, 3) how

big is the countermeasure impact on QoS, and 4) how can the

countermeasure and attack damage costs be efficiently balanced?

3 PROBLEM STATEMENT

Let DS be a defense system deployed on a set of defense points

DP = {dpi}
n
i=1, each of which is intended to protect a set of ser-

vices. Let CM = {cmk}
r
k=1 be a set of possible countermeasures

that can be deployed on all the defense points, where r is their
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total number. When an attack is detected by the IDS, the attack

damage cost is assessed to determine the value of the loss incurred

by a compromised service. Then, the optimal countermeasure is

identified and deployed to mitigate the attack with respect to

the attack severity. Each countermeasure, cmk, provides three

attributes: (1) Security performance: it represents the security

benefit provided to the defense system when the countermeasure

cmk is activated. We note this property by SP (cmk), (2) Security

impact on service quality: it represents how much the quality

of the services is affected when cmk is deployed. This can be

restricted only to availability, since countermeasures are basically

not intended to affect the service’s confidentiality or integrity.

We denote this property by SQ(cmk), and (3) Security cost: it

represents the countermeasure deployment cost. It is expressed as

the incompatibility (e.g., adding a firewall rule) and administration

(e.g., patching a vulnerability) costs. We denote this property by

SC(cmk).
The goal is to identify the optimal countermeasure (cm∗

k)

that maximizes the security performance, minimizes the security

impact, and minimizes the security cost. Therefore, cm∗
k can be

computed by solving the following multi-objective optimization

problem.

MOPT max SP (cmk)

min SQ(cmk)

min SC(cmk)

s.t. SP (cmk) ≥ sp, SQ(cmk) ≤ sq, and SC(cmk) ≤ sc
(1)

where the constraints sp, sq , and sc represent the threshold for the

accepted minimum security performance at attack time, accepted

maximum security impact on service quality, and accepted max-

imum cost of countermeasure deployment, respectively. Later in

the paper, we will show how these functions can be evaluated.

4 MULTI-OBJECTIVE FORMULATION

In this section, first we formulate our problem with the multi-

objective concept and show how to identify the optimal solution.

Then, we provide the advantage of multi-objective formulation

compared to the existing works in state-of-art.

4.1 Pareto Optimal Set Selection

Let Ω ⊆ CM be the set of feasible countermeasures that satisfy

the constraints of (1). Let Ώ be the set of the corresponding

triplets
(
SP (cmk),SQ(cmk),SC(cmk)

)
of Ω in the objective

(also called criteria [8]) space. We defineH as a function between

Ω and Ώ as follows:

H : Ω→ Ώ

cmk 7→
(
SP (cmk),SQ(cmk),SC(cmk)

) (2)

Let cmi and cmj be two feasible countermeasures, and H(cmi)
andH(cmj) their images byH, respectively, which are given by:

H(cmi) =
(
SP (cmi),SQ(cmi),SC(cmi)

)

H(cmj) =
(
SP (cmj),SQ(cmj),SC(cmj)

) (3)

In the multi-objective optimization, we say that H(cmi) domi-

nates H(cmj), and we denote it by H(cmi) ≻ H(cmj), if the

following inequalities are satisfied:

SP (cmi) > SP (cmj) ∧ SQ(cmi) ≤ SQ(cmj) ∧ SC(cmi) ≤ SC(cmj)

or

SP (cmi) ≥ SP (cmj) ∧ SQ(cmi) < SQ(cmj) ∧ SC(cmi) ≤ SC(cmj)

or

SP (cmi) ≥ SP (cmj) ∧ SQ(cmi) ≤ SQ(cmj) ∧ SC(cmi) < SC(cmj)
(4)

Clearly, solution cmi is better than solution cmj , that is, cmi

provides security performance higher than or equal to cmj with

lower or equal impact on service quality, and lower or equal

security cost. However, there are many solutions that provide

different trade-offs between security performance, security impact

on service quality, and security cost. In this sub-space of solutions,

any improvement in one objective function is automatically com-

pensated by a deterioration in one or more of the other objectives.

Therefore, to solve (1), we evaluate all the solutions that cannot

be dominated by any other solution, from which we identify the

optimal one. Such solutions are called Pareto optimal solutions

and their images in the objective space are called Pareto optimal

set. Let Ωp ⊆ Ω and Ώp ⊆ Ώ be, respectively, the Pareto optimal

solution space and the Pareto optimal set (its image by H). This

Pareto optimal solution space is given by:

∀ cmi ∈ Ωp, ∄ cmj ∈ Ω | H(cmj) ≻ H(cmi) (5)

4.2 Optimal Solution Selection

Several methods can be used to extract the optimal solution from

the Pareto optimal set [8], [11]. In this paper, SAW is used since

it provides reasonable result (see section 6.6.1). The SAW method

consists in weighting all the objective functions and summing

them up. It comprises two steps: normalization of the objective

functions and evaluation of the final score of each countermeasure.

For each countermeasure cmk ∈ Ωp, the normalization is as

follows:

S̃P (cmk) =
SP (cmk)

max
cmi∈Ωp

(SP (cmi))

S̃Q(cmk) =

min
cmi∈Ωp

(SQ(cmi))

SQ(cmk)

S̃C(cmk) =

min
cmi∈Ωp

(SC(cmi))

SC(cmk)

(6)

where S̃P , S̃Q, and S̃C are the normalized values of SP , SQ,

and SC , respectively. Note that this is not the unique way of

normalization [11].

The final score of each countermeasure cmk, which we denote

by Q(cmk), is evaluated as follows:

Q(cmk)=wP ·S̃P (cmk)+wQ ·S̃Q(cmk)+wC ·S̃C(cmk) (7)

where wP , wQ, and wC are weights used to favor one objective

over the others in order to select the optimal security countermea-

sure from the Pareto optimal set. In general, to express the relative

importance between the objective functions and not to use large

values, these weights should satisfy the following properties:

wP + wQ + wC = 1

wP > 0, wQ > 0, wC > 0
(8)
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When the attack damage cost is high, a strong countermeasure

should be selected, and vice versa. This means that damage cost is

aligned with the security performance. Therefore, we propose to

set the value of wP as the attack damage cost. For example, if the

damage cost is 90%, the sum of two other weights is 10% (wQ

and wC ). Thus, the second and third objectives are less important.

To decide about the relative importance between the second and

third objectives, we introduce σ and θ. If the services provided

by the company are more important than the cost of deploying a

countermeasure, a higher value of σ should be set, and vice versa.

Thus, we have:

wP = attack damage cost

wQ = (1− wP ) · σ/(σ + θ)

wC = (1− wP ) · θ/(σ + θ)

σ + θ = 1, σ > 0, θ > 0

(9)

The optimal countermeasure, cm∗
k, is the one that yields the

highest Q value. It is given by:

cm∗
k = argmax

cmk∈Ωp

Q(cmk) (10)

4.3 Advantages

As explained earlier, first we identify all the best possible solu-

tions, those lying on the Pareto optimal set. Then, from the latter,

we extract the optimal one using the SAW method. This way, we

ensure that the obtained solution belongs to the Pareto optimal

set. In contrast, other works [10], [22] combine the objective

functions without evaluating the Pareto optimal set. They reduce

the multi-objective problem into a single objective optimization

one, and select the optimal solution from the combined solution

space. The question is when to convert the problem into a single

objective optimization one (e.g., SAW): 1) from the beginning, on

all the solution space or 2) on the Pareto optimal solution space.

According to research performed in multi-objective optimization,

the methods that consist in combining the objective functions

without evaluating the Pareto optimal set, from the beginning, do

not guarantee a non-dominated solution [8].

5 PROPOSED FRAMEWORK

Figure 1 illustrates the proposed architecture of our automated

intrusion response system. There are two data structures in our

model: Attack-Defense Trees (ADT) and Service Dependency

Graph (SDG). In a large network model, different ADTs can be

defined based on the SDG in such a way that each ADT protects

one goal service. Note that our framework works with one ADT,

which is selected by the security expert. Over time, we may

select another ADT, following the new strategy of the company.

When an alert is raised by IDS, our framework maps the alert

to the selected ADT, from which all possible attack paths to the

target are extracted. Then all defense points are identified for each

attack path. On the basis of the type of defense point, appropriate

countermeasures are selected. Next, for all of them three functions

are evaluated independently: the security benefit, security impact,

and security cost. A Pareto optimal set is generated to see

which countermeasures satisfy the trade-off between these three

functions. Finally, the optimal countermeasure is selected from

the Pareto optimal set with respect to the severity of the attack.

The latter is measured by the attack damage cost component

which is based on the SDG. Once the optimal countermeasure

Fig. 1: Proposed architecture.

of each attack path is identified, the useless ones (those whose

effect is covered by another) are eliminated. Then, the remaining

countermeasures are deployed and their effectiveness at the related

defense points is measured and stored in the relevant ADT. To

continue, we first explain the SDG and ADT data structures, then

detail the main components of our IRS as illustrated in Figure 1.

5.1 Service Dependency Graph

We say that a service si depends on another service sj if si needs

sj to function properly. For instance, in the case of dependency

between a web server and a database, if the web server is to

function properly, the database must be available and its data not

be corrupted. Conversely, if the database is not available (e.g., it

is down) or its data are altered, the web server will either not

provide information or provide the wrong information. We call

this, functional dependency between services.

However, the attacker may exploit non-functional connections

to reach his target. Let machines M1 and M2 host Apache and DB,

respectively. Suppose that sshd, running on M2, does not need to

communicate with any service. The attacker first compromises

Apache and obtains root access on M1. Then, he uses the connec-

tion between M1 and M2 to compromise sshd’s vulnerability and

become rooted in M2. Finally, he becomes able to compromise

DB without using the connection between Apache and DB. We

call this, non-functional dependency between services.

In this paper, we model these types of dependencies by means

of a service dependency graph (SDG), the vertices being the

services, and the edges being the functional and non-functional

dependencies between them. To each vertex sk in the graph, we

associate a vector I(sk) which represents the importance of the

service (also called service value), in terms of CIA (confidentiality,

integrity, and availability). Besides, to each edge between si and

sk in the graph (si depends on sk), we associate a vector that

consists of three weight values that represent the dependency

severity d
{C,I,A}
i,k ∈ [0, 1] in terms of CIA. Note that for the non-

functional dependency, the CIA values are set to zero. The severity

models how strong the dependency between si and sk is, which

reveals how much the damage incurred on sk will affect si. For

instance, in a denial of service (DoS) attack on sk, the attacker

slows down the functionality of sk. This decreases the service

availability (A) of sk, and does so on all the services that depend
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on sk. In the User to Root (U2R) or Remote to Local (R2L)

attack types, since sk is under the control of the attacker, all CIA

parameters of sk and those of the services that depend on it can

be affected. Both the importance of services and the dependency

severity between them are defined by the security expert. As seen

in Figure 1, SDG is used in measuring the attack damage cost and

security impact on QoS.

5.2 Attack-Defense Tree

To understand the attacker’s progress and find the attack path to

the attacker’s target, there are two approaches to model network

vulnerabilities: an attack graph [12], [13] and an attack tree [14],

[15]. They provide an appropriate picture of different ways for

compromising a target by exploiting a sequence of vulnerabilities.

The attack tree tackles the state space explosion problem, which

is present in the graph, and consequently addresses the problem of

visualization complexity [16]. In this paper, we use the Attack-

Defense Tree which consists of two types of actions: attacker

action and defender action. We define our ADT as follows:

Definition 1 (Attack-Defense Tree (ADT)). The proposed attack-

defense tree is a 4-tuple ADT=〈sg, Sng, V,DP〉, where:

1) sg is the root of the ADT, which represents the attacker-

targeted service (goal service).

2) Sng = {si}
d
i=1 − {sg} represents the set of services

that are compromised (non-goal services) to reach the

attacker’s target.

3) V =
d
∪
i=1

V (si) is the set of vulnerabilities that are

present in the network topology. For a given service si,
let V (si) = {vj(si)}

m
j=1 be the set of its vulnerabilities.

To compromise si through functional dependency, the

predicate ∨
k

(
∧
t
vt(si)

)
should be true. k represents the

number of disjunctions and t refers to the number of

conjunctions in each disjunction. That is, at least one

term of this disjunction should be true. In non-functional

dependency, a service may be compromised without ex-

ploiting any vulnerability. For more details and examples,

the reader is referred to [17].

4) DP = {dpi}
n
i=1 is a set of defense nodes placed in the

ADT to protect services. Thus, each node, si, may have

one child, representing at least a defense point. For each

defense point, we assign a list of appropriate countermea-

sures. Some of them are general countermeasures (e.g.,

restarting a service/machine) though others are defined

with respect to the type of service.

In a multi-step attack, the attacker compromises a set of

services (non-goal) to reach his target. To do so, he has to exploit

one or more of the vulnerabilities of a non-goal service in each

step. Figure 2 represents a general ADT. Two types of sub-graphs

are presented in the figure: star and diamond. The star sub-graph

includes at least one vulnerability that results in full access to

the root of that sub-graph. In the diamond sub-graph, there is

no vulnerability that leads to full-access to the root of the sub-

graph (limited access to root). Thus, depending on the attack type

impact on the root of the sub-graph, the attacker has different

opportunities to reach the next level (see (15)). If the attacker

comes from the star sub-graph, he is able to compromise all the

vulnerabilities of the next level. Otherwise, he has limited access

and may compromise only a set of them.

Fig. 2: General Attack-Defense Tree.

The ADT is created first and then updated over time, when

services or vulnerabilities are added/removed. In case of updating

the ADT during attack time, the update cost does not impact the

optimal countermeasure selection process, since it uses the current

(not being updated) ADT. That is, the attack is based on the current

ADT version, as the updated one has not known to the attacker yet.

There are four cases to update ADT. (1) If a new vulnerability

vx is discovered for a given service sx, all the services that depend

on sx are identified (using SDG). If vx needs limited access

permission to be compromised, all the identified services are con-

nected. Otherwise, only the services that can be compromised as

full access are connected. (2) In case of removing a vulnerability,

protected by a countermeasure, the ADT is updated by removing

the sub-graph, the root of which is vx. This keeps the ADT

optimized, by eliminating useless attack paths (see Section 5.4).

(3) If a new service is added, a new sub-graph, the root of which is

that service and the children are its vulnerabilities, is created. If the

root can be compromised as full access, it is connected to all the

vulnerabilities of the services it uses. If there is no vulnerability

that leads to full-access to root of sub-graph (limited access to

root), the root is connected to the vulnerabilities, which need

limited access permission to be compromised. Then, each child is

connected to the ADT following the same process of connecting a

new vulnerability. (4) Similar to vulnerability, removing a service

consists in eliminating the sub-graph rooted by that service.

5.3 Attack Damage Cost Evaluation

Attackers are smart people in reality and they know that they may

not achieve their malicious goals if they just follow the standard

steps to compromise the target. They try to find the vulnerable

services and defense points of the network and bypass them (non-

goal services) to launch multi-step attacks and compromise the

target (goal service). Two techniques can be used to calculate the

attack damage cost in this context [7]: attack-centric and defense-

centric. In attack-centric, there is one goal (e.g., a sensitive file

modification) and all other completed steps are called non-goal.

In this model, if the attacker does not reach the target goal, the

attack damage cost is zero. However, the defender may not know

the attack type and the attacker’s real intention until the end of an

accomplished multi-step attack. Therefore, we should consider the

uncertainty about the attackers’ activities in the selection of the

best countermeasure. Thus, we propose a defense-centric model

to take into account not only the current damage but also the

potential damage of the multi-step attack. The current damage is

the damage incurred on compromised services (non-goal) and the

potential damage represents the attack damage in the next step of

attack (non-goal/target). Thus, our model not only protects against
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any attack on goal-service (e.g., compromising Database) but also

any attack on non-goal services (e.g., DDoS on Web service). We

evaluate these two damages using the service dependency graph

(defined in Section 5.1). Thus, the total attack damage cost for the

whole system (S) from the exploited vulnerability vj in service sk
is the ratio of the importance of the services damaged by attacker

to the total importance of all services in terms of CIA. This cost

is calculated as follows:

D(S, sk, vj) =

∑

δ∈{C,I,A}

Dδ(S, sk, vj)

∑

si∈S

∑

δ∈{C,I,A}

Iδ(si)
(11)

where DC(S, sk, vj), DI(S, sk, vj), and DA(S, sk, vj) are at-

tack damage cost in terms of confidentiality, integrity, and avail-

ability, respectively. IC(si), II(si), and IA(si) represent the

importance of the service si in terms of confidentiality, integrity,

and availability, respectively. The attack damage cost for each

attribute (C, I, A) is evaluated as follows:

Dδ(S, sk, vj) = Dc
δ(S, sk, vj) +Dp

δ (S, sk, vj) (12)

where Dc
δ(S, sk, vj) and Dp

δ (S, sk, vj) are the current and po-

tential attack damage costs, respectively. To calculate the current

damage cost, direct and backward propagation are considered.

In the backward sub-graph of service sk, B(sk), the damage

propagation is considered for all services that have mandatory

dependency on sk directly or indirectly. In mandatory dependency,

a service requires the functionality of one or many service(s)

on which it directly or indirectly depends on. Thus, the current

damage cost is calculated as follows:

Dc
δ(S, sk, vj) = Dc

δ(S, sk, vj) +
←−
Dc

δ(S, sk, vj) (13)

where Dc
δ(S, sk, vj) and

←−
Dc

δ(S, sk, vj) are the direct and

backward propagated attack damages, respectively. They are given

by:

Dc
δ(S, sk, vj) = Ac

m(sk, A
c
t(vj))I(sk)

←−
Dc

δ(S, sk, vj) =
∑

si∈B(sk)

Abc
m(si+1 : si)di,i+1I(si) (14)

where Ac
m(sk, A

c
t(vj)) is the attack impact on sk, which depends

on the type of attack (Ac
t ), when vulnerability vj is exploited (as

seen in (15)).

Ac
m(sk, A

c
t(vj))=





[1, 0, 0] if Ac
t(vj) = information leakage

[1, 1, 1] if Ac
t(vj) = remote-2-root

[0, 1, 0] if Ac
t(vj) = integrity

[0, 0, 1] if Ac
t(vj) = denial-of-service

...

(15)

Abc
m(si+1 : si) is the backward attack impact propagation

from si+1 to si. It is calculated as follows:

Abc
m(si+1 : si) =

{
Ac

m(si+1, A
c
t(vj)) if si+1 = sk

Abc
m(si+1)di+1,i+2 else

(16)

Since the attack starts from sk, the impact on all the parents

of sk (in service dependency graph) is equal to the impact on sk,

Ac
m(sk, A

c
t(vj)). For other services (e.g., si), which depend to the

parents of sk, the backward attack impact propagation depends on

the type of attack impact on the service si+1 and CIA dependency

vector between si+1 and si+2. The attack impact on CIA in sk
cannot be propagated to all services in the backward sub-graph. At

each step of the evaluation, the impact propagation value should be

moderated on the basis of the CIA dependency between services.

To perform the potential damage cost evaluation, we follow the

forward dependency direction from service sk, F (sk), to identify

all the services that can be affected in the next step of the multi-

step attack. The potential damage cost is calculated as follows:

Dp
δ (S, sk, vj) =

∑

si∈F (sk)

Dp
δ (S, si, v

∗
h) +

←−
Dp

δ (S, si, v
∗
h) (17)

where Dp
δ (S, si, v

∗
h) and

←−
Dp

δ (S, si, v
∗
h) are the potential attack

damages on service si, which is exactly one step ahead from the

compromised service (sk), and the backward propagated attack

damage from it, respectively. Since the attacker’s intention cannot

be known in advance, it is useless to evaluate the potential attack

damage for all steps ahead from sk. Thus, we gradually evaluate

the attack damage on the basis of the attacker’s behavior. The

direct and potential damages are given by:

Dp
δ (S, si, v

∗
h) = Ap

m(si, A
p
t (v

∗
h))I(si)

←−
Dp

δ (S, si, v
∗
h) =

∑

sj∈B(si)−{sk}

Abp
m(Ap

m(sj+1 : sj))dj,j+1I(sj)

(18)

where Ap
m(si, A

p
t (v

∗
h)) is the attack impact on si when v∗h is

exploited. v∗h is the vulnerability that creates the highest damage

on si once it is exploited. It is given by:

v∗h = argmax
vh∈V (si)

Ap
t (vh) (19)

Abp
m(Ap

m(sj+1 : sj)) is the backward impact propagation from

sj+1 to sj calculated using the same formula expressed in (16).

5.4 Attack Paths Extraction

Once an attacker compromises a vulnerability, he may use dif-

ferent attack paths to compromise the target. Thus, when an IDS

generates an alert about a compromised vulnerability, all attack

paths are extracted and secured. In other words, our model stops

the ability of the attacker to use different attack paths to compro-

mise the attacker’s target when a vulnerability is compromised.

Note that in the attack paths extraction, we eliminate the redundant

attack paths, which visit the same sequence of defense points. This

is common in an attack tree, since the goal/non-goal node(s) may

have more than one vulnerability (see the star shape in Figure 2).

As shown in Figure 2, the extracted attack paths are injected

into an “Optimal CM selection” engine, where for each attack

path, all defense points are identified and used in selecting the

optimal countermeasure. In the next subsections, we will explain

how security performance, security impact on QoS, and security

cost are evaluated for each candidate countermeasure.

5.5 Objective Functions Evaluation

5.5.1 Security Performance Evaluation

Our security performance evaluation is based on the counter-

measure positive effect, which takes into account two features:

vulnerabilities surface coverage and goodness (or effectiveness).
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Fig. 3: Example of CMs vulnerabilities surface coverage.

Definition 1: The vulnerabilities surface coverage (VSC) of a

countermeasure cmk is the number of vulnerabilities it covers.

It is of two kinds: disjoint and joint. The former includes the

vulnerabilities covered only by cmk, whereas the latter refers to

the vulnerabilities covered by cmk and others.

Note that some countermeasures, which do not affect the

services or whose impact is not permanent, are not considered

in the VSC model. For example, blocking the attacker IP address,

restarting a virtual machine (VM), closing a connection, and all

initial firewall rules (set up by the administrator). Figure 3 shows

the concept of vulnerabilities surface coverage of four counter-

measures deployed on a given defense point. Suppose that these

four countermeasures are applied at different times in this order:

cm1, cm2, cm3, then cm4. When cm2 is applied after cm1, it

covers not only vulnerabilities v4, v5, and v6 but also vulnerability

v3 that has been already covered by cm1. To understand how

much our security will be improved by applying cm2, we need

to clarify the joint surface. We compare the goodness of cm1 and

cm2. If the goodness of cm2 is bigger than cm1, cm2 should be

responsible for the joint surface (v3). To calculate the total security

performance, we remove the joint surface coverage that belongs

to cm1 and add cm2’s joint surface. Let us consider applying

the last countermeasure (cm4), the goodness of which is bigger

than all applied countermeasures. Note that cm2 and cm3 are

responsible for v3 and v4, respectively. In this case, we remove

the joint surface between cm2 and cm4 (for v3), and the joint

surface between cm3 and cm4 (for v4). Then, we assign the new

joint surface (v3 and v4) to cm4.

In order to evaluate the goodness of a countermeasure, the ma-

jority of the proposed solutions are attack-driven [22]. However,

with attack-driven models, it is not straightforward to calculate the

attack probability and severity after countermeasure deployment.

Moreover, the number of attack types and their severities vary

drastically. In this paper, a countermeasure-driven technique is

proposed, in which the effectiveness of a countermeasure is

measured based on its history (success and failure over time) only.

Definition 2: The goodness of a countermeasure represents

the history of its success and failure to mitigate attacks over

time. It varies from one defense point G(dpi, cmk) to another

G(dpj , cmk) in ADT.

The evaluation of success and failure of a countermeasure

applied on a defense point is based on two factors: 1) efficiency

time (∆t); and 2) the progress of any new attempt by attackers

within ∆t in ADT. When a countermeasure is deployed, we wait

for a certain time (∆t), and we check for any attack detection

results in any node of ADT. If IDS does not report any alert in ∆t
duration, it means that the optimal selected countermeasure has

succeeded in repelling the attack progress and its success factor is

increased by 1; otherwise, its failure factor is increased.

In case of attack, we should calculate the goodness of all

countermeasures based on the history of their deployments (suc-

cess or failure). Since the most recent results must be considered

more valuable than earlier ones, we use the aging algorithm

by dividing the history into different windows (e.g., day, week,

month) confined between 0 and 2. The value of zero represents

the worst case when all the history consists of only failures, while

the value of two indicates the best case, i.e., only successes. To

compute the total goodness of a countermeasure, we propose the

following formula:

G(dpi, cmk) =
n∑

w=1

Gw(dpi, cmk)

2(w−1) (20)

where Gw(dpi, cmk) is the goodness of cmk computed for

window w on defense point dpi, which is presented as follows:

Gw(dpi, cmk) =
s(dpi, cmk)

s(dpi, cmk) + f(dpi, cmk)
(21)

where s and f are the number of successes and failures evaluated

in window w. If there is no history for a given countermeasure in

a window, we ignore that window in evaluation. The initial value

of success and failure of all countermeasures at starting time (first

window) are set to 1 and 0, respectively. In this case, the goodness

is equal to 1, which represents a middle goodness value. This value

can be updated according to the effectiveness of countermeasures

to mitigate attacks over time.

Now, using the countermeasure vulnerabilities surface cover-

age and goodness features, we show how to evaluate the secu-

rity performance of countermeasure deployment. Let cmk be a

countermeasure to be deployed on defense point dpi, where a

set of countermeasures CMa are still active. The actual security

performance SP , after activating cmk is given by:

SP (dpi, cmk) = fs̄(cmk) +
∑

cmi∈CMa

fs(cmi, cmk) (22)

where fs̄(cmk) and fs(cmi, cmk) are two functions that compute

the security performance of cmk for the disjoint surface and joint

surface(s), respectively. They are given by:

fs̄(cmk) = |Vl| ·G(dpi, cmk) (23)

fs(cmi, cmk) =






|Vk,i| ·
(

G(dpi, cmk) − G(dpi, cmi)
)

if G(dpi, cmk) > G(dpi, cmi)

0 if G(dpi, cmk) ≤ G(dpi, cmi)

(24)

where, G(dpi, cmk) and G(dpi, cmi) are the goodness of cmk

and cmi, respectively. Let Vk and Vi be the set of vulnerabilities

covered by cmk and cmi, respectively. Vk,i = Vk ∩ Vi is a set

of vulnerabilities that belong to the joint surface of cmk and cmi.

Vl = Vk −
(
Vk ∩ Vi

)
is a set of vulnerabilities that belong to

the disjoint surface of cmk. |Vk,i| and |Vl| are the cardinalities of

Vk,i and Vl, respectively.

5.5.2 Security Impact on Service Quality Evaluation

To evaluate the impact of the countermeasure deployment on

service quality, we use the directed service dependency graph

(SDG) (defined in Section 5.1). In such a graph, for each service

sj , we have two sub-graphs: forward and backward. The former

comprises the set of services on which sj depends, and the

latter comprises the set of services that depend on sj . Using that
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dependency graph, the impact of activating a countermeasure cmk

on service quality on the defense point dpi is given by:

SQ(dpi, cmk) = SQ(X
k
i , cmk) +

←−
SQ(X

k
i , cmk)

+
−→
SQ(X

k
i , cmk)

(25)

where Xk
i represents the set of services affected by cmk from

those covered by the defense point dpi. SQ is the impact on

service quality for the directly affected services (Xk
i ).
←−
SQ and

−→
SQ are the impact on service quality for the backward (B(sj))
and forward (F (sj)) sub-graphs of each service sj ∈ Xk

i ,

respectively (see Section 5.3). We evaluate them as follows:

SQ(X
k
i , cmk) = Cp(cmk)Ct(cmk)

∑

sj∈Xk
i

(U(sj))
α(I(sj))

β

←−
SQ(X

k
i , cmk) =

Cp(cmk)Ct(cmk)
∑

sj∈Xk
i

∑

sl∈B(sj)

∧sl /∈Xk
i

dl,l+1(U(sl))
α(I(sl))

β

−→
SQ(X

k
i , cmk) = 0

(26)

where U(sl), I(sl), and dl,l+1 are, respectively, the number of

users of sl, its importance, and its dependency severity with its

child sl+1. For those services that are not directly accessible by

users (e.g., DB service), only the administrator is considered the

direct user. The values of α and β express the relative importance

between the service and the number of users using it from the

point of view of the company. Therefore, to express the relative

importance between them, we have α + β = 1. Cp(cmk) and

Ct(cmk) are the power and type of cmk to stop attack. Since

countermeasures impact only on service availability, we assume:

Ct(cmk) = [0 0 1]T (27)

The countermeasure can be deployed either on a service (e.g.,

restarting a web service) or on a defense point (e.g., a firewall

rule). In both cases, one or more service(s) may be affected. Thus,

the backward impact propagation of a countermeasure is defined

as the impact on all the services that have a mandatory dependency

on the affected service(s), directly or indirectly. It is clear that there

is no forward impact propagation.

5.5.3 Security Cost Evaluation

We propose to evaluate the security cost by two criteria, incom-

patibility cost (INC ) and administration cost (ADC ). INC refers

to rule insertion in a firewall while ADC expresses the human

intervention after a countermeasure deployment. Thus, we define

these two criteria as follows:

Definition 3: The incompatibility cost represents the complex-

ity of adding a security policy in security appliances (e.g., adding

a rule in firewall).

Definition 4: The administration cost represents the time

required to return the affected configurations, caused by deployed

countermeasures, to the previous states.

Note that ADC can be broken down into installation cost

and operation cost. For example, disconnecting a machine incurs

operation cost, whereas patching a vulnerability causes installation

cost. However, we group them as one element, namely, adminis-

tration cost. Thus, we have:

SC(dpi, cmk) = INC(dpi, cmk)
γ ·ADC(cmk)

δ (28)

where the values of γ and δ express the relative importance

between the incompatibility and administration costs, respectively.

Now, we formulate the incompatibility cost of rule insertion

in firewall. To avoid creating anomalies in the firewall, inserting

a rule requires an analysis of all the existing rules in order to

determine its proper order, and committing the updates [18].

As the number of rules increases, the insertion processing time

increases. We modeled the incompatibility cost of rule insertion

by a modified Smf 1, sigmoidal membership function, in range

[1,3]. The original Smf function was in range [0,1]. We modified

it for two reasons: 1) because of the product operation in (28),

an incompatibility cost value of zero reduces the product to zero,

which is not reasonable. That is, if there is no incompatibility

cost, the security cost should depend on the administration cost.

Therefore, we need to change the range to exclude the zero value;

and 2) since the administration cost is in range [1,3], we modified

the incompatibility cost range to bring the two functions within

the same range. The incompatibility cost function is evaluated as

follows:

INC(dpi, cmk) = Smf

(
r(dpi), a, b

)
(29)

with:

Smf

(
x, a, b

)
=





1 if x ≤ a

1 + 4
(
x−a
b−a

)2
if a ≤ x ≤ a+b

2

3− 4
(
x−b
b−a

)2
if a+b

2 ≤ x ≤ b

3 if x ≥ b

where r(dpi) represents the number of firewall rules on defense

point dpi. The value of a expresses the number of rules that do not

create any incompatibility cost (INC = 1). Incompatibility cost

is saturated when the total rules reach the boundary b (INC = 3).

These values can be determined by experience or defined by the

security expert [18].

When the countermeasure is not a firewall rule, such as a patch,

the incompatibility cost value is 1 (the lowest value, since adding

a patch has no impact on incompatibility).

The administration cost can be any score between 1 and 3. In

our model, the administration cost of a patch has the highest value.

Restarting a firewall or shutting down/restarting a machine has a

medium value cost. Those that do not need the administrator’s

intervention (e.g., adding a rule in firewall) have the lowest value.

5.6 Pareto Optimal Set and Optimal CM Extraction

In previous sections, we explained how to evaluate the security

performance, security impact on QoS, security cost, and attack

damage cost. Now, we can solve equation (1), by evaluating the

Pareto optimal set, from which we extract the optimal counter-

measure, as explained in Section 4.

1. http://www.mathworks.com/help/fuzzy/smf.html
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Fig. 4: Virtual network topology used in the validation

5.7 Discard Useless Optimal CMs

Now, for each attack path we have selected an optimal counter-

measure to secure that path. We may have useless countermeasures

such that their effect can be covered by others either on the

same defense point or different ones. In the case more than

one countermeasure is selected on the same defense point; we

select the strongest one according to a pre-ordered countermea-

sure list. For instance, shutting down a service is stronger than

restarting that service. For the second case, let us have two attack

paths comprising these defense points sequences: {dp1, dp3} and

{dp1, dp2, dp3}. Imagine that the target service is protected by

dp3. Assume that the optimal countermeasure for the first attack

path is shutting down service sx, protected by dp1, and the optimal

countermeasure for the second attack path is restarting the target

service. As can be seen, the second one is useless if we shut

down the service sx. To do so, for two countermeasures each

of whose related defense points are located in the same path,

we keep the first visited one in the path if it is stronger than

the second one; otherwise, we keep both. After discarding the

useless optimal countermeasures, the remaining ones are deployed

on related defense points.

6 EXPERIMENTAL RESULTS

6.1 Simulation Setup and Integration in Cloud

To show the feasibility of our approach and test it in a real

cloud, we integrated our framework in Openstack. To do so, a

Cloud Intrusion Countermeasure Selection (CICS) was designed

to interact with openstack control services. To realize the service

chaining and traffic steering in Openstack, we used OpenDaylight.

To validate the proposed framework, we use a cloud network

topology consisting of three servers connected to the Internet

through a physical openFlow-capable switch, as seen in Figure 4.

The first cloud server hosts two VMs, used as two web servers

(WS1 : HR and WS2 : Portal), that are connected to a virtual

switch (OV S1). The second cloud server hosts two VMs, the

first one hosts a web server (WS3 : Finance); the second one

hosts a mail server (MS1 : Mail). Similarly, these VMs are

connected to a virtual switch OV S2. The third cloud server hosts

two VMs, used as a database server (DBS1 : DB) and a file

server (FS1 : File) that are connected to a virtual switch OV S3.

Each VM possesses a set of vulnerabilities, represented in Table 1.

6.2 Attack Scenario

Figure 5 shows the ADT for our virtual network topology. As

seen, there are many attack paths to compromise the database

system. We programmed the Snort IDS to generate alerts with

Fig. 5: Attack Scenario in Attack-Defense Tree.

TABLE 1: VMs and their vulnerabilities

Server VM CVE Vulnerability

Cloud Server 1 WS1 (Apache) v1: CVE-2007-1741 Execute code gain privileges
v2: CVE-2014-6271 Remote code execution
v3: CVE-2012-4558 XSS vulnerability
v4: CVE-2014-0098 DoS

WS2 (IIS) v5: CVE-2009-1535 WebDAV Authentication Bypass
v6: CVE-2009-3023 Memory Corruption

Cloud Server 2 WS3 (Apache) v7: CVE-2014-6271 Remote code execution
v8: CVE-2012-0883 Gain privilege
v9: CVE-2014-0098 DoS

MS1 v10: CVE-2004-0840 Remote code execution
v11: CVE-2001-1030 Squid port scan

Cloud Server 3 FS1 v12: CVE-2007-5616 Buffer overflow
v13: CVE-2001-0755 Buffer overflow

DBS1 v14: CVE-2008-5416 DoS
v15: CVE-2008-0107 Memory Corruption

CVE id. Then, the CICS framework can map the CVE alert to the

ADT. The attacker in the first step exploits the vulnerability v1,

CVE-2007-1741, in Apache 2.2.3, which is running on WS1. After

exploiting the first vulnerability, the attacker uses the connection

to the Database Server to compromise it. When the vulnerability

v1 is compromised, two attack paths are identified to compromise

the goal node. As explained in Section 5.4, we eliminate one of the

attack paths, since they visit the same sequence of defense points.

As Figure 5 shows, there are five defense points in the attack path

to stop the attacker. Table 2 gives a list of possible countermea-

sures at the five defense points. In the next subsections, we show

the results of the security performance, security impact on QoS,

and security cost evaluations for each candidate countermeasure.

Finally, the optimal countermeasure is selected by evaluating the

Pareto optimal set with respect to the attack damage cost.

6.3 Security Performance Evaluation

Figures 6a and 6b represent the history of successes and failures of

all the countermeasures over time. To be fair, we wanted to have a

large history for each countermeasure. During six months, we gen-

erated 5,691 attacks to compromise 15 vulnerabilities presented in

the ADT. Each time, our IRS selected a countermeasure, deployed

it, evaluated its success, and stored the result in the database. The

efficiency time (∆t) for evaluating the success and failure of a

countermeasure is equal to 5 seconds. If we show the results for

the first attack, without history, all the countermeasures have the

same goodness, which is not a case in practice.

Based on our ADT model, each type of countermeasure can be

applied on different defense points to stop an attack. We never use

the same history of goodness for the same type of countermeasure

on different defense points. For example, countermeasures cm1,

cm9, and cm20 are of a kind that blocks attacker IP, but they

have different success and failure rates. 84 successes on defense

point dp1 means that the attacker did not change his IP address

and he did not try or did not know the different paths to the

root of tree. In contrast, 46 failures on defense point dp1 refer

to the fact that either the attacker changed his IP address and
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Fig. 6: The result of security performance (SP ), the first objective.

TABLE 2: Possible countermeasures on each defense point.

dp1 Countermeasure dp2 Countermeasure dp3 Countermeasure dp4 Countermeasure dp5 Countermeasure

cm1 BlockIP(FW,s,attacker) cm9 BlockIP(vFW,s,attacker) cm20 BlockIP(vFW,s,attacker) cm35 BlockIP(vFW,s,WS1) cm46 BlockIP(vFW,s,WS1)
cm2 BlockIP(FW,r,WS1) cm10 BlockIP(vFW,r,WS1) cm21 BlockIP(vFW,r,WS1) cm36 BlockIP(vFW,r,DBS1) cm47 BlockIP(vFW,r,DBS1)
cm3 BlockPort(FW,r,http) cm11 BlockPort(vFW,r,http) cm22 BlockPort(vFW,r,http) cm37 BlockPort(vFW,r,mysql) cm48 BlockPort(vFW,r,mysql)
cm4 BlockIPPort(FW,s,attacker,http) cm12 BlockIPPort(vFW,s,attacker,http) cm23 BlockIPPort(vFW,s,attacker,http) cm38 BlockIPPort(vFW,s,WS1,http) cm49 BlockIPPort(vFW,s,WS1,http)
cm5 BlockIPPort(FW,WS1,http) cm13 BlockIPPort(vFW,WS1,http) cm24 BlockIPPort(vFW,WS1,http) cm39 BlockIPPort(vFW,DBS1,mysql) cm50 BlockIPPort(vFW,DBS1,mysql)
cm6 BlockAllTraffic(FW) cm14 BlockAllTraffic(vFW) cm25 BlockAllTraffic(vFW) cm40 BlockAllTraffic(vFW) cm51 BlockAllTraffic(vFW)
cm7 Restart(FW) cm15 Restart(vFW) cm26 Restart(vFW) cm41 Restart(vFW) cm52 Restart(vFW)
cm8 CloseConnection(http) cm16 CloseConnection(http) cm27 CloseConnection(http) cm42 CloseConnection(mysql) cm53 CloseConnection(mysql)

cm17 Disconnect(CloudServer1) cm28 Disconnect(WS1) cm43 Disconnect(CloudServer3) cm54 Disconnect(DBS1)
cm18 Restart(CloudServer1) cm29 Restart(WS1) cm44 Restart(CloudServer3) cm55 Restart(DBS1)
cm19 Shutdown(CloudServer1) cm30 Shutdown(WS1) cm45 Shutdown(VS3) cm56 Shutdown(DBS1)

cm31 Kill(httpd(HR)) cm57 Kill(mysql)
cm32 Disable(httpd(HR)) cm58 Disable(mysql)
cm33 Restart(httpd(HR)) cm59 Restart(mysql)
cm34 Patch(httpd(HR),CVE-2007-1741)

Fig. 7: The status of covering vulnerabilities when two applied

countermeasures are still active. cmx is filtering shellshock attack

in HTTP request on defense point dp1 and cmy is blocking http

request on defense point dp6.

launched the attack in the previous attack path or he has a good

knowledge of other possible paths to compromise the target. We

observe that the highest execution (success+failure) belongs to

cm25 = BlockAllTraffic(vFW ) on dp3. In contrast, the low-

est execution belongs to cm34 = Patch(httpd(HR), CV E −
2007− 1741) on the same defense point.

Fourteen countermeasures, belong to dp4 and dp5, have zero

failure. This means that when a countermeasure blocks, isolates,

or disables the database system, there is no way to compromise it.

Figure 6c shows the result of countermeasure goodness, which is

based on the formula presented in (20). The goodness of 50% of

the countermeasures is above 1, which indicates that the number of

successes was greater than the number of failures in all windows.

Figure 7 illustrates the status of VSC model when two de-

ployed countermeasures, cmx and cmy , are still active. cmx has

been deployed before cmy with the goal of filtering the shellshock

attack in HTTP request by adding some WAF (web application

firewall) rules on dp1. These WAF rules cover two vulnerabilities

in two services: the portal and finance web applications on cloud

servers 1 and 2, respectively. Countermeasure cmy has been

applied on dp6 (vFW in cloud server 2), to block an attempt

to compromise the finance web application through exploiting

vulnerability v8. Since the goodness of cmy (0.969) is greater

than that of cmx (0.774), v7 is considered protected by cmy .

As seen in Figure 5, five defense points exist in the attack path.

All possible countermeasures presented in Table 2 are inserted

individually in our framework, which takes into account all already

deployed active countermeasures (as shown in Figure 7). A coun-

termeasure vulnerabilities surface coverage may have joint sur-

faces with the two already deployed active countermeasures: cmx

and cmy . For example, when cm3 = BlockPort(FW, r, http)
is applied on dp1 the total vulnerabilities surface coverage is 15.

The joint surface of cm3 with cmx (filtering shellshock) consists

of two vulnerabilities (v2 and v7) and with cmy consists of

three vulnerabilities (v7, v8, and v9). When the blocking port

countermeasure is applied on another defense point, its surface

coverage and joint surface change. For example, if we apply

cm11 = BlockPort(vFW, r, http) on dp2 the total vulnera-

bilities surface coverage is 6 and has 1 (v2) and 0 vulnerability in

the joint surface coverage with cmx and cmy , respectively.

Figure 6d shows the number of vulnerabilities surface cov-

erage in disjoint and joint surfaces with countermeasures cmx

and cmy . As can be seen, the countermeasures on defense point

dp1 have the larger joint surface with cmx and cmy , while the

countermeasures on defense point dp4 and dp5 do not have any

joint surface with the currently deployed active countermeasures.

Figure 6e shows the partial surface coverage for each countermea-

sure when it is applied in the framework. The security performance
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for disjoint surface is the number of covered vulnerabilities times

the countermeasure goodness, see (23). In contrast, the security

performance for joint surface with already deployed active coun-

termeasures depends on their goodness. If a new countermeasure

has less goodness compared to the one that has joint surface with

it, it cannot increase the security performance and this surface is

ignored, see (24). Thus, if a countermeasure has small disjoint

surface coverage and small goodness, it cannot increase the total

security performance. Consequently, it has little chance of being

selected unless it occupies a big role in the other two objectives.

Figure 6f represents the final result of the first objective for 59

countermeasures. We observe that cm3, which is blocking an http

request on dp1, has the best SP . In contrast, cm34, which is

patching the vulnerability, has the worst SP , while the security

performance of cm9 and cm27 are very close to zero.

6.4 Security Impact on Service Quality Evaluation

In this subsection, we evaluate the results of our second objective,

which is the negative impact of countermeasures on service

quality. Figure 8a illustrates the power of each countermeasure,

which represents its ability to deal with an attacker, and it is

bounded between 1 and 3. As can be seen in Figure 8a, blocking

sender/receiver ip/port (e.g., cm3) are strong countermeasures

while restarting VM or FW/vFW (e.g., cm7) are weak counter-

measures to stop the progress of an attacker. As explained in sub-

section 5.5.2, to evaluate the negative impact of a countermeasure,

two types of impacts are considered: direct and backward. Figure

10 shows the service dependency graph setup in the defined virtual

network topology and the severity of dependency between services

in terms of CIA. Because of the lack of such data in the literature,

we have set reasonable values, as presented in the figure.

To calculate any type of impact, we need to know the number

of online users for each service. The number of online users at

attack time for HR, Portal, Finance, Mail, FTP, and DB are 20, 50,

0, 300, 1, and 1, respectively. Since the finance web application has

been blocked by countermeasure cmy , no user can connect to this

service. Since DB and FTP services cannot be accessed by public

users, one user who is the administrator is considered for them.

Based on (26), α and β (which express the relative importance

between users and services) are initialized to 0.4 and 0.6. Figure

8b shows the result of direct and backward impact evaluation.

As can be seen in Figure 8b, the highest direct impact belongs

to countermeasures cm6 and cm7 that blocks all traffic and

restarts the firewall, and so no online users can connect to the

services. Countermeasures cm1 to cm34, which are deployed on

defense points dp1, dp2, or dp3, do not have any backward impact.

In contrast, countermeasures cm35 to cm59, which are deployed

on either defense point dp4 or dp5, have backward impact on DB.

Figure 8c shows the result of the second objective func-

tion, which is evaluating the countermeasures’ impact on QoS.

As can be seen, the highest impact is related to cm6, which

blocks all traffic on dp1. This countermeasure blocks all on-

line users and has a big impact on QoS. In the second place,

we see countermeasures cm40 = BlockAllTraffic(vFW ),
cm43 = Disconnect(CloudServer3), and cm45 =
Shutdown(CloudServer3) on dp4. Each of these counter-

measures disconnects the relationship between services and DB

service. In contrast, four countermeasures have the lowest im-

pact on QoS (2.62): cm1, cm9, cm20, and cm23. They block

attacker IP on dp1, dp2, and dp3 or block attacker IP-http-

port on dp3. The impact of these types of countermeasures is

Fig. 10: Service dependency graph of the proposed topology.
TABLE 3: Pareto optimal solutions

defense point CMs Description SP SQ SC

dp1 cm3 BlockPort(FW,r,http) 11.03 16.98 2.00
cm4 BlockIPPort(FW,s,attacker,http) 9.44 4.35 2.00
cm7 Restart(FW) 10.00 20.83 1.13

dp2 cm11 BlockPort(vFW,r,http) 8.40 16.98 1.34
cm12 BlockIPPort(vFW,s,attacker,http) 7.53 4.35 1.34
cm16 CloseConnection(http) 3.93 5.66 1.00
cm18 Restart(CloudServer1) 7.69 11.32 1.23

dp3 cm23 BlockIPPort(vFW,s,attacker,http) 1.56 2.62 1.10
cm24 BlockIPPort(vFW,WS1,http) 6.42 8.70 1.10
cm27 CloseConnection(http) 0.004 2.90 1.00
cm29 Restart(WS1) 4.27 5.80 1.23

dp5 cm47 BlockIP(vFW,r,DBS1) 3.94 26.06 1.05

on one user (the attacker), and does not have any impact on

other users. The next impact at the next level (2.9) belongs to

cm27 = CloseConnection(http) on defense point dp3, which

is a WAF firewall close to HR machine and has merely a transient

impact only on HR online users.

6.5 Security Deployment Cost Evaluation

Figure 9 shows the results of security deployment cost, which

is based on incompatibility and administration costs. We define

the countermeasure incompatibility cost through the number of

rules in each firewall, which are 150, 85, 55, 75, and 45 on dp1,

dp2, dp3, dp4, and dp5, respectively. The boundaries of the Smf

function in (29) are a = 20 and b = 200. These boundaries are

defined for the worst case scenario when the new rule has to be

compared with the entire set of rules [18]. As can be seen in Figure

9a, since there are more rules in the first firewall on dp1, there is

more incompatibility cost for cm1 to cm8.

Figure 9b illustrates the administration cost when a counter-

measure is deployed. As revealed, the insertion of all firewall rules

does not have any administration cost (equal to 1). The highest

value belongs to patching a vulnerability, which is equal to 3. After

that, the highest value is related to shutting down or restarting a

server or virtual machine on which an administrator needs to do

some operations to return the system to its previous configuration.

Figure 9c illustrates the final result for the third objective

function. Based on (28), γ and δ, which express the relative im-

portance between the incompatibility and administration costs, are

initialized to 0.7 and 0.3, respectively. If the system administrator

does not have time to do the configuration after each deployment,

he can set it to 0.9 and 0.1. In contrast, when the number of rules

increases, the performance of the firewall degrades. In this case, γ
and δ can be set to 0.1 and 0.9, respectively. As shown in Figure

9c, inserting firewall rules on defense point dp1 results in the

highest security cost compared to other countermeasures.

6.6 Optimal Countermeasure Selection

Now, let us solve (1) to evaluate the different trade-offs be-

tween SP , SQ, and SC and identify the set of best solutions

as well as the optimal one. The obtained results are presented

in Figure 11, which shows all the solutions and the Pareto

optimal set. Each defense point’s countermeasures are shown with
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Fig. 8: The evaluation of countermeasure negative impact on service quality (SQ), the second objective.
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Fig. 9: The result of security cost (SC ), the third objective.

Fig. 11: The results of our multi-objective optimization-based

framework. Represented are the optimal (inside black circles) and

non-optimal solutions.

different colors and shapes. The optimal solutions in Figure 11

are summarized in Table 3. The returned optimal countermea-

sures (those lying on the Pareto optimal surface) belong to

all defense points except dp4. If we focus on security perfor-

mance, cm3 = BlockPort(FW, r, http) represents the best

countermeasure with the highest SP value (11.03). However, it

generates a high impact on service quality (SQ = 16.98). The

worst in security performance from the Pareto optimal set is

cm27 = CloseConnection(http), which has lower vulnerabili-

ties surface coverage (see Figure 6d) and goodness (close to zero,

see Figure 6c). However, it provides less impact on service quality

(2.90) since it closes only the HR application users’ connections.

We observe that some countermeasures are selected

from different defense points because they yield differ-

ent trade-offs between the objective functions: 1) Block-

Port(FW(or vFW),r,http), 2) CloseConnection(http), and 3) Block-

IPPort(FW(or vFW),s,attacker,http). For instance, blocking the

attacker’s IP and http port has been selected on three defense

points with different security performance (9.44, 7.53, and 1.56),

security impact (4.35, 4.35, and 2.62), and security cost (2.00,

1.34, and 1.10). If we ignore dimension SC , cm12 should likewise

be ignored because of less security performance compared to cm4.

Furthermore, as shown in Figure 11, the majority of coun-

termeasures on dp4 and dp5 (except cm47) are dominated (in

the sense of multi-objective optimization) and far from the Pareto

optimal surface. Since these countermeasures, which are applied

on cloud server 3, are close to the target (DBS1), they provide

less vulnerabilities surface coverage, and thus less SP . Besides,

they have a high direct impact on DBS1 and backward impact on

four services that have direct dependency on DBS1 (see Figure

10). That is why these countermeasures are not selected and are

far from the Pareto optimal surface (low SP with high SQ).

Now, we select the optimal solution from the Pareto optimal

set using SAW method, with respect to the attack damage cost.

Figure 12 represents the result of the attack damage cost evaluation

when vulnerability CVE-2007-1741 is exploited in service HR.

As explained, the damage cost consists of current and potential

damages which are 2.4 and 7.45 in terms of CIA, respectively.

So, the total damage cost is 9.85. Since, no service uses HR, the

current backward damage from HR is zero, while the backward

damage from DB is high. As shown in Figure 12, the total value

of services in our framework is 14.1, in terms of CIA. Therefore,

the total damage cost for the whole system from the exploited

vulnerability is 69%. For this attack damage cost value, cm3 is

selected as the optimal one.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

C I A CIA

A
tta

ck
 d

am
ag

e 
co

st

Crucial components of security

Current direct damage (HR)
Potential direct damage (DB)

Potential backward damage (from DB)
Total attack damage

Total service value

Fig. 12: Attack damage cost in terms of CIA.
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TABLE 4: The first three optimal countermeasures selected by

SAW, PW, and TOPSIS with respect to attack damage cost

variation (wP ). Based on (9), the other two weights, wQ and wC ,

are obtained using wP and σ = 0.6 and θ = 0.4.

wP

0.1 0.3 0.5 0.7 0.9

SAW
1st optimal cm cm23 cm23 cm4 cm3 cm3

2nd optimal cm cm27 cm12 cm12 cm4 cm7

3rd optimal cm cm12 cm27 cm7 cm7 cm4

PW
1st optimal cm cm23 cm12 cm4 cm4 cm3

2nd optimal cm cm12 cm4 cm12 cm12 cm4

3rd optimal cm cm16 cm23 cm24 cm3 cm7

TOPSIS
1st optimal cm cm12 cm18 cm18 cm47 cm47

2nd optimal cm cm4 cm24 cm24 cm18 cm18

3rd optimal cm cm24 cm12 cm7 cm7 cm7

6.6.1 Reliability of the Obtained Optimal Result

In this section, we show that the SAW method used provides rea-

sonable results, compared to other well-known scoring methods:

PW and TOPSIS. Besides SAW, we also implemented PW and

TOPSIS. Table 4 illustrates the three optimal solutions from the

Pareto optimal set resulted by the three methods, when the severity

of attack damage cost varies between 0.1 to 0.9. We observe

that: (1) when wp is low, 0.1, SAW and PW select reasonable

countermeasures compared to that selected by TOPSIS (cm23 vs.

cm12). That is, cm12 provides higher SP than cm23, and that

incurs higher impact on SQ, see Table 3. cm12 blocks two VMs

in cloud server 1, while cm23 only blocks one VM (HR). Such

high impact on SQ is not needed as wp is low, (2) in case of high

wp, 0.9, the countermeasure selected by TOPSIS, cm47, provides

low SP (3.94) compared that selected by SAW and PW, which is

cm3 (11.03). Moreover, cm47 incurs higher impact on SQ (26.06)

compared to that selected by SAW and PW (16.98). From the

security perspective, cm47 provides less protection (only DB in

the network), and high impact on service quality (all VMs: HR,

Portal, Finance, and Mail, see Figure 10). On the other hand, cm3

provides higher protection (all http servers), and less impact on

service quality compared to cm47 (no impact on Mail server),

and (3) when wp is equal to 0.3 and 0.7, SAW performs better

than PW. That is, when wp = 0.3, which is somehow low, SAW

selected less strong countermeasure than that selected by PW. On

the opposite, when wp = 0.7, which is somehow high, SAW

selects stronger countermeasure than that selected by PW. On a

final note, we conclude that SAW performs better all the time.

Now let us have a deep insight on the optimal countermeasures

selected by SAW. If we consider the first optimal solutions for

different weight combinations, we can see that when the attack

is weak (wp < 0.5), the block attacker IPPort(http) is selected

(cm23 on dp3). When the severity of damage is a middle value, the

same countermeasure is selected, but on different places with more

severe effects (cm4 on dp1). It blocks the attacker from accessing

any http service. When the severity of the attack is high, cm3

on dp1 is selected to block all users’ access to any http service.

Countermeasures cm4, cm12, and cm23 are of a kind, but have

different effects because of their deployment positions. As can be

seen, cm4, which is stronger than others, appears when wp ≥ 0.5.

cm27, which closes the http connections on dp3, behaves similarly

to cm23.

6.7 Performance Evaluation

In this subsection, we present the asymptotic complexity and real-

time performance of the CICS framework. As shown in Table 5,

the complexity in the worst case is O(|CM |2 + (|S| + |W | +
|V | + |CMa|) · |CM |), where |CM | is the number of possible

countermeasures that can be deployed on all defense points, |S| is

TABLE 5: Complexity of the proposed framework

Complexity

Operation type Partial Total

ADC Current impact O(|S|)
O
(

|S|
)

Potential impact O(|S|)

SP Goodness O(|W |)

Surface coverage (SC) O(|V |) O
(

|CM | ·
(

|W |+ |V |+ |CMa|
))

Joint SC with CMa O(|CMa|)

SQ Direct impact O(|S|)
O
(

|CM | · |S|
)

Backward impact O(|S|)

SC Incompatibility O(1)
O
(

|CM |
)

Administration O(1)

MOPT Pareto optimal set O(|CM |2)
O
(

|CM |2
)

SAW O(|CM |)

Total O
(

|CM |2 +
(

|S|+ |W |+ |V |+ |CMa|
)

· |CM |
)

the number of services in the SDG, |W | is the number of windows

in goodness evaluation, |V | is the number of vulnerabilities, and

|CMa| represents the number of active countermeasures. ADC

evaluation depends on the importance of services, severity of

dependency between them in terms of CIA, and the number of

service vulnerabilities. Since all these parameters are static, the

attack damage cost of each vulnerability can be evaluated and

stored in the database in advance. Over time, when any change

happens to these parameters, the ADC is updated. Note that SP ,

SQ, and SC are dynamic, but SP and SC can be evaluated

between two attack times, whereas SQ should be evaluated at

attack time. Let us consider two attack times: t1 and t2 (t1 < t2).

When an optimal countermeasure is applied at t1, we wait ∆t,
(which is efficiency time), (t1 +∆t < t2) to monitor the success

and failure status of the applied countermeasure and update its

SP . Similarly, SC is updated only when a new firewall rule is

added. (Note that only one type of countermeasure, which is rule

insertion, can impact (29).) In contrast, because SQ depends on the

number of online users, it should be updated at attack time. In this

case, the complexity of our framework isO(|CM |2+|S|·|CM |).
The performance of our framework has been evaluated only for

the response system when the CICS framework receives the alerts

from the IDS. We distinguish two times: the time needed to obtain

the optimal countermeasure and the time to deploy it. Obtaining

the optimal countermeasure, from a list of 59 countermeasures,

takes 314ms. The optimal countermeasure to stop our attack

scenario is cm3, which blocks the http port in the physical firewall

on dp1. Since this firewall has 150 rules, the insertion incompat-

ibility process takes 135ms. Our framework was prototyped on

a machine with 6 cores Intel Westmere (XEON L5638) clocked

at 2.30 GHz with 24 GB RAM. In total, the CICS framework

takes about 449ms for our attack scenario. It is reasonably fast in

deciding which countermeasure is the optimal one.

7 CONCLUSION

In this paper a dynamic framework for selecting and deploying

an optimal countermeasure to mitigate attack in an online fashion

was proposed. The advantage of the proposed framework is that

the selected countermeasure can be fine-tuned on the basis of

the context in which the attack is detected. In other words, the

selection mechanism takes into account the trade-off between

maximizing the security benefit, minimizing the security impact

on users and services, and minimizing the security deployment

cost. Thus, the countermeasures are not predictable since they

are not statically determined. This reduces the possibility of

attackers exploiting the predictability and the potential security

impact caused by unnecessary countermeasures. Compared to

existing work, all the proposed objective functions are dynamic,

which reflect the dynamicity of the network status (appearing or
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disappearing users, services, and vulnerabilities), the complexity

of security appliances, and the goodness of countermeasures over

time. Experimental results show the applicability and performance

of the proposed framework in, but not limited to, the cloud.

For future work, it would be worthwhile to investigate sup-

porting multiple ADTs at the same time. As explained in Section

5, different ADTs can be defined based on the SDG in such a

way that each ADT protects one goal service. Our framework was

designed for one ADT at the time.
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terest include mobile cloud computing, context-
aware systems, multi-objective optimization, and

Information security.

Wenbo He received the PhD degree from Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, in 2008. She is currently an
Associate Professor in Department of Comput-
ing and Software at McMaster University. Before
that she was an Assistant Professor in School
of Computer Science at McGill University from
2011 to 2016, and was an Assistant Professor in
Department of Electrical Engineering at Univer-
sity of Nebraska-Lincoln from 2010 to 2011. She
was with the Department of Computer Science

at University of New Mexico from 2008 to 2010. Her research focuses
on Big Data Systems, Cloud Computing, and Privacy-preserving Tech-
niques, etc.

Mohamed Cheriet received his M.Sc. and Ph.D.
degrees in Computer Science from the Univer-
sity of Pierre et Marie Curie (Paris VI) in 1985
and 1988 respectively. Dr. Cheriet is expert in
cloud computing and network virtualization. In
addition, he is an expert in Computational Intelli-
gence, Pattern Recognition, Mathematical Mod-
eling for Image Processing, Cognitive and Ma-
chine Learning approaches and Perception. Dr.
Cheriet has published more than 350 technical
papers in the field. He holds Canada Research

Chair Tier 1 on Sustainable Smart Eco-Cloud.


