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ABSTRACT

In the dynamic optimization of linear systems, it is often 

easier to represent the system by its transfer function and proceed 

in the minimization scheme after taking full advantage of the fact 

that the partial fraction expansion yields a diagonalized system.

The elements of the system matrix then represent the poles and the 

output is expressed as a linear combination of all the state variables. 

The poles are assummed to be distinct, thus allowing the system to be 

synthesised and only equality constraints are considered. This method 

of solution for the linear problem is important in both the formu

lation of the nonlinear problem and in attempting to minimize a cost 

function for nonlinear feedback control systems with a nonlinearity 

in the feedback branch.

Although present numerical techniques are available to 

obtain an open loop control for nonlinear systems, an exact solution 

for a closed loop control law is practically impossible. Even for 

the more simple cases, the Hamilton Jacobi Equation is extremely 

complex and only approximate solutions have been obtained for the 

control and the trajectories.

In this study, a certain class of nonlinear systems is 

considered; one that yields an exact solution for the closed loop 

control u*(xjt) and limited studies for the open loop control and 

trajectories. A number of example problems are solved using the 

methods outlined. These examples show definitely that an exact 

solution may be obtained for the class of nonlinear systems in

vi
V



consideration. Finally, the application of these methods of 

solution to nonlinear feedback systems provides an interesting 

study, particularly in the case of the nonlinear servomechanism 

problem.



LIST OF FIGURES

Page

Figure 1. Diagram Illustrating Variable End Point 4

Problem
* r  \Figure 2. Optimal Control Law u (x) for Example I 79

Figure 3- Family of Optimal Trajectories for Example I 80

Figure Optimal Control Law u (x) for Example II 8l

Figure 5« Family of Optimal Trajectories for Example II 82

Figure 6. Block Diagram of the Nonlinear System 85

Figure J. Block Diagram for the Nonlinear System 103

Figure 8. Block Diagram for the Nonlinear System 112

Figure 9» Block Diagram Representing the System 119

vii



NOMENCLATURE

All the required notations and symbols used in this 

study are as follow:

V = Performance or cost function to be minimized.

X = Trajectory variable, with a superscript * indicates

optimal trajectory for a one dimensional system.

X = Trajectory vector or state vector, with a superscript

* indicates optimal trajectory vector, 

y = Output variable.

Y(s) = Laplace transform of the output variable,

u = Input function or control variable.

U(s) = Laplace transform of the control variable.

X(to) = Initial state vector.

X (tf) = Final state vector,

t^jto = Final and initial time.

X = Lagrange multiplier, with a bar (\) indicates a vector.

H = Hamiltonian or Pontryagin Control Function.

G(s) = Transfer function,

s = Complex number.

ŝ  = Poles of the system in consideration.

V = Vandermonde matrix defined in terms of the poles of

the system.

ei,Q'i = Residues of the system in consideration, with a bar

(e, a) indicates vectors.

viii



The derivative of any function f(t).

Real parts of the Vandermonde matrix.

Imaginary part of the Vandermonde matrix.
Real part of the state vector.

Imaginary part of the state vector.

Real part of Lagrange Multiplier vector.

Imaginary part of Lagrange Multiplier vector.

Elliptic Integral of the first kind.

Nonlinear network in feedback branch, a nonlinear 

function relating the feedback signal to the control 

effort.

Control effort.

Laplace transform of m(t).

Disturbance function.

Laplace transform of d(t).

Feedback signal.

Laplace transform of b(t).

Laplace transform of e(t).

Transfer function in feed forward branch.

Transfer function in feedback branch.
State vector representing the feedback system.

ix



CHAPTER I 

BASIC THEORETICAL PRELIMINARIES 
Introduction

In the past, most of the procedures and principles used in 

the study of nonlinear systems have been concentrated on numerical 

techniques. For example, to get the optimal feedback law, the 

Hamilton Jacobi equation is num erically solved by assuming a

series solution for the optimal return function, thus yielding an

approximate solution for the optimal control. Consequently, the 

work that has been done in the field of nonlinear systems has been 

limited in nature; thus most attempts toward obtaining an exact 

solution have failed. However, in this work, an exact solution 

for the Hamilton Jacobi equation for a certain class of nonlinear 

systems will be established.

In feedback systems analysis, a nonlinear control system 

with a nonlinearity in the feedback branch will be considered. One 

of the primary objectives in this approach is to minimize a cost 

function using the nPontryagin Principle" by treating the actuating 

signal as an input to a reduced linear system. At this point, most

of the theories associated with linear systems are conveniently used.

For instance, the cost function is minimized to yield the optimal 

variables. Once determined, these variables will be used to 

establish the optimal nonlinear control system.

1
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1. Optimization Via Calculus of Variations 

A. Fixed End Point Problem

Consider the problem of minimizing the functional

V(x) = / f <P (X(t) , x(t), t) dt (1)
to

with the following boundary conditions:

X(t0) = Xo (2a)
and

X(tf) = Xf (2b)

The function cp is assumed to be continuous and have continuous first 

and second derivatives with respect to all its arguments. By forming 

the variation of the functional (v) and by using the fundamental 

theorem of extremum, which states that if a differentiable function 

takes a minimum at a point, then its variation is zero at this 

point, one obtains the total variation of V as:

t t t m
AV = J* cp (x + &x> X + 6X> fc) dt - J* 9 (x> X> 0  dt (3)

to t0

Note that:
6x(t0) = 6x(tf) = o (4)

By expanding the integrands of equation (3) by means of a Taylor's 

series about X and X» equation (3) becomes:
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aw - rXf fifP 6x * iff 6x + _L ifse ex2 . _L iffe fixsx ,
AV " j |_6X 6* 2! 6x2 21 6X6X +

Xo

2T 0  6/2 + ] dt <5>

By considering the first order terms only, the first variation of V 
may be written as:

5V = X’ 6X + (X, X, t) 6x1 dt
X P  L 6 X  6 X

Upon integration by parts the second term of this last equation, 

the following results:

w  . f t  f a  (x, *. t) . j ,  || (x, *, t)] 8x dt (7)
Xo

Finally, by using the necessary condition for minimum, 6V = o , 
the following results:

if? (X, X, t) _ _d ( QC£ (X, X, t) ") _
6X dt 6X ^ K '

Equation (8) is referred to as Euler's equation. It represents a 

necessary condition for an extremum although in general not 

sufficient.



B. Variable End Point Problem

The variable end point problem is again formulated by

the expression:

v(x) = /  cp (X, X, t)  dt
to

(9)

It is obvious that, a function x that will minimize V for a problem 

with variable end points, must minimize V for the more restricted case 

of fixed end points. It should be noted that for the fixed end point 

problem the two undetermined constants are found by using the two 

boundary conditions, X(tQ) = Xo and X(t^) = X^. For the case of 

variable end point problem, additional conditions need to be de

termined to evaluate the arbitrary constants. Without any loss in 

generality, assume that the initial time t0 and initial state Xo are 

fixed, while the end point varies from (tx , Xx) to (tx + 6tx ,

Xx + 6Xx). Figure (i) illustrates the variable end point problem.

X(t1)6tl

h(ti)

Xo

 ,---------------------- ,-------- 1 t
t0 tx t1+6t1

Figure 1. Diagram Illustrating Variable End Point Problem



The total variation in V is given by:

tx+  ̂ tx
AV = J* cp (x + h , X + h , t) dt - J* cp (x, X ,  t) dt

t0
(10)

or: AV = J 1 £p (X + h » X + h , t) - cp (x , x, t)J dt +

ti + fitj . .
J cp (x + h , x + h , t) dt (11)
t.

The mean value theorem allows us to replace the second integral by:

ti+8^

(12)

U1 ° L1
J* 9 (X + h , X + h , t) dt = cp (x, t) I 6t, + H. 0. T
«• t - i

and the expansion into a Taylor's series of the integrand of the first 

integral yields:



Integration by parts of the second term of equation (13) gives:

.r
t„

9 (x + h , X + h , t) - cp (x, x, t) dt =

s
tn

A S  (x, X, t) _ _d_ 6cp (X, X, t) .hdt , 6JP (X. X, t).h
6X dt 6X 6X

m

Now, the mere assumption that X is an extremal implies 
that the integral in equation (14) is zero, thus:

AV = 9 (X , x, t) A t -  + 1? (x» x, t).h 
6tl + 5X (15)

to

Note that:

httj = 6Xx - X(tl).6t1 (16)

Thus, by neglecting higher order terms, the first variation is:

6V = 6$ (X, X, t)
6X

6Xx + 9 (X, X, t) . 8$ (x, X, t)
6X

6tn (IT)

Upon application of the fundamental condition for a minimum, we get:
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The same is true if the initial point is free, thus:

is? (x, X, t)
6X

.6X0
to

<Kx, X. *• c> . 6 to — 0 (19)

Note that if the final time tx is fixed (6tx = o), equation (18) 
reduces to:

is? (x, X, t) 
6* = 0 (20)

On the other hand, if the final state is fixed (6X1 = 0), then:

cp(x, X, t) - xj is (x, X, t)
6X = 0 (21)

This set of equations represents the transversality conditions. These 

conditions complement the other known conditions to completely 

determine the solution to the optimization problem.

To generalize the above results for a multi-dimensional 

problem, we consider the n vector X, where

X = CXi X2 ••• XjJ (22)

The general transversality conditions may be written in matrix form 

as:

6X.T 6j(x, X, t)
6X

pp{x, Xx, t) - X ifP (x, x, t)l
&  J

6t, = 0 (23)



or in scalar form as:

" 69 (X, X, t).6xi
6Xi

+ cp(X, X, t) _ “ ^  6$ (X, X, t)
i=x 1 6xi

.6t, = 0

Note that:

_69 _ fscg 69
6 Si |_®Xx 5X2

.. m~\t
«nj

and Euler's equation becomes

(2k)

(25)

69 (X, X, t) d 69 (X, X, t) = 0 
6X " dt (26)

This section then essentially sets the governing equations for the 

fixed and variable end point problem to establish the optimal control 

and trajectories.

2. Differential Constraints Considerations: Pontryagin Principle

In the preceeding section no considerations were made for 

differential constraints. In this section, the Euler's equations 

will be modified to yield the Pontryagin principle. We consider 

the functional



subject to the constraints:

where:

and

X = F(X, U, t)

U = [ux u2 ••• ur]T 

F = [fx f2 fn]T

(28)

(29a)

(29b)

By defining an augmented functional:

V' (X, U) = J f cp'(X, X, U, t) dt 
to

where:

9' = cp(X, U, t) + E X^t)
1=1

f t ( x ,  u, t )  - x|j (31)

(30)

and by using Euler's equation, we get:

_6_ I cp (X, U, t) + “ X.(fi (X, U, t) - X.)
6Xi

A  _5_ / ^(X, u, t) + n x.(f. (X, U, t) - X.
dt 6Xi 1 i=l

= 0 (32)

Equation (32) may be simplified to yield:
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or:

Xi " 6Xt
‘cp (X, U, t) + n ^  (X> u> t)£

i=i (3*0

Next, we can use Euler's equation in terms of U, thus:

6u.J
'cp(X, U, t) + “ X.f. (X, U, t)|

i=l J (35)

If we define a function H called the state function of Pontryagin 

or Hamiltonian as:

H (X, U, X, t) = cp (X, U, t) + S Xj[fi (X, U, t) (36)
i=l

equation may be written as:

c tjr_________
X. = - 7T (X, U, X, t) ; i = i, n

and (35) as;

(37)

SH
Su. = 0 (38)

Note that:

X = [>! Aa ••• Xjj] (39)

In general, these equations are complicated to solve for high order 

systems because of the tedious nature of two point boundary value 

problems. Later, in succeeding chapters, these equations will be 

solved by a proper selection of the state variables, and a method will 

be developed to dispense of any backward integration that is necessary 

to solve the problem.



3. General Optimal Control Problem

We will assume in this section that the performance 

function V is given by:

tfV = J ¥[X(C), U(G), C3 K  + 8 [x(tf), tf] (ko)
tQ

which may also be written as:

v = / f ApWc). 0(c). O  dC + [if (X’ C) + C))*C (la)

By augmenting the performance function V and by adding the Lagrange 

multiplier's contribution, the following results:

tf
V 7 (X, U) » J 1 <P' (X, X, U, U, G) d£ (42)

T
Where; cp' = cp (X, U, t) + [|| <X' 1 j| .X + ** (X’ £) +

1T F(x, U, t) -X X (43)

Next, the Calculus of Variation is used and the Euler's equation 

applied to X and U yields:
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Note that all zero terms are already removed (i.e., after differ

entiation) .

If we assume that g(X, t) has continuous second partial 

derivatives with respect to X and t, equation (44) is simplified 
to yield:

• T
4 = - ~  [9 (X, U, t) + X F(X, U, t)]

This is an identical result to the one obtained in equation (34). 

Similarly, the Euler's equations in terms of U also reduces to 

equation (35) > thus

—  [<P(X, U, t) + x F(X, U, t)] = 0

Equation (23) or (24) is next used to establish the generalized 
remaining boundary conditions. For instance,

I V  (X, X, u, u, t ) j  . dx[_8X J
jV(X, i, D, i , t) - |jf' <X’ *> D’ ^  •*] -dt J = 0 (̂ 7)

Upon substitution of jjcp̂ X, X, U, U, t) , equation (47) becomes:
6X

A s(x ,  t )  _X
6X

. dX + < cp (X, U, t )  + [f' t) +
_T 
X F(X, U, t) _X X _ ^  dt | = 0 m
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By introducing the Hamiltonian function, equation (48) takes the 

form:

6g(X, t)
6X

.dX £h*(x , X, t) + ^ .dt =  0 (*9)

where the * indicates that the Hamiltonian is evaluated at the

optimal conditions.

Note that for t^ fixed and final state unspecified,

dt| = 0, and equation (49) reduces to:
f

t) _ a 0 (50)

On the other hand, if the final state is fixed and final time free 

(i.e., dx| = 0) , then:

R* (X, X, t) + |S(X» = 0 (51)

Of course, when both final state and final time are free, then both 

(dX) and dt) are arbitrary and equation (49) must be used.

As it was shown, Euler's equation and the state function of 

Pontryagin are used to determine the optimal control function U*(t) 

that will minimize the performance index V. It should be noted that, 

finding a control vector U*(t) depends on the initial conditions.

In general, because of errors or disturbances, the system will not 

stay on the nominal open loop trajectory X*(t) but will be in



Ik

some neighborhood 6X about it. Then, it is necessary to determine 

the control perturbation 6U*(t) to be added to U*(t) so as to reach 

the desired terminal state in an optimal manner. This determination 

of the control law U*(X, t) is independent of any initial state and
<c?

will be more useful for practical feedback systems. In the next 

chapter, dynamic programming and the Hamilton Jacobi equation will 

be discussed since it covers a method of determining the control law

u * (x ,  t ) .
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CHAPTER II 

OPTIMIZATION VIA DYNAMIC PROGRAMMING

1. The Hamilton Jacobi Equation

In the first chapter, the necessary tools to solve an 

optimization problem were presented. These tools allow one to 

determine the optimal open loop control function as a function of 

time, and the optimal trajectories for some specified initial condi

tions. In this chapter, a closed loop control will be found by 

using the dynamic programming approach.

Consider the system

X = F( X, U, t) (1)

for which we wish to minimize the performance index

v = g (x  ,t ) +  J* f  <p[x(C),u(G),£] dc (2)f, f t,o

subject to the differential constraints given in equation (l) where

T
F = [fx f2 ••• fn] (3a)

X = [Xl X2 *•* Xn]T (3b)
T

u = CU1 u2 *** url (3c)
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The initial conditions tQ and (i=l>**'>n) are specified. The

final conditions are specified the following way.

Xi(tf) i=l,***,p ^ n  specified, while

t̂  may or may not be specified. The problem may be formulated as

V[x( t), t] = min / g[x(t ),t ] + «P[X(C),U(C),C] (M
(U) 1 1 1 t

where V[X( t), t] is the minimum performance index or optimal return 

function. The symbol (U) indicates that the minimization is to be 

carried out over the range of admissible controls in the interval 

[tQjtg]. Rewriting the integral in equation (4) as the sum of two 

integrals, one gets

f  t+At
V[X(t),t] = min/ g[X(tf),tf] + J* <p[X(G),U(C),C] d£ +

Jtf cp[x(e),u(G),G] (5)
t+At

Because of the small range of the first integral, equation (5) may 

be rewritten to yield:

V[X( t) , t] = min ^cp[x( t) ,U( t) , t] At + 0( At2)

t  , ( 6 )  

+ g[X(tf), tf] + J f cp[X(C),U(C),C] dC
t+At
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Equation (l) is written as

AX = F[X(t),U(t),t] At + 0(At2) (7)

By using the "principle of optimality", which states that, whatever 

the control decision U(t) at time t, the control policy over the 
remaining interval must be optimal if the policy over the entire 

interval is to be optimal. Thus, by starting at the state (X(t) + AX) 

at time (t+At), the return from the optimal policy is obtained after 

substitution of AX given in equation (7) in equation (6). Hence,

V[X(t),t] = min / <p [X( t) ,U( t) ,t] • At + 0(At2) +
u(t) Y

(8)

Note that in equation (8), the minimization is performed over the 

control vector U(t) to be applied at time t rather than, as in 

equation (6), over the control in the interval t to t̂ .

Next, we expand V[X(t) + AX, t+At] about X and t to get

V[X(t) + F[X(t),U(t),t] • At + 0( At2), t+At]
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v [ x ( t ) , t ]  - min < cp[x( t )  ,U( t )  , t ]  • At +  v [ x ( t ) , t ]  
u ( t )  

+  V  fivCx(t),t] • f  L x ( t ) , u ( t ) , t ]  • At 
ex.

i=l

+  £vCx( t ) , t ]  • At +  0(At 2 ) \  (9)
8 t  J

Note that both V [ x ( t ) , t ]  and are not functions of U ( t ) ,6 C
thus they may be taken out from under the minimization on the right

side of equation (9)* Upon dividing by At and taking the limit as

At -» 0, the following is obtained

0 _ 6 V [ x ( t ) , t ]  + min / cp[X( t )  ,U( t ) , t ]  +  V  M x( t ) » t ]
° ' 6t U(t) ^  6Xi

f.[X(t),U(t),t]^ (10)

By realizing that the minimization of the brackedted term in equation 

(10) requires that its partial derivatives with respect to each of 

the control variables vanish, one can remove the minimization notation

and replace equation (10) by this set of equations.

n

At “ 6X,6t i=l 1
_ 6vCx( t ) , t ]  + Cf£x(t),t] + y  •

f.[x(t),U(t),t] (11)

n _ ̂ £[X( t),U(t),t] + 7  ' ij£xU)>U(t),t]u ~ ... Aj 5Xj 6uj

For j = 1, • • •, r (12)

A  6X* 6"j
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Obviously, the boundary condition to be satisfied is

v [ x ( t f ) , t f ]  = g [ x ( t f ) , t f ]  ( 13)

Next, we will derive the Hamilton Jacobi Equation the following way.

Let R be the admissible region of the control space. The
r>Jminimization over U must be carried out for U within R. If we rewrite 

equation (10) with the boundary conditions associated with it, we get:

0 = 6 V [ x ( t ) , t ]  + min / cp[X( t ) , U (  t )  , t ]  +  
6 t  U( t )

• f . [ x ( t ) ,  u ( t ) , t ] \

J
(14)

with

v [ x ( t f ) , t f ]  = g [ X ( t f ) , t f ]  ( 15)

By defining a new function H given by

H [ X ( t ) , U ( t ) , 6 V [ x  ( t ) , t ] , t ]  = c p [ x ( t ) , U ( t ) , t ]  
8X

n

6X,

i=1 (16)

+  f  6v[x( t ) , t ]  • f  . [ x ( t )  ,U(t) , t ]  
L  sx, 1

Then, equation (1*0 becomes

nrvrf-'i nf 6X5V[X(t),t]+ min H[X(t),U(t), ~ ,  t] = 0 (17)
6fc U (t)
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■Jf f\JNow if U is the optimal control vector within R, then we can write

* * rvU = U [“ , X, t] (18)

and by defining

H*[64> x,t] = H X,u,t] I * (19)6X 6X | u=u*

—  “X*where H is the minimum value of the Hamiltonian with respect to U 

within R. Equation (17) now takes the form

M[X(t),t] + H* [ JJ, x,t] = 0 (20)
6t

Equation (20) is the "Hamilton Jacobi Equation" for the control prob

lem. Its solution yields V[X,t] after using the boundary condition
*x*given in equation (15)- The optimal control vector U (X,t) is ob

tained using equation (18). It represents the control law or closed 

loop optimal solution to the control problem. In practice, the

analytic solution of the "Hamilton Jacobi Equation" is complex and
*/ \virtually impossible. That is why the optimal control law U (X,t) is

determined by computational methods. Nevertheless, in succeeding

chapters, a method will be devised to give the exact solution to the 

"Hamilton Jacobi Equation" for certain classes of nonlinear systems. 

Also, it should be noted that when the final time is extended to
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infinity (tf -*00), the dependence of V on time is eliminated (

thus reducing the equation to

— 6v v H (gj, X) = 0 (21)

2. Linear Systems With Quadratic Performance (Ricatti Equation)

Consider the problem of minimizing the performance index

"g = nxn symmetric matrix of known constants.
Qx = nxn symmetric matrix of known function of time.
Q2 = nxr matrix of known function of time.
P = rxr symmetric matrix of known function of time.

Also a positive definite matrix.

V = & XT(tf) g X(tf) + js Jtf (XTQ1X+2XTQ2U + UTPU)dt (22)
o

where

The differential constraint is represented by

X = A(t) • X + B( t)-U (23)

where

X = n vector of state variables.
U = r vector of control variables.
A(t) = nxn matrix of known function of time.
B(t) = nxr matrix of known function of time.
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The system is to be transferred from the known initial state 

(tQ, X(tQ)), to the final manifold

Y • [X(tf)] = Y0 (t^ specified) (2̂ )

where
Y = rxn matrix of known constants.

Y0 = rxl matrix of known constants.

Upon constructing the Hamiltonian and using the necessary conditions 

for minimum, one gets

X = -AT \ + Q 1X + Q2U (25a)
0 = BTI - Q 2TX - P U  (25b)

where \ is the n Lagrange multiplier vector or costate vector. The 

ti;ansversality condition is written as

H t f) = -Eg x(tf) + yt ixl (26)

(j, Is a constant multiplier vector (pxl matrix). Solving 

for the control U in terms of X and X yields

u = p_1(bt X - q2tx ) (27)
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Note that since P is positive definite, then its inverse always 

exists. Upon substituting U in equation (23) and (25a), the following 
results

X = (A-BP_1Q2T) X + BP_;lBT I (28)

I - (Qi-QaP"^/) X - (at- q2p_1bt) X (29)

Because of the nature of equation (26), we assume that

X(t) = - [Aq( t) X(t) + R( t) |jb] (30)

where

A0(t) = nxn matrix of function of time to be determined.

R(t) = nxp matrix of function of time to be determined.

The terminal conditions to be satisfied are

Ao(tf) = g (31a)

R(tf) = X T (31b)

Upon differentiating equation (30) an£l substituting X and X by their 

values in equations (28) and (29) and with the use of the value of X 
given in equation (30), the following is obtained
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[ A0 + A0 (A-BP_1Q2T) + (Q1-QaP*1qaT) - A0 BP“1BTA0

+ (AT-Q2P_1BT) Ao] x + [ r-a0bp"1btr 

. + (at-q2p_1bt)r] JI = o  (32)

For this last equation to be satisfied it is sufficient that

a0 = - AqA - ataq- qx+ (a0b+q2)p"1(q2t+ bta0) (33a)

R = (AoBP_1BT - AT + Q2P-;lBT) R (33b)

Equation (33a) is known to be the matrix Ricatti equation. Its 

solution gives the nxn matrix A0(t). Once A0(t) is determined, R(t) 
is found by integrating equation (33b). Still to be determined is 

the constant multiplier vector (f)• By substituting the value of X 
given in equation (30) in equation (28), one may write

X = C±( t) X + C2( t) jT (34)

Consequently, it can be shown upon integrating equation (34) by using 

the method of variation of parameters, that the final state may be 

written as:

X( t f ) = Dx( t )  X( t )  +  Da( t )  JT
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Next, equation (55) is multiplied by Y to yield

Yq = ? D X X + ? D 2 £ (36)

If we let S1(t) = Y D1 (37a)
S2(t) = Y D2 (37b)

the following results

Yo = Sx X + S2 £ (38)

with the boundary conditions

(t̂ )

S2 (t£)

Equation (38) allows to solve for fT as

(T = Y0 - S2-1S1 X (1*0)

and equation (30) becomes

Y

0

(39a)

(59b)

I = - [ Ao-rs2"1s1 ] X - RS2_1yo
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Note that all variables in this equation are functions of time 

except which is a constant. Equation (27) is used to eliminate 

X to yield an expression for the optimal control vector as

U*(X, t) = - P~1BTRSg1 P'1 { q2T + BT [A0-RSi1Si]) X (42)

A0( t) and R(t) are already found as solutions of equations (33a,b), 

still remains to be determined are and S2. Upon differentiating 

equation (38) one gets

^ X + sx X + S ]T ■ 0 (43)

Equation (28) is used to eliminate X(t) from equation (43). Then 

\( t) is replaced by its value in terms of X and "jl through use of 

equation (30)» The result is

isx + S1(A-BP“1Q2T) - S^P'^Aq] X

+ [s2 - S1BP"1BTr] |I = 0 (44)

Again, this last equation is satisfied for the following set of 

equations

ViDTA a ^ TSx = Sx (BP_1B A0 - A + BP_1Q2 ) (4 5a)
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S2 « S1BP”1B̂ 'R (45b)

By comparing equation (33b) to (45a) one finds that

S = RT (46)x

The optimal control vector may be written as

where the matrices A0(t), R( t), and S2(t) are determined so as to 

satisfy the following

A0 = - AqA - ATA0 - +  (AqB + q2) p"1 (q2t + BTAq) (48)

R = (AqBP'̂ -B1 - AT + Q2P-1BT) R (49)

s2 = rt(bp_1bt) R (50)

Subject to the terminal conditions

A0(tf) = i (51)

R(tf) = f T (52)

S2(tf) = 0 (53)
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Note that for the particular case where the final time is infinity 

and Q2 = 0, the "reduced or degenerate Riccati equation results.

ATAq + AqA + Qx - A0BP-1BTA0 = 0 (54)

One might also add that only the solution that yields a positive 

definite matrix A0 is acceptable in solving equation (54) It is 

obvious that equations (48) through (53) are in general not possible 

to solve analytically. In succeeding chapters some class of problems 

will be shown to yield an exact solution.
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CHAPTER III
EXACT SOLUTION TO THE LINEAR OPTIMIZATION PROBLEM 

KNOWING THE POLES OF THE SYSTEM

In the dynamic optimization of linear systems especially 

when one is confronted with a two point boundary value problem, the 

difficulty in obtaining an exact solution lies in the success of 

matching boundary conditions. For a high order system this task 

becomes tedious and time consuming. For a given system and in most 

practical control problems, one is more interested in the optimal 

trajectories and control for a range of initial conditions. Thus, 

it is convenient and useful to have available a closed form solution 

for both the optimal control vector and optimal trajectories. A 

method of solution will be presented in this chapter, one which will 

assume full knowledge of the poles of the system.

1. Selection of State Variables and General Form for the Optimal 
Solution

■ Consider the system represented by its transfer function

«.) = (i)

where Y(s) is the transform of the output y(t)

U(s) is the transform of the input u(t)

If s^ (i = 1, ..., n) are the set of distinct poles of the nfch order 

system, then the system may be written in the diagonal representation 

as
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X = A X + b u(t) (2a)

y(t) = cT X (2b)

Equation (2a) is the state equation and equation (2b) is the output 

equation.

A is the diagonal matrix whose elements are the poles of 

the system, i.e.

A = DIAG[si] i = 1, ..., n

rn
X is the state vector given as X = [xx ... xnJ

rnb is the residue vector given as b = [ax ... q ]̂

c = [1 ... 1]T

y(t) and u(t) are the scalar output and input respectively, [ĉ ] 

i = 1, ..., n are the n residues and are given by

= limit (s- ŝ ) G(s) i = 1, ..., n (3)
s -» s.1

Note that the poles are assumed to be distinct and single input 

single output is assumed.

Next, assume one wishes to minimize the cost function

‘f
o

subject to the constraint

V = J* § u2 dt (4)

X = A X + b u(t) (5a)
y(t) = cT X (5b)
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The Hamiltonian may be constructed and the Pontryagin minimum 

principle used to yield

H = ^ u2 + IT (A X + bu) (6)

where X is the Lagrange multiplier vector. The minimum principle 

results in the following

u* = -2 X. a. J i = 1, n (7)
i=l 1 1

where

^(t) = Xi(o) exp(-sit); i = 1, n (8)

By using equations (1), (7) and (8) the transform of the optimal 
output y*(t) may be written as:

Y*(s) = -S S a. O.X. (o)
i=l k=l t M - S v  1 (9)(s + s.)(s - s, )

Equation (9) does not take into account any initial conditions, 
but one can solve the matrix differential equation given in 

equation (2) to yield a solution for the optimal trajectories 
as:

= Xk(°)*exP(skt) “ J* cviOkXi(o)-exp[skt - r(s. + sk)]-dT (10)
o i=l



The general form for the optimal output solution is 

obtained by using equation (2b) and integration of equation (10), 

the following results

Kt) = E Xk(o)-exp(skt) + E E ai°^ . X (o)fexp(-s t)-exp(s.t)] (ll)
i-1 k K i=l k=l s. + s, 1 I 1 k Ji k

2. Determination of State Variables Initial Conditions

(1)In general, only the initial conditions for y, y ,
(n-1)
y are given, yet the optimal solution for the output is given 

in terms of thus it is necessary to solve for Xk(o) terms

of y(0), ^y\o), ...,  ̂y \o).
Starting with equation (2) and differentiating (n-1)

times and with the use of the state equations, the following set of

equations is obtained

y(o) = E Xk(0) (12)
k=l

(l) n n
y (o) = E s xk(o) + E a u*(o) (13)

k=l K K k=l

(2) n n n (l)
y (0) = S sg xk(0) + E Oy.Sy, u*(0) + E U *(0) (lk)

k=l k=l fc=l

(h-1) n
y (0) = E

k=l k
n-1 xk(0) +  1 at s“_2 -u»(o) 

k=l K K
n (n"2)

+  E  CL u * ( 0)  (15) 
k=l



33

(n) jnd_y (n)
Note that y =  ̂ and

dtn
u =

jnd u
dtn

Equations (12) through (15) may be represented by the following 

matrix equation

Y0 = V X( 0) + HUo (16)

where

Yo =
(1) (n-1)

y(o) y (o) ••• y (o) (IT)

U0 =
(1) (n-1)

u*(0) u*(0) u* (o) (18)

X(o) = Xi(0) X2(°) Xn(°) (19)

V is a "Vandermonde" matrix and is defined here in terms of the poles 

of the system in consideration as:

V =

n-2

s2

n-2>2
r

J2

n

s n-2
n

n-i n-i n-iS, Sj3 sn

(20)



3b

The matrix H is given as:

H =

\
\

Ea.s. za. N
X I  X

a:tS.
(21)

\
\

\

\
Zq/‘ S.

X  X

n-2 \
So.

Note that all summations are from (l to n).

Upon solving for the vector X(0), one gets

X(0) = V_1[Yo - H U0] (22)

It should be noted that equation (22) is general, and applies to 

systems with or without zeros. The only stipulation again is that 

all the poles are assumed to be distinct, a condition without which

no unique solution can be found for X(o).

Next, we take another approach to the problem and look at

the original system without any zeros, i.e.

with a



Upon inversion back to the time domain, the following results:

(n) (n-i)
+ an-i

(n-2) 
y + axy -•= u(t)

Keeping in mind the definition of the zero input response and the 

contributions of the initial conditions to the transform of 

derivatives, the following matrix relation is obtained

X(0) = F Y0

where F is given by

F =

0ifi(si) ftfsCSi) 
jSgf-̂ Ŝ ) ^2^2(s2:)

/Si
$2

8 fi(s ) R f2(s ) ••• 81V n' ni ^  n' Hn

and 8̂  ~ residues of system without zeros; i = 1, ..., n. Note 

that j8̂ = â  for no zeros present in the system. In general

0i± = Z(si)-^i

where z(s) is some function of the complex argument s for which 

(z(s) = 0) gives all possible zeros of the system. The elements

f.(s.) are defined as follows



n+1 k-a= S a. »
k=2 K

n+l , _f: _ n k-3*2 - E a, s
k=3 k

n+i , 
f = 2 a. sk-n
n'1 k-n k

From equation (22) one may deduce that, for H = 0

X(o) = V"1 Y0

But; H = 0 implies that

n
E a. = 0
i= l

n
E a.s. - 0

i-i 1 1

n
E a.s.2 = 0 
i=l

n
E
i=i «iSi

n-2 = 0

36

(28)

(29)

(30)

(31)

(32a)

(32b)

(32c)

(32d)
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Also, if the system does not possess any zeros, then ĉ, = and

S/»i - 2 A * !  * ••• - SA»i"'2 - 0 (53)i—l i=i i=l

Consequently, it can be shown that

V.F = I (jk)nxn w  ’

where I is the n1-̂1 order identity matrix: thus nxn J *

V"1 = F (35)

We can summarize the result the following way. If (s^ i = 1, ..., n)

and (#£, i = 1, ..., n) are the poles and the residues respectively,

and if no zeros are present then

a = 0 = V-1 K (36)

where

k = [0 0 ••• 0 1]T (37)

~0l and p are n-vectors

This represents an alternate form for the Heaviside expansion theorem. 

It also gives the inverse of the Vandermonde matrix.
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3. Further Simplification of Problem

Rather than working with matrices whose elements belong to 

the complex field, it is convenient to decouple the complex matrix 

by breaking it into its real and imaginary parts. In this fashion, 

one is not faced with the tedious task of inverting complex 

non-Hemitian matrices. Thus one may write:

where the superscripts in capital letters imply real and imaginary. 

Similarly, the Vandermonde matrix V may be written as

With any loss in generality the poles (s^ k = 1, ..., n) can be 

expressed in either polar form, i.e., s^ = r^*exp(j 0̂ ), or in 

rectangular form s^ = c^ + j d̂ . For the first case we have

X(o) + (38)

v = vR +  j  v 1 (39)

l l

rR rjeosŜ L
V m
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and

v1 =

0

r1Sin01
0

r Sin0 n n

rxn 1Sin(n-l)01 r11 lSin(n-i)0 n ' / n

(M)

For the second case

vR -

1 1

C1 c2 n (te)

r

Real[cx + jdx]n-i Real[c + id 1 L n J nJ
n-i

and

V1 -

0
d2

0
dn

IM(cx + jdx)U * ••• IM(cn + jdn)‘

where (IM) implies imaginary part. Rewriting the equation

Yq = V X(0)



with the assumption that system does not possess any zeros, otherwise 

equation (16) is used, and because Yq is always a real vector, one 
may write (0 is a n vector with elements = 0)

By letting:

and

Yo -v 1 ' Ao)
CW
0

_ y i  | vR A ( o )

(o) =
x®(0)

x ^ o )
, Sn

Yqo =
Yq
o

, 2n vector

VRI
VR . -v 1

V1 I vR

(̂ 6)

, 2n x 2n matrix (̂ 7)

the following is derived for the state vector initial condition.

CRI(0) = (vK )  • Y00 (W)

Note that a unique solution results provided none of the poles are 

equal.
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4. Evaluation of Co-State Initial Conditions 
Fixed Initial and Final States

It will be assumed that the final time t^ is fixed and 

that we wish to minimize the performance function given in equation 

(4) such that the system is transferred from the given initial 

conditions represented by the known vector Yo to the given final 

conditions represented by the vector Ŷ,. The state variables 

X^tf) evaluated at the final time may be found in this manner. 

Using the result of equation (10) the following holds

n a a X (0)
Xk(cf) - Xk(0)-exp(sktf) + S -B -+ —

1=1
exp(-sit^)-exp(s

ktf3
m

In the same manner as equation (l6) was derived one can deduce

fT = V X(tf) + H (50)

where

(1)
y(tf) y (tf)

(n-i)
y (tf) (51)

UT “
(1)

u*(tf) u*(tf)
(n-i) 
u* (tf) (52)

x(tf) = X i ( t f ) X a ( t f )  X n ( t f ) (55)

Note again that for no zeros present; H = 0 and

YT = V X(tf) (54)



Consequently:

xftf) = (̂ KC)  ytt

where

CTT rsj
o

2n vector

xft,) =
xR(tf) 

xI (tf)
, 2n vector

Next, we define:

RikT
a.oiy. r “J

° =7;irl k[eXp("SiCf)'eXp(Sk't^

where

Rrp = matrix of elements Rjik = R̂jikj - l*

Then, after some algeleraic manipulation and separation of real and 

imaginary parts, the following results

xRI(o) = p^1 x^Ct ) - p^1 ^  x^Co)

where

REAL(R^)

IM (RtT) J REAL(R^)



and

=
REAL [ exp ( At f)] j _IM[exp( Atf) ]
IM [exp( Atf)] | REAL[exp( Atf)]

k-3

(61)

-tRI, v\ (o)
_\R(o)

TFCo)
(62)

Keep in mind that

pt(t = t£) = p (63a)

and

Rt(t = tf) = rt (63 b)

Note that the inverse of the matrix P̂ , exists if the poles are 

distinct.

The co-state initial conditions may now be written as:

-“ (o) = p'XV*1''
- x

y j tt pt (v
v*1 RI j .Yoo (6k)

For anytime t, the solution for the optimal state vector is given 

by:

1 . ^ - 1
X*RI(t) = jjt-PtP^YT (y^) Y00 +

In terms of the co-state vector initial condition

TT (65)

X*RI(t) = ^(y*1) Y00 + Pt XRI(o) (66)
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The optimal output solution is

n
y*(t) = Z (0 » or

i=i

y*(t) (67)

where

cT [l 1 l] n vector

Note that if the poles of the system are known, only two matrix 

inversions are required. Although in this derivation it was assumed 

that no zeros are present in the system, equation (65) can be adjusted 
to incorporate the matrix H, and <2 will have to be used instead of j8. 

Also it is worthwhile to mention that, while this derivation applied to 

the case of fixed initial and final conditions, the case of fixed 

initial conditions and unspecified final ones yields a trivial solution 
for which the optimal control u* = 0. In this particular case the 

optimal trajectory vector is given as:

An example problem will be next worked out to show the amount of

-1
(68)

computations required by the above derivation.



5. Example Problem

To illustrate the method of solution, let us consider the 

second order system represented by the transfer function

a  • Tl2
S 2  +  TT2 (69)

We wish to minimize

V = ^ J*1 u2 dt

such that the system can be transferred from the initial conditions 

y(o) = y(o) = 1, to the final conditions y(l) = y(l) = 0.

First the Vandermonde matrix is found and inverted to

yield:

V =
1 1 

j TT -  j TT
and v_1 = 0.5

0.5
2 tt
j
2TT

(TO)

,RINote that here V is used instead of V because of the simplicity of 

inverting a second order matrix with complex elements.

Next the state vectors initial conditions are computed by:

x( o) = v' 1 Yo = v "1 Q J
Thus:
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Then the residue vector a is calculated by

a  = Z( s. )V_ 1 K = TT̂ " 1
-JTT
2

in2

Upon substitution of the values of <*i and ots in equations (58) 
through (63)* the following results.

(72)

PT

0 -TT2-jj- exp(jTT)

__2 exp(-jTT) 0

■ p” 1’ T

0
TT2 exp( Jtt)

^2 exp(-jTT) 0
(73)

with

P = -  P t k

Sin(nt) -TTt exp(jtrt)

-TTt exp(-jTTt) Sin(trt)
(7*0

Here it is worthwhile to note that for poles with no real parts, 

•&'Hospital rule is used in equation (58) to determine elements of
Pfc. For instance, writing

p -v = t1 s. + s,x k  _

and letting ŝ  + s^ = y, then

exp(-s.t) - exp(s (75)

Rtik = exp(-sit) 1 - exp(ty)“]
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Noting that for no real parts present y = 0, and

Rti2 = aia2 exP(“sit)* Limit 1 - exp(yt)
Y (76)

or

R 12 = -t ^ 0-2 exp(-sxt)

This situation may occur sometimes for higher order systems. Next 

the matrix 7^ is found as:

(77)

*t =

exp(jrrt) 0 -1 0

0 exp ( - j TTt)
and Yt =

0 -1
_

(78)

The co-state initial conditions are found by using equation (59) 

realizing that X(t^) = 0, the following is obtained:

X(0) =
0.2026 + j 0.06^6

0.2026 - j 0.06!+6
(79)

The optimal open loop control may be found using

n=2
u*(t) = -E Q'iXi(o) exp(-s±t) (80)

1=1

Carrying out the summation and substituting one gets: 

u*(t) = O.638 Sin(tTt) - 0.2026 cos(TTt) (81)
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The optimal output is found using equation (66) and (67). Upon 

substitution and matrix multiplication, the result is

y*(t) = O.3I8 Sin(tTt) + (l-t)[cos(TTt) + O.3I8 Sin(TTtJ (82)

This example illustrates very well the method of solution. It 

presents the solution to the optimal control problem for a quadratic 

cost in the control and given initial and final conditions. In the 
next chapter, an introductory study will be presented for a certain 

class of nonlinear systems, one that will be used later to establish 

an exact solution to the nonlinear class of problems in consideration.



CHAPTER IV
OPTIMAL CONTROL OF A CLASS OF NONLINEAR SYSTEMS

Although some numerical techniques are available to obtain 

an open loop control for nonlinear systems, a closed lo9p control is 
practically impossible. Even for the more simple cases, the Hamilton 

Jacobi equation is so hard to solve that everybody is satisfied 

with only approximate solutions and/or perhaps some numerical solution
*K*for the control u (t) and the trajectory X (t) as a function of time. 

In this chapter, a class of nonlinear system is considered, one that 

yields an exact solution for the closed loop control in some particular 
cases and some interesting results in all cases for the open loop

*X* *control u (t) and trajectory X (t).

1. Problem Formulation and General Form of Solution

Consider the first order nonlinear system represented by

X. = aX + bu + cX (1)

This represents a class of systems such that the nonlinearity exists 

in the power of the controlled variable X; a, b, c, n are given

constants. We wish to find a closed loop control law u (X,t) and/or
* /  \ */ \ an open loop control u (t) coupled with an optimal trajectory X (t)

that will minimize the performance criteria
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v = £ J f («K2 + j3u2 ) dt (2)
to

subjected to the constraints given in equation (l). It should be noted 
that in most physical problems, the system depends on a prescribed 
range of initial conditions, thus they will be assumed to lie in a 
closed subset of a Eucledian Space, i.e.

For this reason, a closed loop solution is more desirable since it 
does not depend on any initial conditions. Of course, whenever an 
open loop control is required, a solution can be better useful for a 
given initial condition. Rather than specify now what type of problem 
we are dealing with, whether a fixed end problem or variable end 
problem, the problem will be formulated in general with the use of the 
Pontryagin Minimum Principle. So, if the Pontryagin control function 
is formed and the minimum principle used, the following is obtained

x(t ) e R for t e[t ,t ] o o x

H[X(t),Mt),u(t),t] = M o x 2+0u2] + M  ax+bu+cx") (?)

With (4a)

and _6H
6X -A. (4b)
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where H is the Pontryagin control function and X is the Lagrange 
multiplier. Equations (4a) and (4b) yield

(5)
and

X = -ax-X(a+ncxn“1) (6)

Upon differentiation of state equation (l) and substitution of u and 

X, the following results:

X = nc2x2n"1+ ac(n+l)xn + X ^ 2"*^-) (7)

Equation (j) represents a second order nonlinear differential equation 

whose solution gives the optimal trajectory x (t). Now if equation 

(7) is multiplied by 2x,dt and integrated, the following is obtained

•2 2. 2n _ n 2/ 2.ofo ) , _ (8)X = c^x + 2ac.x + x (a + Constant

Denote this constant by A . Next we solve for x and separate the 
variables to get the following integral equation.

„X ±
J   q/k2 o 1 = t + \  (9)

where A is another constant and g(x) is given by:



g(x) = aX + cxn
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(10)

*The optimal control u (X,t) may be found by substitution into the

state equation as:

u*(x,t) = “ ^g(x) ± [g2+ ^  x2* ^ ] ^ (11)

At this point u (x>t) as given in equation (11) does not qualify as an 

optimal closed loop control law because of the fact that the undeter

mined constants A and A depend on either the initial condition or1 2
the unspecified final condition.

2. Extension to Linear Case (C=0)

Case 1: tj- specified, x(t^) unspecified

The transversality condition as stated in equation (50) 
Chapter X may be reduced to the following:

X(tf) = 0 (12)

In this case

*/ X  f r 2 Ob2 / ^  fcf ̂ -î \u ( x . O  = 1  \-a±[a + ~jg~( 1- > (15)

x ( t f )With a simple transformation of variable z = — and with the use of
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the integral equation (9)> the following is obtained after some 
algebraic manipulation and proper substitution.

t) = X exP(26))\I X . b / a t  e2+v2 exp(20) /

for a > 0 
a < 0

and
*/ Nu (x.t) b /_a+r exP(~26))\ e^+y^ exp(-20)

for a > 0 
a > 0

where: £ = (a2 + ab2)̂

z2 = (1 + ^a)

Y = l+(l-e2)̂

For the case where 01 < 0, the following is obtained:

[-e2+Y2exp(+26)]|

for a > 0
2 Ob2
a 2 + ls > 0

W

(15)

(16a) 

(l6b) 

(17a) 

(17b)

(18)



where £ = (a2 +

y - 1 + (l+e2)^

(19a) 

(19b)

2 i +  M  r 1 , x3 = • / f e )  (20a)

6 = C(t-tf) (20b)

2 Ob2Note that for a < 0 and a H— jjp < 0, no minimum exists. For the 

special case when the final time is infinity (t̂  = 00), the following 
holds:

u*(x) = K-a-Cl a > 0, a > 0 (21)b

u (X) = £[-a-C] a < 0, Qt > 0 (22)

u (x) = rC-a+£] a > 0, a < 0 (23)

It should be noted that the solutions for u (X,t) and u (x) are the 
solutions to the Ricatti equation for this problem. This different 

approach in solving this linear problem will play an important role 

in obtaining a solution for the non-linear problem.
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Case 2. tj. specified, x(t^) = specified'

The problem now is much more complicated because one cannot 

use k(t̂ ) = 0 any more, but instead one has to use the given condition 
X^. Upon using equations (k-T) through (55) in Chapter II and substi

tuting the given quantities, the following is obtained.

u *(x .t )  = 'j b Xf- j b U o (t )  -  ( » )

where aQ(t), r(t) and S2(t) satisfy the following:

aQ = -2a0(t) a - a + a|(t) j- (25)

r = UifcfL- a) r(fc) (26)
p

with the boundary conditions:

S = V -  (27)

a0(tf) = 0 (28a)

r(t^) = 1 (28b)

S2(tf) = 0 ■ (28c)

Note that here, Tf = 1 and Y = Xf After some algebraic manipulation 

and separation of variables, the following is obtained
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a /t) = “ .  S-iSh-T  (PQ)a°^t; C Coshcp - a Sinhcp '29)

r( t) - (Coshcp-̂  Sinhcp) ^ (30)

< c # j w  (51)

where Q = (a2 + j|b2)^ (32)

cp = -C(t-tf) (33)

After substitution the values of ao(t), r(t) and Ss(t) in equation 

(2̂ ), the following results

* £xf ?f Sin2hcp + £
U X̂,t  ̂= ~b Sinhcp" ' ‘   a----^ Sinhcp( Coshcp- ^ Sincp)

* 1 /C\Note that there are conjugate points at t = Lt- - 7 arctanh^)]r <o a

3. Nonlinear Case C t 0

Case 1 y(tj) Unspecified, tj specified and finite

Assume that we start at tQ and that we wish to drive the

system from a given initial state x to an unknown final state xlt*)o £
while minimizing the performance function described in the beginning 

of the chapter. The integral equation (9) becomes
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(35)

*Since the final state is not specified then, X(t^) = 0 and u [x(tf),tf] 

= 0. Thus equation (11) becomes:

Note that in this case only the(+)is acceptable in equation (36) since 
X(t̂ ) = u(t^) = 0. The optimal control law in equation (36) is in

equation (37)* One may conclude that, although a feed back control 

law is impossible to obtain for a finite final time, an open loop 

control may be found for a given initial state x0* The problem is 

tremendously simplified and at least for an open loop solution only a 

numerical integration is required.

Case 2 y(tj.) Specified, t̂  Specified

u*(x.t) = £  -g  +  \lg £+ ^  (xa-x2(t£)) (36)

The final reachable state may be determined by

,x( tf) dX
(37)

admissible because it depends on the initial condition xq through

In this case we wish to drive the system from the given

initial state XQ to the final state Xf Equation (35) still holds.

The undetermined constant A is found using1



58

With x0> Xf and t̂  known may be found. Now the open loop 

solution is found by using both equations (35) and (38). The closed 

loop control law is not possible in this case since depends on the 

initial condition. In the next chapter, for infinite time optimization 
and some other particular cases an exact solution will be determined 

for the closed loop control law.

Trivial Case of= 0
*In this case u = 0 and by integration one finds that the 

optimal trajectory is given by:

*/ \ ' 
x„ <

a exp[a(n-l)(t-t0)J
1

n-1

a+ cX n 1 (l-exp[a(n-l)(t-tQ)])
(59)

with the final state given by:

r

a exp[a(n-l)(tf-t0)]X*Uf)
Xr = <

1
n-1

a+ cXQn  ̂(l-exp[a(n-l)(t^-tQ)]) > (^0)

V J

In the next chapter an exact solution to the Hamilton Jacobi

Equation will be developed one that will be more useful than the open 

loop solution established in this chapter.
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CHAPTER V
EXACT SOLUTION VIA HAMILTON JACOBI EQUATION

1. Case of Infinite Time Optimization

An exact solution to the Hamilton Jacobi Equation is in 

most cases impractical if not impossible for nonlinear systems. In 

this chapter an exact solution will be found for the case of infinite 

time optimization and some other cases where the final time is free 

and final state specified. The open loop control and trajectories 

will be determined and a feedback control law will be established.

The general form for the Hamilton Jacobi Equation may be 
taken from equation (20) in Chapter II

_*
The Hamiltonian H is determined by using equation (5) in Chapter III 
and we write

(1)

H[x( t) t) ,u(t) ,t] = &(c*x2+/3u2) + X(aX+bu+cXn) (2)

with (3)

and (*)
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* c VUpon substitution of A. and u in terms of the following results6X

H* = &*x2 + g(x) • ^  - & j f ^  (5)

Consequently, equation (1) becomes

i f  +  ^  +  s(x)  «  '  4 1  ^  " 0 (6)

Equation (6) represents the Hamilton Jacobi Equation for the problem.
For the case when t̂  "* 00, the dependency of V on time is eliminated

(•k— = 0) and equation (6) simplifies to:8*-

-(d^ 2 + B  g(x) d£ + bt ^  = 0 (T>

with the boundary condition V(o) “ 0. (8)
Upon solving for we get

^  = + fs g(x) ± [fj g2(x) + ^  x2]̂ (9)

where again

g(x) = ax + ex” (io)

The performance function V(x) may be found by integration, and we 

write



V(x) = + ^2 Sq s(x) dx ± J o  g2(x) + 0 ~  X2 ] dx + c
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(11)

At this time we do not need to carry the integration. The optimal 

feed back law may be derived using

u*

or

Ax( t) ] - £ < -s(x) + (g2 + 2bsx2)4 ? (13)

As it can be seen, this is exactly the same result as equation (k.3 6 ) 

for xCtj) = 0. This is obvious because when t̂  00 the Hamiltonian 
0, thus

— * * .* ,
H [X ,u ^  ,t]| _ ro= 0 (Hi)

Cf

which implies that x( ) | _̂ ro= 0 (15)
1 uf

So u (x) as given in equation (13) is an exact solution to the 
Hamilton-Jacobi Equation. It is also interesting to notice that for

C Vthe most general case when t,- is finite for which t 0, the exactf 6fc
solution is impossible to obtain because of the dependency of the 

control on x(tf)* Nevertheless, a relation may be developed between 

u (x,t) and u (x).
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Here U *  (x) =  u * ( x » t ) | (16)

and u*(Xtt) = £ g ± l - ^ p -  X2(tf)+(g+bu*(x))2] (IT)

u (x) - optimal closed loop control for t̂  = 00
* /  \u (X>t) = optimal closed loop control for t̂  finite

*Now, once the optimal control law u (x) is obtained the optimum
*/trajectory x (t) may be determined in the following manner. We start 

with equation (4.35) where x(t^) = 0 and write

Where the initial condition x(to) = X0 (given). Upon transformation 
of variables

(18)

n-1 (19)v = cx

dv = (n-l)cx11 2dx (20)

Equation (18) becomes

(21)



Note that v = c x" ^

By defining
J2. - a2 . dbf Y " a + £

0/ = ( n - l ) ( t - t 0 )

The integral equation now becomes

v dv±6' = J
v v(v2+2av+Y2) o

1

The integration of equation (25) may be performed, and after 

algebraic manipulation, one gets:

X (t) =
p
"_Yro exp (+9)
L-fr0exp(+e)-^J2

1 
n-1

valid for a2 + Ob2 > o

where



6b

0 = Y(n-l)(t-t0) (28)

2
For a < o, a2 + < 0P

In this case, although a solution exists for the optional trajectory 

X (t), it does not correspond to an admissible control u (x). In this 

case x is given by:

2
* 1X (t) = ________c______  (29)

a-(-e2)̂ sin( 0+0n)

where 0O is determined by

n-1 2ac Xo + Y

Sln'80) _ C x o - V ^ ) *  (50)

and 0 = (n-l)(t-t0)(-y2)^ (31a)

e2 " X  (51b)

For an optimum trajectory to exist it can be shown that the following 

should be satisfied

e2 + (cx11  ̂+ a)2 < 0 (32)
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Equation (17) clearly indicates that

u = k \~S ± X [e2+(a+cXn_1)2] (33)

*which shows that u (X) is complex and is not admissible. This is a
*X*logical result since X (t̂ ) in equation (29) does not come out to be

zero, a condition which should be satisfied in order for H 00 = 0.
Consequently the only solution that yields an admissible control
*/ \u (XJ is the one for which a > 0, i.e

*/ \X (t) =
_2- y rQ exp(+6)

l-[roexp(+0)- —]2Y

1
n-1

(3*0

with

.*
u (X) i <-g±C82 + X2]' (35)

and both a,f3 > 0.

Although equations (3*0 and (35) indicate that the optimal solution 

is not unique, it can be easily shown that only one of the solution 

is admissible. For instance, looking at the optimal trajectory given 

in equation (3*0> there exist some values of time for which X (t) 

becomes unbounded. In order to avoid these singularities which make 

the closed loop control inadmissible, one rejects the solution that 

yields a singular point. Thus, if there exists a finite time t in
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[t0,tf] such that x (fc)> hence u (x) becomes unbounded, then the 
control u (x) is inadmissible. Equation (3*0 clearly shows that the 
denominator is zero for

exp ( + 6) = K ,K (36)1 2

1 +  -
where K =  ^ (37)

-1 +  -
K =  * (38)
2

If either K and K are greater than 1 then there exists a 0 such that 1 2

exp (0) = K ,K (39)1 2

and the (+) in equation (3*0 constitutes an inadmissible trajectory.
On the other hand, if either K and K are less than 1 then there exists

1 2
a 9 such that

exp (-0) = K ,K
1 2 (*■0)

and the (-) becomes inadmissible. So:

X*(t) = <
n-1

(exp(-0)-K )(exp(-0)-K ) 1 2
(U)

for K ,K > 1
1 2
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(t) =
2y / n-1— *— exp (8) I

X '(exp(8)-Ki)(exp(e)-K2) • ^ 2')

for K ,K < 1
i a

* /  \Now, the admissible control u {■%) is unique and it can be shown that 

since for the case when t̂  = x(Cf) = °> X (°) <0* Thus the 
optimal feed back control law is

u (x) = J -̂g(x) + (g2 + X ^  (̂ 3)

for x(0) < 0

and u (x) = ~ <̂ -g(x) " (g2 + ^ f X 2) / (^)
for x(0) > 0

An example problem will be next worked out to illustrate the method.

2. Example 1

To illustrate this method of solution, consider the problem 

of minimizing the performance function

V = J* (x2+ ^ )  dt (45)
o
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Subjected to the nonlinear differential constraint

(46)

The optimal closed loop control is determined using equations (43) and 
(44) with:

Thus,

n = 3

a = a = j8 = b =  l 

c = -1

g(x) = x -x 3

u*(x) = X3-X±(x6-2x4+2x2)̂ ( W

where again the (+) is the branch for negative initial conditions and 

the (-) for positive initial conditions. For this particular example 

consider the cases where x(0) = ±1 anc* x(0) = ±5* F°r x(0) = 
the solution for the optimal trajectory is

*
X (t) = ±  <

4.828 exp (2.828t)

[0.707 + 1.707 exp(2.828t)]2-l > (48)
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For x(0) = +3> the solution is:

*/ \X (t) = ±
[0.707 + 0.3^6 exp(2.828t)]2-l

0.9785 exp (2.828t)
(̂ 9)

The optimal return function or V(x) is determined by direct integration 

as

This represents the exact solution to the Hamilton Jacobi Equation

figure I, II.

3. Case When Final Time is Free, Final State Specified

In the previous section we assumed that the final time is 

extended to infinity and an exact solution was obtained. In this 

section, the performance index will be altered slightly as to include 

variation in the undetermined final time. The final state t̂ ) = x^ 

will be assumed known. The performance function is written as:

V(x) = 3r - ^  + k f(x2-D(x4-2X2+2)^+ Log[X2-l+(x4-2x2+ 2 ) H +  0.575
for x(0) > 0 (50)

for x(0) < 0 (51)

for this problem. Plots for u (x) and a family of x (t) are shown in
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V = 0(t ) + / f(ibx2+££u2) dt (52)
to

Upon adjoining the extra equality constraints to the problem, the 

following transversality conditions result

H*Cx(tf),X(tf),t£] = - if (53)

Keeping in mind equation (h-. 11) we may write

u (X»t) = £ ^g(x) ± [g2+9|-X2+Ai] ^

Using equation (53) it can be shown that

\  '  I T  &  (55)

and the optimal control law is given as

u*(x,t) = £ ^g(x) ± [g2 + ̂ ° ^ 2+2dff)̂  j (56)

dQ Q
where rrr replaced because 0 * 0(t,.). Of course equation (56) 

f  ̂£
could have been derived by direct solution of the Hamilton Jacobi 

Equation. For instance, equation (l) yields
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§: + + g(x) ^  | ̂  (^)S “ ° <57)

with V[x(tf),tf] = e(tf)

sVSolving for one gets:6X

= £_
6X b2 §(X) ± ^  g2(x) + ̂ (X2+2^)J (58)

By comparing this equation to the optimal control equation we find that

£V = d0 
6t “ dt.

Note that because of the complicated nature of the solution, we will 

assume that 6(t̂ ) is linear in t^ which makes the control in equation
/ s\ *(56) admissible. In this manner, u is only a function of x> thus 

= constant and a solution is possible for V(x>t). The optimal 

trajectory x (t) again satisfies the following integral equation

X dX

(59)

/ \ *For a given initial condition x ( ) = X » bhe trajectory x iso o
completely determined. The final time t̂  may be found by the following
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,.Xf dX
t£ Cn “ ̂  r 2 b2/ 2 dSTyE (̂ O)

°  xo [g2-» j:(flx2+ 2 ~ F

An example problem will be next worked out to illustrate the method.

k-. Example II

To illustrate the method of solution, consider the problem 

of minimizing the performance function:

V = tf + £ J f (u2 + 3x2)dt (61)
o

subjected to the nonlinear differential constraint

X = X2 + u( t) (62)

such that the system is driven from any arbitrary initial state 

x(0) to the origin. Note that this represents a nonlinear minimum
■X*time problem. Equation (56) gives the optimal feed back law u (ŷ) as

u* ( x )  = -x2 ±  Cx4+3x2+2]2 (63)

where(+)is used for x(0) < 0 and(-)for x(0) > 0- Assume next that 

we wish to find a family of optimal trajectories for x(0) = ± 2 and 
X(0) = +1. The optimal trajectory satisfies equation (59) > thus
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pX dX
t = ± J  -------- t (6k)

XQ (x4+5X2+2)«

By making the complex transformation

X= -j Sin(cp) (65)

the integral in equation (6k) becomes:

cp dcp
t = ± 0.70Tj J* --- ---— x (66)

cpQ (1-K Sin cp)̂

where in this case K2 = 0.50. This integral may be recognized as an 

elliptic integral of the first kind which is written as

cp dcp
F(K’t,,) = J1 77""a, e 'i (67)o (1-K Sin cp)

By breaking the integral in equation (66) into two parts the following 
results

t = ±0.7C7j [F(K,cp) - F(K,cpo)] (68)

Here cp, cp̂ are complex numbers. Next another transformation is 

introduced to get rid of the complex arguments,

9 = J?



where cp is real, and using an important property of the elliptic 

integrals that is written as:

f''
F(K,cp) = jF(K',cp) 

where .. K/ = (1-K2)̂

_ r*and cp = - jcp

Equation (68) becomes

t = +0.707 [F(K',cp)-F(K',cp )]o

Note that because of equation (72) we have

X = Sinh(cp)

For the case when xo = 90 = 50.4°and F(K/,cpQ) = O.935. When
(V ^

X = +2, cp = 83° and F(K ,cp) = 1.68. Also note that since x^ =o “ o o f
then F(K,,cp̂) = 0. The final time t̂  is determined by

tf = +0.7C7 CF(K/,cpf)-F(K/,9o)]

Thus, for x = +1 > t- = 0.66 secondo — f
and Xo = ±2 > t̂  = 1.19 second
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Now the solution is completely determined. The optimal return function

V(X), a solution of the Hamilton Jacobi equation is given by

3 1
V(x,t) = ± I* (X4+3X2+2) dx + e(t)+C. (76)

2 o

where 0(t) = t and Cx is a constant of integration.
> 0 and (-) for x(0) < 0

X  %
let l(X) = J (X4+3X2+2) dX

o

equation (76) becomes:

v(x ,  t )  = | “  ± I(X) + t  (78)

Note that because of the boundary condition ( v ( 0 , t ^ )  = t^), Cx = 0.

The solution for l(x) may be shown to be a combination of elliptic

integrals of the first and second kind. It is omitted here because it
*does not add anyting to the control problem. Plots for u (X) and a

* /  \family of X (t) are shown in figure III, IV.

5. General Classification of Problem (t̂  = °°)

It was seen that an exact solution to the Hamilton Jacobi 

Equation was found for a one dimensional nonlinear class of problems.

In most physical systems one is dealing with a multidimensional

Here (+) for X(0)

(77)
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problem. In this section a class of m dimensional system will be 

derived such that the solution obtained previously apply for the tri

dimensional case.

Consider the class of systems such that:

(m) (m-l)
y(t) = g( y ) + b u(t) (79)

(m) dm
where y(t) = — jjj and g is a nonlinear function in the (m-l)th 

dt
derivative of the variable y. Assume next, that we consider a class 

of problems in which we wish to minimize the cost function

where the state variables are chosen the following way

\  = y (8i)

Xx = X2 (82)

V i  = <85)

^  = 8 + bu (8k)

The Hamilton Jacobi Equation for this class of problem takes the 

following form:
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S  ' C  • S  + * °*m£ • I  St. ’Xi+1= ° (85>4t 0 6Xm ' e - 8X„ m £  6X.
1 =  1

If no constraints are applied to the final state and if the final time 

is extended to infinity, it is easy to show that:

J Y - i V . W ------- W _  (86)
6t i,Xi h'/.z 8Xm _1 K 1

Hence, one can solve for as:
m

dV _ . 0 , j rfif 2 Og x 2-,S ,
dX b2 ^  m ; -  b4 8 te m J 1 *'m

The optimal control is given by:

«* - ±  (88)

*. .The optimal trajectory is given as:

y dX
* i^,A, r 2 . 0b2 a,£ (89)X„j(0) [g + o^X ]

dX  b
al
/? ,'m

With the knowledge of the m-vector X(0), the desired optimal output
•X*. \y (t) is found by successive integration

y*(t) = XT— J* dt (90)
fchm-l integration
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with X(o) = [X^o) X2(o)*-*Xm(o)f (91)

To illustrate this result, consider the problem of minimizing

V = £ J* (y2 + u2) dt (92)

subjected to:

with

• • • O  . • ,y = -y° + y + u 

y(o) = y(o) - 1

(93)

By letting y = X> the optimal control is given by:

u = y3-y-(y6-2y4+2y2 )̂ (9*0

and

• * /  V
y ( t )  =

b-,828 exp (2.828t)

[0.707 + 1.707exp(2.828t)]2-1
(95)

/ \It can be shown by transformation of variables that y (t) is an 

elliptic integral of the first kind. An exact solution for y (t) 

becomes more and more involved for higher order systems. At any rate 

the problem becomes just a mere integration. For this particular 

2nd order system the integration could have been carried out to yield 

an elliptic integral of the first kind.



DATA

± x |u*|
0.20 0.47
0.30 0.68
0.40 0.8 6
0.50 1.00
0.60 1.096
0.70 1.143
0.80 1.138
0.90 1.087
1.0 1.000
1.5 0.526
2.0 0.320
2-5 0.236
3.0 0.186

f ol
o
\

\

-2. O
\

■1.

-O' o '

1.0

\

\

2.

Figure 2.
i t x

Optimal Control Law u*(x) for Example I.
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3. o
x*( t)

DATA

\

\

t Ixl Ixl
0 1.0 3.0

0.5 .582 1.06
1.0 .305 .621
1.5 .1 5k .306
2.0 .076 .165
CO 0.0 0.0

1. 0.\ \

X(o) = 1.0

x(o) = 3.0 

'G\
'O'- ^ o  —

0 1. 
x(o) = - u ^ c r

O'
o

.0^

-1. o
/

■3-

of X(o) = -3.0

/
/

t

t

Figure 3* Family of Optimal Trajectories for Example X.
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A u*(X)

0—  —O"

-5. -4. -3.

DATA

X u*
0. ±/2
0.25 - 1.56
-0.25 1.43
1.0 - 3*^5

-1.0 1.^5
2.0 - 9.48
-2.0 1.48
3.0 -19.5
-3.0 1.49
4.0 -33-5
-4.0 1.49
-5. 1.5

-G—  —0—

-1.

/2

,r/2 
\

1. 2. 3.

-10

-20.
\o

4. 5. X

Figure 4. Optimal Control Law u*(x) for Example II.
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A X*(t)

2.0

1.0 x(°) = 2.0

^  X(o) =1.0 G
'tk o

'Xk

DATA

t Ixl Ixl
0 1.0 2.0

0.1 0.84 1.78
0.2 0.69 1.60
0.5 0.24 1.03
0.67 0.0 0.71
0.9 -- 0.41
1.18 -- 0.0

0.1 0.2
o 0^ 0.67 1.0 

G ̂
1.18 t

J2<

■1.

X(o) = -1. ^  O
o

/ 0 x(o) = -2.0

•2. O'/

Figure 5. Family of Optimal Trajectories for Example II.
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CHAPTER VI 
NONLINEAR CONTROL OF FEEDBACK SYSTEMS

The theory of nonlinear control systems is stated as follows 
from reference [10].

"The most important thing about feedback systems is that 
they can be controlled either linearly or nonlinearly. If the system 
has inherent nonlinear characteristics, it is possible to introduce 
linear compensating networks to improve the system performance. If 
optimum system performance desired in a control system cannot be 
obtained by combination of linear transfer functions, it is most de
sirable to introduce nonlinearities into the control system. If the 
system has inherent nonlinear characteristics, linear compensation 
and nonlinear control can both be introduced."

In short, the newest aspect of feedback system control is 
the development of the theory of nonlinear control system.

In the discussion and analysis of feedback systems only 
systems with nonlinear control in the feedback branch will be studied. 
Although, present efforts are mostly concentrated in introducing non
linear control in the forward branch, nonlinear control in the feedback 
branch is considered mainly because the analysis is simpler and the 
equations describing the system are much easier to handle.

The important thing that one has to forsee in the study of 
nonlinear systems is that almost all the methods that have been used



for linear systems cannot be applied to nonlinear systems. The 

principle of superposition is not applicable to nonlinear systems. 

Heaviside, Fourrier, and Laplace transforms, which have aided in 

transient solutions and supplied transfer functions in feedback systems, 

are no longer applicable. Nevertheless, by proper selection of the 

state variables and for a certain class of nonlinear systems and 

performance functions exact solutions will be obtained for the dynamic 

optimization problem.

1. Formulation of the Problem Representing Nonlinear Control In 

Feedback Branch, and Selection of State Variables

Consider the feedback control system shown in the block 

diagram of Figure I, where G^s) and G2(s) are the linear transfer 

functions respectively in the forward and the feedback branch, G ^  being 

the nonlinear function in the feedback branch. Thus, if the controller 

is in the feedforward branch as shown, the activating signal (e) is 

equal to the difference between the input function (u) and the feedback 
signal (b).



D(s)

Figure 6: Block Diagram of the Nonlinear System

All the required notations in this chapter are as follows:

U(t), U(s) = Input function, its Laplace transformation 
b(t), B(s) = Feedback singnal, its Laplace transformation
e(t), E(s) = Actuating signal, its Laplace transformation
m(t), M(s) = Control effort, its Laplace transformation 
Y(t), Y(s) = Output variable, its Laplace transformation 
d(t), D(s) = Disturbance function, its Laplace transformation 
s = complex number
t0,t^ = initial and final time

It will be assumed that the system represented in Fig. I belongs to 
a class C0 such that the following is satisfied
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a) G-^s) is a linear transfer function in feedforward branch. It 

does not possess any zeros and its poles are distinct. We write

Gi ( s) ~
n
^  i; a. s L> 1
i=0

n
V1where all roots of > a.s. = 0 are distinct.L> ri
i=0

all of these poles, then:

-l
(1)

If S.̂ is the set of

si e Sx ; i=l,•••,n

b) G2(s ) is a linear transfer function in the feedback branch of the 

form

Go(s) =
i=0

"l

(2)

when k < n and all roots of Gg = 0  are distinct. If S2 is the set 

containing all of these poles, then

s e S2 ; i=l,*■*,k

It will be also assumed that



i.e. Sx 0 S 2 = 0 (empty set)

c) d(t) belongs to a class of disturbance function such that: 
d(t) is bounded and continuous with continuous 
derivatives in [tQ, t^]

With all these assumptions in mind, one may now write the equations 
relating the different variables of the system

E(s) = U(s) - B(s) (5)

Y(s) = D(s) + E(s) Gx(s) (*0

M(s) = Y(s) Ga(s) (5)

Let X be the nth dimensional state vector such that

p(t) = cT X (6)

with cT = [l-’-l]T, X = [x ••• Xn]Ti n (T)

It is obvious that p(t) is the output to the system whose transfer 
function is G1(s) and input e(t).
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One may write

P(s) = E(s)__________  (8)
a ( s-s-, ) (s-s„) • • • (s - s ) n x 2 n'

where P(s) is the transform of p(t). Upon applying the result of 

Chapter III, the following results:

nP(s) = JL < Y ,  ^  E(s) )  (9)a I . , s-s.n x=l i

Note that (i=l,*-*,n) are the residues. Upon assigning a state 

whose transform is given by:

X.(s) = ttiE^ i=l,‘**,n (10)
a (s-s.) n' x

the following state equation results

X = X + _a_ • e(t) (11)
an

Twith output p(t) = c X (12)

and y(t) = d(t) + p(t) (13)
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Here a = a • • • a
L 1 nJ

(n)

O

v (15)o n

The control effort is related to y(t) by the following

relation

y ( t )  =

k

I  b. (m\t)
i=0 1

(16)

Now, using the same procedure for the transfer function G2(s) as the 

one used for G^s) and with the help of equation (5), one can write

M(s) =  xLsi
b. (s-s, . )( s-s„ , )... ( s-s, , ) k l+n'v 2+n v k+n

(17)

where sn+1> ''*> sn4.jc are k-distinct poles of G2(s). By assigning 

the state whose transform is given by:

Zi+n(s) =
k' i+n

( 18)
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where y ^  (i=l,-»*,k) are the residues of the system described in 
equation ( l j ) , the following state equation results

Z = A Z + _y_ • y(t) (19)

with output mi(t) - c1 • Z (20)

Here, Y \
(21)

and A_
l+n

k+n
(22)

The next step is to combine the two transfer functions 
G1(s) and G2(s) by recognizing that

M(s) =D(s) • Ga(s) +E(s) • G1(s) • Ge(s) (23)

or:
M(s) = __________ E(s) __________________

(a b )(s-s,)•••(s-s )( s-s, .)•••( s-s, .) v n k/x i' ' n' i-hr v k+n7
(2k)

+ __ D(s?
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Let cp( t) be a function of time such that its transform is given by

9(s) = . D(s)_________  (25)
b, ( s-s . ) • • • ( s-s. , ) k i+n' k+n'

k
Consequently: <p(s) = / Yi • D( s) (26)

b.(s-s.. ) i=l kv l+n

Upon inversion back to time domain and with the use of the Convolution 

theorem the following is obtained.

k
■PU) “ Y, —  J" d^  " exp[Sl+n^t"T  ̂] dT ^

i-1 bk °

Since we are dealing with a finite summation, we can write

k
<P(t) = f  I  d(T) • expjV^U-T)] dT {a8)

0 1=1 bk

The first term of equation (24) may be written as:

n+k
1st term = Y  E(s) e-j (29)

.'Lj] b, a (s-s.) i=l k n' 1
where (i=l, * • • ,k+n) are the residues of the product G1(s)•(G2( s). 

Note that equation (29) is only valid for distinct poles, which was the 
assumption at the beginning of this chapter. By selecting the state 

variables whose transforms are:



the following state equation results

= A r + s • e( t)
b, a k n

(31)

with output equation as

ml
n+k

(t) = <p(t) + £  r.(t)
i=l

(32)

where, - [ *
-i1•• rn+^ I > n+k vector (33)

- E *
-i T

* *' en+k J ’ n"*"̂ vector (3*0

and \ o
A =

O n+k
(35)

cp(t) is given in equation (28).

It is important to note that, although we are dealing with a 

nonlinear system with input function u(t), it is easy to see how the
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actuating signal e(t) plays the role of an input function to the linear 

system represented in equations (ll) through (15). The nonlinear 

network in the feedback branch is assumed to give the following 

functional relation between the feedback system signal b(t) and the 

control effort m(t) and its derivatives. Thus,

formulated and a solution will be otained for a specified initial 

condition. The differential system described in equation (31) through 

(35) will be used as the constraint to the minimization problem.

(36)

In the next chapter the optimization problem will be



CHAPTER VII
OPTIMIZATION SOLUTION OF A FEEDBACK SYSTEM

1. Problem Formulation

In most feedback systems linear or nonlinear it is 

desirable to achieve a best performance. This is obtained by 

minimizing the cost function of the form

v - 4 L f e* dtto

subjected to the constraints, as stated in Chapter VI, equations 

31, 32 and 36.

r = A r + e . e(t)
b. a k n

n+k
m(t) = cp(t) + 2

i=i

and
b(t) = gn2

Such that the system represented in these equations is driven 

from a specified initial condition to a specified final one. We 

denote these given conditions by

(1) (n-i) T
Y(t0) - Y0 = [y(0) y (0) ••• y (0)]
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and
(0Y(tf) = yt = [y(tf) y (tf) • o •

(n-i) T
y (tf)] (6)

Next, it is worthwhile to show that the dynamic optimization
of the nonlinear system with respect to either the input u or the 
function g , reduces to the optimization of the linear system with 
respect to the actuating signal e. For instance, consider the 
system given in equations (2) through (k ) and eliminate the third 
constraint b(t) = g ^ 2  by substituting e(t) by u-gn2. The following 
is obtained:

where \ is the (n+k) co-state vector or Lagrange multiplier.

r (T)

with output
itbk

m(t) = cp(t) + S ri( t)
i=x

(8)

The cost function to be minimized becomes:

V (9)

Next, the Hamiltonian is constructed to yield:

(10)



Now, with the use of the "Pontryagin Minimum Principle"

and

f  - °6u

6H _ —
If ” - X

We get:

and

u*( t) - g* + t— —  = o' ' &n2 b. ak n

Note that the * indicates optimal conditions.

Equations (13) and (1̂ +) are simplified to yield the following:

T = _  a I
and

_T _
e*( t) =  §

b a k n

This represents the same result if one minimizes the cost 

tf
V = ■§■ f e2 dt subjected to the constraint

to
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2. Optimal Trajectories and Output Determination

Assume that the system is to be driven from the given 
initial state Yo to the given final state Ŷ , both given in equations 
(5) and (6). The optimal control effort m*(t) is found in a similar 
manner as equation (3.11), except now one takes into account the 
contribution of the disturbance function through the function cp(t). 
For instance,

n+k
m*(t) = cp(t) + S rA( 0) •exp(sit) +

n+k n+k 
S E

i=l

eigj * ^
1=1 j=i W (st + sj>

exp(-s^t) - exp(sjt)
(18)

where r^o), X^(o) ( l = i> • • •, n + k) are still to be
determined. With the use of equations (3*7) and (3*8), the optimal 
actuating signal is given by:

e*( t) h<o) ei (19)
i=i a b n k

The residue vector and the initial state vector are determined in 
the same manner as in Chapter III by decoupling the real and 
imaginary parts of vectors and matrices. Thus,

or
e = V_1 Kq

■5*1 . O ) ' 1 Koo

(20)

(21)
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where:

K q o KqT I 0l x k+J 2n + 2k vector
(22)

Kq -  [o 0 1]
and

V,RI VR_ I
V  ! .R

n + k  vector (23)

2n + 2k x 2n + 2k matrix

(24)

Note that V is the Vandermonde matrix whose elements are defined in
terms of the poles s.̂ (l, • ••, n +  k).

Because of the presence of the transfer function G2(s) in
the feedback branch, the problem requires also the knowledge of 

til(K-l) initial conditions for m(t). For example, we will assume
that in addition to equations (5) and (6) the following is known:

r (x) (k-x) i T
M(t0 ) = m(0) m ( 0) . . .  m (o) ( 25)

and
M(

r  (o (k-o itf) = ^m(tf) m (tf) ... m (tf)J ( 26)

This is easily understood if the final n + k  order differential 
equation is written with m(t) as the variable, thus the requirement 
of the knowledge of (k + n - x) initial and final conditions.



Next, the initial condition vector r(0) is determined by 

the equation

r(0) = V" m (o )

M(0)

where M(o) = M(t0) is given in equation (25 )  and is a k vector. 

M(0) is a n vector given by the following:

, T
f(k) (W-l)

M(0) = L m
kJ-n-

(0) (0)

and

(oj

r (l) (khn-i)]
= I 9 (0 )  9  (0) • • •  9 (0)J9(0 )  = %  = |^9(o) 9

Still undetermined is the vector M(0), but by using

k (i) 
y(t) = E b m (t) 

i=0

and by expanding and solving for the derivative of m(t) and 

evaluating at the initial and final times, one gets:

(k) k-i (i)
m(o) = v( O) _ E b. m( 0)

k i= 0

(W-l)m (0) (1) k-l (i+i)
_ E b . m (0) 

i=0

By successive substitution the vector $?( 0) can be obtained. The 

same procedure may be applied to get fl(t̂ ). For instance,
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(k)
m(tf) =_ y ( t

k-i (i) 
fi _ S bi m(t-) (33)

i= 0

and
(kt-x)
m (tf)

(0 
_ y(t k-i (i+i)

S bi m (t ) 
i=0

(3*0

Equation (2j) is now completely determined. At the final time a 

similar procedure yields

where

r(tf)

9f =

" V_1<
M(tf)

s u p

(i)
<P(tf) cp (tf)

(35)

(36)

The co-state initial conditions are obtained in the same manner as 

in Chapter III. For instance, we define the following terms:

Rfcij&
b 2a 2( s. + s ) k n x i j

exp(-s. t)i exp(sjJt)i (37)

i, A - lt •••» k + n

Real [exp (At) ] ( -Im[exp(At)] 

Im[exp(At)] ! Real[exp(At)]
(38)

Where again Real indicates real part and Im imaginary parts.
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pt -

Note that:

and

Real(RtT) j -Im(RtT) 

Im(RtT) | Real(RtT)

PT - Pt (t - tf)

T = * (t - t J

With the help of equations (3“59) through (3.67), the co-state 
initial condition vector is determined by

_RI RI RI
\ ( 0) = PT“ . r ( t f ) -  PT" 1 Yt  r (o )

with:

RI XR RI
R

r(0)
= — — and r (0) = I

X1 JKo)

The optimal trajectory vector is given by

RI
r*(t) = Y - P P 7 t t T T

RI RI
. r(0) + Pt PT" r(tf)

or even better as:

RI _RI RI
r * (  t )  = Pfc \(0) + Yfc r(o)

(39)

(iK)a)

(M>b)

m

(fe)

(̂ 3)



The optimal control effort as:
T

m*(t) - <P(t) + C1 I0lxk+n
RI

. r*(t)

where

C = [ 1 1 1 ] , n + k vector.T

The optimal value of the actuating signal is:

_1e*(0 = TT7" 2 MO • e-b a ik n 1=1

Finally, for a given value of (nonlinear function of m), the 

required optimal input u*(t) that will minimize the given cost 

function is determined by:

The optimal output to the system y*(t) is obtained by using:

u*(t) = g* + e*(t)

Here

k (i)* 
y*(t) = S b± m(t)

i=0

Next, an example problem will be worked out to illustrate this 

method of solution.
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5. Example Problem

To illustrate the optimization scheme applied to a practical 

feedback system, let us consider the system represented in the block 

diagram of Fig. I. We will assume that the disturbance function d(t)

- o e flr 1
s( s2+l)

D(s) = D0

T

m
Sn2 1

s+1

Figure J: Block Diagram for the Nonlinear System

is a step function of magnitude D0. Without any loss in generality

D0 will be assumed equal to unity. Also consider the case where

the nonlinear network g in the feedback branch is specified andn2 c

is

Sas (“> vaf (5D



10k

We propose to transfer the system represented in the block diagram 
of (Fig. 7) from the given initial output vector Y0 to the final
output vector Ŷ ,.

and
Yo = [y(o) y(0) y(o)] (52)

YT = [y(tf) y(tf) y(tf) ]T (53)

such that the cost function 
that:

2TT
e2 dt is minimized. Assume

(0) = y(o) = y(°) - y(o) = 1mi

m( 2tt) = y( 2tt) = y( 2tt) = *y( 2tt) 

First, the poles of the system are ordered as:

0

-j 
j 
-1

= 3

si =
s2 =

53 =
54 =

and the Vandermonde matrix V is:

V

1 1 1 1
0 -j j -1
0 -1 -1 1
0 j -j -1

(5*0

(55)

(56)
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The Vandermonde matrix is then inverted to yield:

V-1 •25(j-i) 

■ .25(j+i) 
-0.50

1

■0.50

■0.50
0

- .25(j+i) 

•25(j-x)
-0.50

The residue vector e is found by using equation (20) e = V 1 Ko 
where

Kq = [0 0 0 1]

Thus:

e = [1 -0.25(j + 1) 0.25(j -1) -0.50]

The initial and final state vectors may be determined by using 

equations (27) through (36) with

(57)

(58)

(59)

M(0) = 1 and M(t^) = 3

^
' 0 1 *0

1

y(tf)-m(tf)

M(o) = y(0)-y(0)+m(0) and M(t^) = y(tf )-y(tf)+m(tf)
y(0)-y(0)+y(0)-m(0) y( tf )-y( tf )+y( tf )-m(tf)

(60)

Upon substitution of the given values the following is obtained.

0 0
M(o) = 1 and M(tf) = 3

0 0
(61)
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Integration of equation (6.28) yields:

cp(t) = l-e"* (62)

and by taking respective derivatives and evaluating at the initial 

and final time equations (29) and (36) become:

and

Next by using

and

%  - [0 1 -1 if

cpf = [0.998 0.0019 -0.0019 0 .0019J

r( 0) = V.-1

r(tf) = V-1

M(0)
M(0)

M(tf)

M(tf)

r>j
_ <fb

_ cpf'

the state vector initial and final conditions are:

(63)

(6b)

(65)

(66)

r(0) = [1 -0.50 -0.50 l]1 (67)

*(tJ = [5. -1.50 -1.50 0.0019] (68)

We then determine the matrices Y and Ŷ, by using equation (38)

Yfc =

1

0

0

0

0

exp(-jt)

0

0

0

0

exp(jt)

0

0

0

0

exp(-t)

(69)
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1 0 0 0
0 1 0 o
0 0 1 0
0 0 0 0.0019

Equation (37) allows the evaluation of all elements of RfcijJ. After 

substitution of residues and poles in the equation, one gets

RX1 — -t (71)

r12 = C 1 " exp(-jt))
4

(72)

R l3 = ± L i (! " exp(jt))
4

(73)

R l4 = 0 . 5 0  (1 - exp(-t)) (7*0

R 2l i r j  (exp(jt)-l)
4

(75)

R 22 = - j  sint
8 (76)

R 23 = -J: exp(jt)
8 (77)

R 24 = [exp(jt) - e x p ( - t ) ] (78)

R 3l = i ± i  (exp(-jt)-l)
4

(79)

R 32 = -t exp(-jt)
8

(80)

R 33 = j  sint
8

(81)

R 34 = - £  [exp(-jt) - e x p ( - t ) ] (82)
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R4i 0.5i (exp(t)- 1) (83)

R42 “ 18 [exp(t) - exp(-jt)] (84)

R43 = 18 [exp(t) - exp(jt)] (85)

R44 = 18 [exp(t) - exp(-t)] (86)

It should be noted that whenever (s. + s„ = o) which is the case 
for all conjugate poles, equation (37) becomes undeterminate. In 
this case, L fHospital rule is used. For example:

Rt(23) =
b. 2a 2 k n

exp(-s2t) \ 1 - exp[(s2 + s3)t]

s2 + s3

Thus by letting To = s2 + s3

(87)

Rt( 23)
6263 exp(-s2t). Limit

To -+0b 2a 2 k n
1 - exp(Tot)

To

which yields

Rt(23) = -t e2e3 exp(-s2t)
b.'sr2k n

(88)

(89)

The matrix P̂ , evaluated at the final time is given as

PT *= r/ u (90)



Upon substitution, this matrix becomes:

Its inverse is found to be:

-6.2832 0 0 266.4

0 0 -0.7854 -66.6
0 -.7854 0 -66.6

0.499 -.12475 - .12475 -66.72

to be:

-0.2971 0.276 0.276 -1.7372
0.276 -0.552 -1.825 3.^745
0.276 -1.825 -0.552 3-^745
- .00325 O.OO65 0.0065 -o.o4i

(91)

(92)

The co-state initial condition vector is next determined by using 

equation (4l). After matrix multiplication, the result is:

X(0) = [-1.7404 3.481 3.481 -0.026] (93)

The optimal trajectory r*(t) is obtained by using equation (44). 

The result is given as:

rx*(t) = 1.7405t + 1.7405 (cost + sint) - O.OI3 exp(t) - O.7276

(94)

r|,| = -0.43513t cost - 0.43513 sint - O.435I3 - .06812 cost +

.OO325 exp(t) (95)
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r|(t) = 2.7373 exp(-t) + O.OO325 exp(t) - O.8703 cost - 0.8703 (96)

Equation (45) yields the optimal control effort m* as:

m*(t) = 1.721051 + 0.7341 cost + 0.8703 sint - 0.8703t. cost

+ 1.7373 exp(-t) - .00325 exp(t) - l.lf-681 (97)

and the optimal output y* is found as:

y*(t) = 1.7405t + O.73U  cost + 0.1362 sint - 0.8703t cost

+ 0.8703t sint - .0065 exp(t) + 0.2724 (98)

The optimal actuating signal e* is:

e*(t) = 1.7405 + 1.7405 (cost-sint) - .013 exp(t) (99)

The value of the optimal input u* that will minimize the cost

function in question is:

u*(t) = [nr*(t)]2 + e*(t) (100)

where e* and m* are given in equations (97) and (99)•

In this chapter an optimal solution was obtained valid for

a specified initial condition. In the next chapter a solution will

be obtained, one that is valid for a family of initial conditions.
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CHAPTER VIII
SOLUTION TO THE NONLINEAR SERVOMECHANISM PROBLEM

1. Form of the Solution

In the preceeding chapter an optimal solution was determined 

for a given initial condition, in this one, an attempt will be made to 

obtain a feedback law valid for any initial condition. We will propose 

then, to minimize the performance function

V (1)to

subjected to the constraint

with m cp( t) + c r (3)

c [1—  1] (*a)

and e (̂ b)

These state equations represent the feedback system described in the 

block diagram of (Fig I). The function cp(t) is a disturbance function 

and is given as in Chapter VII as:



l i ; 1

cp(t) " J* I  bi d (T) ’ exP^si+n(t-T)] dT (5)
0 i=l k

First the final time will be assumed to be finite, and the final state 

unspecified.

G2(s)Gn.

Figure 8. Block Diagram for the Nonlinear System 

The cost function may be written as:

V =  ̂J f  ̂aC'PCt) + cT r] + Atu-g^C r) ]2 ) dt (6)

and the constraint

r =  A r +  < u"8«=(r) ^ (T)

Next the minimum principle yields:
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* ,-*N 1 _T -
u = 8na (r } - p r r  e xk n

(8)

and   —  _
X = -AX - ace r - accp( t) (9)

Because of the presence of the disturbance function <p(t), one may assume 

that:

= Ao(t)*r " T(t) (10)

where T(t) is a n+k vector function of time to be determined. After 

performing all the required substitutions in a similar manner as 

Chapter II, the following matrix equations are obtained.

A0 = -A0A-AA0-accT + 1j8b 2a 2 k n
 XA0 e e A0

and T = - A " A0 e-g1
0b. 2a £ k n

. T( t) + «ccp( t)

(11)

(12)

Note that A0(t) is a symmetric matrix function of time. Equation (ll) 

represents the Ricatti Equation for this problem. The boundary 

conditions to be satisfied are

Lt( tf) [A0 (tf)L . (13)

, k+n



m

*The optimal value of u is determined by substitution of equation 

(10) into equation (8), thus

u*(r,t) = gn2 (r*) - -gfe.a (A0(t)-r - T( t
^ k n

2. Further Simplification of the Problem

In this section some matrix operations will be performed 

to simplify the Ricatti Equation. For instance writing A0(t) as:

Aq( t) =

a21 a22

an+ki an+k2

m+k

a2n+k

n+kn+k

(15)

with a.. = a ..ij Ji (16)

Let C be the matrix sum of (AqA + AA0). Upon matrix multiplication 
one finds that G is given as
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c =

2slaxx ax2( sx+s2 ) • (s, +s )Xn+k 1 n+k

a ., ( s. +s ) xn+k 1 n+k ^an+kn+k* Sn+k

(17)

Here

Finally, after considerable algebraic manipulation, the matrix 

Ricatti Equation reduces to 

r
n+k n+k

• E X e.ê a
^bk2an2 i+1 j=l 1 J qi JA '-“a / V V  (18)

for q = x, n+k 
£ = x, n+k

The elements of the matrix A0(t) are determined as solution to equa

tion (18). Once A0(t) is found equation (12) is integrated to yield 

T(t).

3. Case of Infinite Time Optimization

For this case a (t) = 0, q, JL = x,***, k+nqje
Equation (l8) reduces to:

(19)
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n+k n+k
tt+a (s + s ) - — jj 1 'n V  V  6.e . a . a . - 0 (20)q V  j8b aa 2 L  L  i j qi ]ik n

The vector T(t) is now a solution to the following equation

T = A( A,A0) • T + «ctp( t) (21)

 -
An 6 ewhere A(A,A0) = 7fog ~̂g “ A (22)
p k n

Let (i = lj n+k) be the eigen values of A, then by a simple 

transformation of variables:

T( t) = L V( t) (23)

where V(t) = [vx ... vn+k]

*(t> - CTj. ... Tn+k]

(2k)

(25)

L =

n+k-i

n+k

n+k-]
BN+k

(26)
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V = A V + L_1 a c cp(t) (27)

where

fSJ
A =

c2 O

O sn+k

(28)

The boundary conditions to be satisfied are:

V(tf) = L'1 T(tf) (29)

but since T(tf) = 0, then V( tf) = 0 ]fc
£ -» 00

(30)

Upon integration of equation (27), the following results:

V(t) = exp(At) V(o) + J exp[A(t-T)] L_1 a c <p( t) dT (31)

which may be written as:

V(t) * exp(A t)  ̂V(0) + J exp(-AT) L_1 Of ccp( t) dT ̂  (32)
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Next, we use the boundary condition V(t^) = 0 to solve for1V(0). 
Thus:

£
V(0) = -J f exp(-Ax) L 1 a c cp( t) dT (33)

o

Substituting V(0) back into equation (32) yields:

V(t) = -a exp(At)  ̂ / f exp(-AT) L 1c cp( r) dT ̂ (3k)

"tf

Finally the optimal value of the actuating signal is

e*( r, t) = - —  ( A0*r - LV ) (35)

with A0 given as solution to equation (20) and L given in equation (26) 
The optimal input is:

*X* ^
u = sn2 T̂ ) + e (3 6 )

An example problem will be worked out to illustrate this method of 

solution.
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4. Example Problem

Consider the system represented in the block diagram of

Fig. II.

" 9
\ e ^ 1 J)------- -?• (s+l)( s+2)----------

d(t) = D0(l-e"kt)
k>0 and k^+1 and , . +2

m

->y

y = m

Figure 9« Block Diagram Representing the System. 

We wish to minimize the performance function

V = | J (m2 + e2) dt (37)

subjected to the constraint given in the previous sections as:

  rn
r = Ar + e e(t) (38)

m1(t) = y( t) = cT r + <P(t) (39)

The problem is reformulated as:
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V [c^r + «p( t) 3s + (<p(t) + c r)2 \ dt

with -L   T rr = Ar + e Lu-g^]
(̂ 0)

(M)

The first step is to derive equation (20) noting here that:

- [ ■  - ]

A =
-1 0

0 -2

<P,(t) = d(t) = D0(l-e‘kt)

(̂ 2)

(‘O)

(^)

and

a = jS = a = b = 1  n k

■[* 0
(̂ 5)

(*6)

When expanded equation (20) takes the following form:

l-2a11 - (a11_a12) 0 (̂ 7)

l ~ 3 al 2  " ( an “ S1 2 ^ ai2~ a2s) ® (W)

■*--ka22 " (B22~ aX2  ̂ m 0 Vw)
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Noting that only the values of a„ that will yield a positive definite 

matrix for A0 are acceptable, the solution for this set of nonlinear 
equations is:

Thus,
-

ai2 — 0*329 

axl = 0.487

a22 =  0.248

0.487 0.329
0.329 0.248

Equation (22) yields A(A,A0) as:

(50)

A
1.158 -0.158
0.081 1.919

(51)

and the Eigen values of A are:

= 1.9018

C2 = 1*1752

The matrix L is given by

L “
1 1 

1.9018 1.1752
(52)
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and
L 1 =

Also

■1.621 I.38
2.621 -I.38

1.9018 0
0 1.1752

(53)

(5*0

Upon integration of equation (3*0 the vector V(t) is determined as:

V (t) = D0 / 0.126 - 0.241 exp(-kt)
K + 1.9018 (55)

V2(t) = Do /-l.056 + 1.241 exp(-kt)
K + 1.1752

(56)

*Equation (35) allows the determination of e after matrix and vector 

multiplication. The result is

*e (r,t) = -0.158 r - 0.081 r + D0 < 0.07 - 0.158 exp(-kt)
(k+1.1752)(k+1.90l8)i

* (57)
and the optimal input u is

u" = [ri+r2+D0( l-e'kt:)]2- 0.158^- 0.08lr2 (58)

+ D0 { 0.07 - 0.158 exp(-kt)
(k+1.1752)(k+l. 9018)
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This clearly indicates that an exact solution is possible if the 

performance function is as the one defined in the beginning of this 

Chapter. An optimal solution for the output y (t) is straightforward 

and is omitted here since it does not add anything to the study.
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CHAPTER IX

DISCUSSION OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER STUDIES

In this investigation of nonlinear systems, only non- 

linearities in terms of powers of the output variable were considered. 

However, in some cases, by altering the form of the performance 

function nonlinearities in the powers of derivatives are amenable 

for solution by the method described. The dynamic optimization of 

linear systems was presented in the preliminary chapters to establish 

a solution to nonlinear systems.

The Hamilton Jacobi Equation was derived in a different 

manner than commonly encountered and is discussed in Chapters IV and 

V. Exact solutions to the Hamilton Jacobi Equation were shown 

possible for the one dimensional nonlinear system in particular, and 

for the nfch dimensional system that belongs to the class of problems 

defined at the end of Chapters IV and V in general. Prior to this 

study, even for the one dimensional nonlinear system, a series 

solution was assumed for the performance function V thus yielding 

an approximate solution for the feedback control law or optimal 

closed loop control. Thus, this study has a major contribution in 

that, one is able to start with a fairly general nonlinear system 

and minimize a certain cost function and obtain an exact solution 

for both the control and the optimal return.
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Another interesting aspect was the fact that solutions to 

the open loop control and trajectories were obtained by transformation 

of variables that yielded elliptic integrals of the first kind.

Example problems to illustrate the method of optimization proved very 

interesting. One for which the final time was extended to infinity 

and another for an unknown but finite time and a specified final 

state.

Although, this was by no means the most general type of 

problems that could be investigated, it represented indeed a closed 

form solution for the dynamic optimization of an important class of 

nonlinear systems. In practice, the optimal control law is found 

through the dynamic programming approach by computational solutions 

of some recursion relations. This method of solution would be very 

useful to get a quick and exact result for any first order system

with any degree of nonlinearity in the output variable, for both

the infinite time optimization and the nonlinear minimum time 

problem.
Other advantages such as having the solution to the

linear control problem in terms of the poles of the system are

noteworthy. In most feedback problems the systems are described in 

terms of transfer functions, thus it is convenient to start with 

the given poles and generate a closed form solution for both 

optimal output and control. In this manner, any backward 

integration or any attempt of matching boundary conditions are 

eliminated.
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In the chapters involving automatic feedback systems, for 

the case of a specified initial condition the results of the earlier 

chapters were used. The nonlinear network was assumed to be in the 

feedback branch. The most interesting aspect of the optimization 

scheme was that for the particular performance function, the 

minimization of the nonlinear system was reduced to a linear 

minimization problem with the actuating signal as the control.

Finally, for the case of infinite time optimization and 

for the nonlinear servomechanism problem, the optimization yielded 

an interesting result for the optimal actuating signal. For both 

cases, example problems proved worthwhile as an illustration to the 

method of solution.

CONCLUSION

Exact solutions to the Hamilton Jacobi Equation are very 

rare cases for the most simple systems. This method of solution 

would not yield the exact result for all types of nonlinear systems, 

it would although, at least for the class of systems described in 

this study, give an exact solution and an easy formulation for the 

optimal control. The limitations might be listed as follows:

1. The disturbance function d(t) was assumed to be bounded for any 

t in [tQ, t̂ 3, otherwise, at least for the infinite time optimization 

problem, the control law is not admissible. In addition to being 

bounded, it was assumed that both d(t) and its derivatives were 

continuous.
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2. Nonlinearities existed in the feedback branch, thus any feed 

forward analysis was omitted.

5. The performance function was assumed to be quadratic in terms of 

both the control and output variable.

4. For the case of the solution to the linear problem, the poles 

were assumed to be distinct, thus dispensing from any undersirable 

"Jordan Form" and allowing the existence of the inverse of the 

Vandermonde matrix.

5. For the optimization of nonlinear systems, nonlinearities 

existed in terms of the powers of the output variables for first 

order systems with quadratic performance in the output and the 

control.

Because of these limitations, some recommendations for 

further studies are indispensable. For instance, because of the 

nature of the solution obtained for infinite time optimization, some 

work needs to be done in the case of specified finite final time, a
CTJ

condition that introduces the term —  to the Hamilton Jacobiot
Equation. Also, other forms of performance functions need to be 

considered coupled with some other types of nonlinearities in terms 

of other variables, possibly the control. Finally, because of the 

Elliptic form of the integrals resulting from the solution to the 

optimal trajectory, it is conceivable that for the class of problems 

described in this study, through certain transformations the 

solution is always an elliptic integral of the first kind or second 

kind or even a combination of both.
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